固体物理第三章答案
(完整版)固体物理胡安第三章课后答案

3.1 在单原子组成的一维点阵中,若假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且21。
试证明在这样的系统中,格波仍存在着声频支和光频支,其格波频率为21221221212)2(sin 411M)(qa 证明:第2n 个原子所受的力121122221212121222)()()(n nn n nn nnuu u u u u u F 第2n+1个原子所受的力nn n n nn nnu u u u u u u F 22121122112221222112)()()(这两个原子的运动方程:212222112121122112222()()n n n n nn n nmu u u u mu u u u &&&&方程的解qan t inqan t in Beu Aeu 2)12(122)2(2代入到运动方程,可以得到BA e eBmAB eeAmqaiqa iq a i q a i )()(21222122122212经整理,有)()(22122212221221B mA eeB eeAmqa iqa iqa iq ai 若A ,B 有非零解,系数行列式满足22212122221212,,aai q i q a a i q i q me eee m根据上式,有21221221212)2(sin 411M)(qa 3.3(a) 设单原子链长度L=Na波矢取值2qhNa每个波矢的宽度2qNa,状态密度2Na dq 间隔内的状态数2Nadq ,对应±q ,ω取相同值因此22Na dqdq一维单原子链色散关系,4sin 2aqm 令4,sin2aq m两边微分得到cos22aaq ddq将220cos12aq 代入到0cos22aaq ddq22222,2a dq ddq da频率分布函数2222122122Na NaN dadq3.4三维晶格振动的态密度为3(2)V 根据态密度定义3()(2)|()|qV dS q r =对2qAq两边微分得到2d q Aqdq在球面上2qd Aq dq,半径01qA代入到态密度函数得到21/23323/2144,2422qV qV AV AAAq最小截止频率m001/223/234mmV dd NA可得2/32min 06N AV所以1/2min 023/2,4VA在0min或时,是不存在频率ω的分布的,也就不会有频率分布的密度。
固体物理第三章习题答案

1
4 u n
( ij u )
i j
右边
1
1
4 u n
i(n)
( in u
i(n)
2
2 in
j(n)
nj
u )
2
2 nj
4 u n
( in ( u n u i )
j(n)
nj
nj
(u j u n ) )
T 成正比,说明德拜模型 温的情况下。
3- 5 设想在一维单原子晶格
中,只激发出一个动量
为
q ( q 0 )的声子,试证明晶体并
不因此而获得物理动量
。
证明:先证下面的式子 1 N
'
: l l l l
' '
e
n
ina ( q l q ' )
l
ll '
1, 0,
略去 项,(因为低温,
1)
d
C
T
m
l
M M
0
a
e
k BT
1
l
M
a
T
0
d
似为无穷大 )
e
k BT
1
(因为低温,频率低的占
主要,所以上限可以近
l
M k T
2 B
a
(e
0
x e
x
2
x 2
1)
2
固体物理第三章作业答案

dt
• 其中pt为电子的动量,τ为相邻两次碰撞之间的电
子自由运动时间(弛豫时间),f t为电子所受的
外力。请在线性响应的范围内,推导金属在频率
为ω的电磁波作用下的电导率。在此基础上,可
尝试导出金属的介电函数。
• 解:设频率为ω的电磁波中 E E0eit
B B0eit
• 金属在电磁波作用下的运动方程
• 电子热容系数 2.08mJ mol1 K 2
• 电子热质量
mt*h
m 观测值 自由电子气
m
2.08
2.08பைடு நூலகம்
2RkB 2 3 2n 2
3
m
2
3
2
2 a3
2
3
2RkB
2.08
1.05 1034
2
ai bj 2ij
则相应的倒格子基矢为:
基本无问题,少数同学没写 出基矢的表达式,没注意单 位化为cm-1
b1
2 a
i
108 i
cm1
b2
2 b
i
2
108 i
cm1
倒格子和第一布里渊区如图示:红色区域为第一布里渊区
b2
b1 108 cm1
dp t p t eE ev B
dt
• 忽略磁场项作用( eE ev B ),运动方程写为:
dp t p t
eE
dt
dv dt
v
e m
E0eit
固体物理第三章答案

对 NaCl:T=5K 时
8. 在一维无限长单原子链中,若设原子的质量均为 M,若在简谐近似下考虑原子间的长程 作用力, 第 n 个原子与第 n+m 和第 n-m 个原子间的恢复力系数为m, 试求格波的色散关系。 解:设原子的质量为 M,第 n 个原子对平衡位置的位移为 un , 第 n+m 和第 n-m 个原子对 平衡位置的位移为 un+m 和 un-m (m=1,2,3……), 则第 n+m 和第 n-m 个原子对第 n 个原子的 作用力为 fn,m = m(un+m-un)+m(un-m-un)=m(un+m+un-m-2un) 第 n 个原子受的总力为 Fn =
色散关系为
4 qa sin m 2
(1)
2
2 2 (1 cos qa) = m (1-cosqa) m 2
(2)
其中
m= (
4 12 ) m
由于对应于q, 取相同的值, (色散关系的对称性〕 ,则 d区间的格波数为
g( )d=2
Na Nad dq 2 d dq
V g ( i )d i = (2 ) 3
i d i i
d q
在长波极限下等频率面为球面
则
g( i )d i =
V 4q 2 dq (2 ) 3
当 i 0 时 因为
q2=
0- i (q)
A
q
0 i (q)
A
dq=-
2 A 2 0 i (q) 2
m 1
f n ,m =
m 1
m(un+m+un-m-2un)
因此,第 n 个原子的运动方程为 M
固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
固体物理第三章

固体物理第三章班级成绩学号Chapter 3 晶格振动与晶体的热学性质姓名(lattice vibration and its heat characteristics)⼀、简要回答下列问题(answer the following questions):1、在晶格常数为a 的⼀维单原⼦晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原⼦振动状态有⽆不同? 试画图加以说明。
[答]对于⼀维单原⼦链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π/4a ,⼆者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原⼦振动状态不同。
如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原⼦的振动状态相同。
2、什么叫简正振动模式?简正振动数⽬、格波数⽬或格波振动模式数⽬是否是⼀回事?[答]在简谐振动下,由N 个原⼦构成的晶体的晶格振动,可等效成3N 个独⽴的谐振⼦的振动,每⼀个谐振⼦的振动模式称为简正振动模式。
格波振动通常是这3N 个简正振动模式的线性叠加。
简正振动数⽬、格波数⽬或格波振动模式数⽬是是⼀回事,其数⽬等于晶体中所有原⼦的⾃由度之和,即等于3N 。
3、晶体中声⼦数⽬是否守恒?在极低温下,晶体中的声⼦数与温度T 之间有什么样的关系?[答]频率为ωi 的格波的平均声⼦数为: 11)(/-=Tk i B en ωω即每⼀个格波的声⼦数都与温度有关,因此晶体中的声⼦数⽬不守恒,它随温度的改变⽽改变。
以德拜模型为例。
晶体中的声⼦数⽬为ωωωωd g n N D)()('0=其中令 T k x B ω= 则 123'2/033233-=x TB e dxx C T k V N D θπ在极低温度下,θD /T →∞,于是 331332332033233)2(23123'T nC T Vk e dx x C T k V N n B x B ∑∞=∞=-=ππ即在温度极低时,晶体中的声⼦数⽬与T 3成正⽐。
王淑华固体物理答案第三章

3.4 由原子质量分别为 m, M 两种原子相间排列组成的一维复 式格子,晶格常数为 a ,任一个原子与最近邻原子的间距 为 b ,恢复力常数为 β1 ,与次近邻原子间的恢复力常数 β2 , 试求 (1)格波的色散关系; (2)求出光学波和声学波的频率最大值和最小值。 解:(1)只考虑最近邻原子的相互作用
由上式可知,存在两种独立的格波。
声学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωA sin 1 1 2 m 2 β1 β2
光学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωO sin 1 1 2 m 2 β1 β2
为角频率; 式中,A为轻原子的振幅;B为重原子的振幅;
q 2 为波矢。
将试探解代入运动方程有
m 2 A e iaq e iaq B 2 A
M 2 B e iaq e iaq A 2B
(1)
经整理变成
2 A 2 cos aqB 0 2 2 cosaqA M 2 B 0
2
m
要A、B有不全为零的解,方程(1)的系数行列式必须等于零, 从中解得
12 2 2 m M m M 2mM cos 2aq mM 2
(2)
式中的“+”“-”分别给出两种频率,对应光学支格波和声学支 格波。上式表明, 是q的周期函数, 2a q 2a 。当q取 边界值,即 q 2a 时,从(2)式得
《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
由题意
2=101=10
2 A
得
11 1 2 1 ( 100 20 2 cos qa) 2 m m 11 1 = (101 20 cos qa) 2 m m
=
11 (101 20 cos qa) m
1 2
当 q=0 时 当 q=
A=
0
g ( )d
=
V 2
2 3
(
k BT 3 )
由上已知,此时格波平均能量为 KBT 则晶格热容可表示为
CV =
T
V k BT )k B T 2 3( 2
=
4 2Vk B T3 3 3 2
把(3-75)式
D=(6 2
m 1
f n ,m =
m 1
m(un+m+un-m-2un)
因此,第 n 个原子的运动方程为 M
d 2 un = dt 2
m 1
m(un+m+un-m-2un) un = A ei ( qnat )
2
将格波的试解
代入运动方程,得 -M =
m 1
m
(e iqma e iqma 2)
1.设有一双子链最近邻原子间的力常数为和 10, 两种原子质量相等, 且最近邻距离为 a/2, 求在 q=0,q=
处的 (q).并定性画出色散曲线。 a
m m 10 m m ____________________________________________________
|
得:
p
DL N
(7)
代入(6)式 得: E 零=
N N N d K B QD 4 4 4a
KT
4. 试用平均声子数 n=( e
1) 1 证明:温度为 T 时,对单式格子,波长足够长的格波
T 3 ) 。 D
平均能量为 KT; 当 T Θ D 时, 大约有多少模式被激发?并证明此时晶体比热正比于(
2 A 2 A
q 0
时 a
m
(11 11) 0 (11 9) 2 m
1 2
q a
m
把 2=101=10代入(2)式 得
2 0 2 0 =
11 (101 20 cos qa) m
22 m q 时 a
当 q=0 时
q 0
6. 证明在极低温度下,一维单式晶格的热容正比于 T .
证:在极低温度下,可用德拜模型,q 点密度为 d 区间格波数为 g( )d=2
L 2
= g
L L d L dq = d dw 2 dq
所以格波密度函数 g( )=
L
只有
K BT
k BT 的格波才能被激发,已激发的格波数为;
L k BT
A=
0
g ( )d=
由第 4 题已证,一维单式格子只有是声学格波激发,对ω 足构低,且满足 波能量为 KBT。则晶格热容为
1 的格 kT
CV =
T
2 LK BT 2 LK B K T = T B
Cv=3.8X10-2
Cv 3 3.8 8 102 C= 3 2 = =0.24 10 2 (J.mol-1.K-1) 5 125
Cv''
3 (Cv QD ) 3.8 10 2 (230) 3 =1.41X10-2(J.mol-1.K-1) 11 3 (QD ) (320) 3
3 2
1
2
i 0
0
3. 求一维单原子链的格波密度函数;若用德拜模型,计算系统的零点能。 解: (1)设一维单原子链长 L=Na,a 为原子间距,N 为原子数,在- 能取 N 个值,dq 间距内的格波数为 f(q)dq=
q 区域内 q 只 a a
N 2 a
dq
Na L dq dq 2 2
1 1 E n w K B T w K B T 2 2
所以,格波平均能量为
当 TD 时,可使用德拜模型,格波密度函数为教材(3-72)
g(w)=
3V
3 2 2
2
只有≤
k BT 的格波才能激发,已激发的格波数可表示为:
K BT
(因为 q 本身为实数) 即不存在 i 0 的格波, 则 g( i )=0
上式右边必满足 0 i
又因为 三维晶体中共要有 3(S-1)支光学格波 所以 光学波频率分布函数为: g ( ) g( )=0
3 S 3
i 1
V ( 0 i ) 4 2 A
3
N 13 ) V
及
D=K B D 代入整理为:
T Cv=12NKB D
所以晶格比热正比于(
T 3 ) D
得证
5. 对于金刚石、Zns、单晶硅、金属 Cu、一维三原子晶格,分别写出 (1) 初基元胞内原子数; (2). 初基元胞内自由度数 (3).格波支数; (4). 声学波支数 (5).光学波支数 解: 初基元胞内原子数 初基元胞内自由度数 格波支数 声学波支数 光学波支数 金刚石 2 6 6 3 3 Zns 2 6 6 3 3 Si 2 6 6 3 3 Cu 1 3 3 3 0 一维三原子晶格 3 3 3 1 2
d p 代入(3)式 dq
(5)
得;
g( )=
Na
p
D
L
p
1 g ( ) d 2
D
D
则零点能为: E 零=
0
0
L 2 p L D
d =
2 L D 4 p
(6)
D
又因为
0
g ( )d
0
L
p
d
p
N
=
2
m 1
m
[cos( qma ) 1]
= -4
m 1
m
sin 2 ( qma / 2)
所以
2 =
4 M
m 1
m
sin 2 ( qma / 2)
2 0
q a
20 m
2.设三维晶格的光学格波在 q=0 的长波极限附近有 i (q)= 0-Aq2(A0) ,求证光学波频率
3( s 1)
分布函数(格波密度函数)为:g( )=
i 1
V 4 2
( 0 i ) A
3 2
1
2
i 0 i > 0
g( )=0 证:由格波密度函数的定义已知,对一支格波在 d i 区间格波数为
2d =
2 m a
(3)
由色散系(2)可得:
2
sinqa dq
2 2 a m a a d m 2 sin qa 1 cos 2 qa = m 2 dq 4 4 2
代入(3)可得:
g( )=
2N
2 m 2
(4)
(2)在德拜模型下,色散关系为线性
=p q
对 NaCl:T=5K 时
8. 在一维无限长单原子链中,若设原子的质量均为 M,若在简谐近似下考虑原子间的长程 作用力, 第 n 个原子与第 n+m 和第 n-m 个原子间的恢复力系数为m, 试求格波的色散关系。 解:设原子的质量为 M,第 n 个原子对平衡位置的位移为 un , 第 n+m 和第 n-m 个原子对 平衡位置的位移为 un+m 和 un-m (m=1,2,3……), 则第 n+m 和第 n-m 个原子对第 n 个原子的 作用力为 fn,m = m(un+m-un)+m(un-m-un)=m(un+m+un-m-2un) 第 n 个原子受的总力为 Fn =
1 1
1 2
d i (q)
i V ( 0 i ) V 1 所以 g( i )= =- 4 0 1 1 3 3 A (2 ) 2 A 2 ( 0 i ) 2 4 2 A 2
由模式密度的物理意义,取其绝对值 而当 i 0 时 又因为 所以 A0 因为 i = 0 -Aq2 q20 所以 Aq2= 0 - i
解:单式格子仅有声学格波,而对声学波波长λ 足够长,则很低对满足
1 的格波 k BT
把e
w
K BT
泰勒展开,只取到一次项 e
w
K BT
-1 (1+
w w )-1= , k BT k BT
平均声子数 n=( e
KT
1) 1 ,所以 n k B T 而属于该格波的声子能量为 , w
色散关系为
4 qa sin m 2
(1)
2
2 2 (1 cos qa) = m (1-cosqa) m 2
(2)
其中
m= (
4 12 ) m
由于对应于q, 取相同的值, (色散关系的对称性〕 ,则 d区间的格波数为
g( )d=2
Na Nad dq 2 d dq
即热容正比于 T。
7. NaCl 和 KCl 具有相同的晶体结构。其德拜温度分别为 320K 和 230K。KCl 在 5K 时的 定容热容量为 3.8×10-2J.mol-1.K-1,试计算 NaCl 在 5K 和 KCl 在 2K 时的定容热容量。 解: 设 NaCl 和 KCl 晶体所包含的初基元胞数相等,均为 N,T D ,可用德拜模型(德 拜温度分别为 NaCl=320K,KCl=230K)利用