无机材料科学第五章固体表面与界面
武汉理工大学考研材料科学基础重点 第5章-表面结构与性质

第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。
2)界面:相邻两个结晶空间的交界面称为“界面”。
3)相界面:相邻相之间的交界面称为相界面。
有三类: S/S;S/V; S/L。
产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。
所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。
这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。
1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。
这是一种理论上的结构完整的二维点阵平面。
它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。
这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。
2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。
这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。
根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。
(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。
为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。
固体表面与界面

固体表面与界面无机材料制备及使用过程发生的种种物理化学变化,都是由无机材料表面向内部逐渐进行的,这些过程的进行都依赖于无机材料的表面结构与性质。
人们平时遇到和使用的各种无机材料其体积大小都是有限的,即无机材料总有表面暴露在与其相接触的介质内。
相互接触的界面上或快或慢地会发生一系列物理化学作用。
产生表面现象的根本原因在于无机材料表面质点排列不同于内部,无机材料表面处于高能量状态。
基于此,本章主要介绍无机固体的表面及结构,陶瓷晶界及结构,界面行为,包括弯曲表面效应、吸附与表面改性、润湿与粘附,以及近30年来从原子、分子水平上研究固体表面组成、结构和性能的各种表面分析及测试方法等知识。
并讨论粘土-水系统中粘土胶粒带电与水化等一系列由于粘土粒子表面效应而引起的胶体化学性质,如泥浆的稳定性、流动性、滤水性、触变性和泥团的可塑性等。
为了解和运用表面科学知识解决无机材料相关科学与工程问题奠定基本的必要的理论基础。
处在物体表面的质点其境遇和内部质点不同,表面的质点由于受力不均衡而处于较高的能阶,从而使物体表面呈现一系列特殊的性质。
例如,将1kg石英砂从直径为10-2m粉碎到10-9m,比表面积(单位质量或单位体积物质所具有的总表面积,单位:m2/kg或m2/m3)与比表面能(等温等压条件下,增加单位新表面所需要的可逆非膨胀功称为比表面能,简称表面能。
单位:J/m2)的变化如表5-1示,可看出仅仅由于分散度(物料被分散的程度,是物质粒度的一种度量。
分散度越大,物质粒径越小)的变化而使细粉石英比表面能增加1千万倍.相当于650kg水升高1℃需要的能量。
粉碎石英的机械能转化为表面能贮存的石英粉内。
由于高分散度物系比低分散度物系能量高得多,必然使物系由于分散度的变化而使两者在物理性质(如熔点、沸点、蒸气压、溶解度、吸附、润湿和烧结等)和化学性质(化学活性、催化、固相反应)方面有很大的差别。
随着材料科学的发展,固体表面的结构和性能日益受到科学界的重视,而逐渐形成一门独立学科——表面化学和表面物理。
材料科学中的表面和界面研究

材料科学中的表面和界面研究材料科学的发展水平已经到了让人瞠目的地步,这离不开表面和界面这两个重要的研究方向。
表面和界面科学早已成为材料科学研究的重要部分。
无论是材料的性能还是材料的组织结构,其都与材料表面和界面有着密不可分的联系。
本文将从表面和界面科学的基本概念到理论研究和实践应用等方面给大家进行介绍,并就其在实际应用中进行一些探讨。
一、表面和界面科学的基本概念表面和界面科学主要关注的是物质的表面和界面所具有的性质、结构和功能等。
其研究的主要对象是具有表面和界面的材料,如液体、气体、固体等。
材料的表面是指物质和外界的接触面,它是材料表征和性能调控的重要途径。
而界面则是指两相材料之间的分界面,如液体-气体、液体-固体、固体-气体等。
材料的界面位置不同,其表现出的性质也不同,因此表面和界面科学可以对这一方面进行探讨。
二、表面和界面科学的理论研究表面和界面科学的理论研究探讨的是在材料表面和界面上发生的一系列物理和化学过程,其目的是为了揭示表面和界面上的基本规律和特性。
主要分为表面物理学和表面化学两个方向。
表面物理学研究的是表面的物理性质,如最大吸附量、表面结构、电子结构等,通过研究表面物理性质,可以揭示表面吸附和反应的本质,从而解决许多实际问题。
表面化学则是揭示表面化学反应的机理和动力学规律,以及表面吸附和反应行为的影响因素,如温度、压力和化学势等。
三、表面和界面在实际应用中的作用表面和界面在实际应用中有着广泛的应用,如催化剂、电子器件、涂料等。
在催化剂方面,表面和界面通常可以调节催化剂的活性和选择性,提高催化反应的效率。
在电子器件方面,表面和界面技术目前已经成为了制造先进微电子器件的重要手段。
在涂料领域,表面和界面对于材料抗腐蚀、抗磨损、增强粘附等方面有着显著的影响。
以上便是表面和界面科学的基本概念、理论研究和实际应用方面的简单介绍。
表面和界面科学是材料科学研究的重要组成部分,其在材料性能、结构和功能的探讨和改进方面所发挥的作用不可小觑。
无机材料科学基础表面与界面ppt学习教案

提高自身专业素养以适应行业发展需求
深入学习无机材料科学知识
增强实践能力和创新能力
不断学习和掌握无机材料科学领域的新知 识、新技术和新方法。
通过参与科研项目、实验课程等实践活动 ,提高实践能力和创新能力。
关注行业发展趋势和前沿动态
提高跨学科综合素质
关注无机材料领域的最新研究成果和前沿 动态,了解行业发展趋势和市场需求。
透射电子显微镜(TEM)表征
原理
利用高能电子束穿透样品,通过检测透过样品的电子束或 衍射电子等信号,获得样品的内部结构和晶体信息。
应用
观察无机材料的晶体结构、晶格缺陷、位错和层错等,可 分析材料的晶体学性质和相变过程。
优点
分辨率极高,可揭示材料内部结构和晶体缺陷的详细信息 。
原子力显微镜(AFM)表征
学习相关学科知识,如物理学、化学、工程 学等,提高跨学科综合素质和解决问题的能 力。
THANKS
感谢观看
无机材料表面与界面表征技
05
术
扫描电子显微镜(SEM)表征
原理
利用高能电子束在样品表面扫描,通过检测样品发射的次级电子 或背散射电子等信号,获得样品表面形貌和组成信息。
应用
观察无机材料表面形貌、颗粒大小、分布和团聚情况等,可分析材 料表面的微观结构和缺陷。
优点
分辨率高、景深大、立体感强,可直观观察材料表面形貌。
原理
利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作 用力,从而达到检测的目的,具有原子级的分辨率。
应用
观察无机材料表面的原子排列、表面粗糙度、表面电势和摩擦力等 ,可分析材料表面的物理和化学性质。
优点
无需真空环境,可观察导体和非导体样品,提供三维表面形貌信息 。
沈阳化工大学无机材料科学基础5-1 固体表面与界面1

无机材料科学基础
一、固体表面的特征
固体表面的特点 固体表面力场
无机材料科学基础
1. 固体表面的特点 (1)固体表面 理想表面 清洁表面:台阶表面、驰豫表面、重构表面 吸附表面 表面偏析
无机材料科学基础
压、第二相的性质等条件有关。如温度上升,表面能下降。
2. 固体表面力场
➢定义: 晶体中每个质点周围都存在着一个力场,在
晶体内部,质点力场是对称的。但在固体表面, 质点排列的周期重复性中断,使处于表面边界上 的质点力场对称性破坏,表现出剩余的键力, 称 之为固体表面力。
➢固体中表面力分为哪几类?
无机材料科学基础
▲▲
➢表面力的分类:
(1) 化学力(长程力)
0.266nm
NaCl表面层中Na+向里、Cl-向外移动,并形成双电层
无机材料科学基础
➢ 离子极化性能愈大,双电层愈厚,从而 表面能愈低。
➢ 如:PbI2 表面能最小(130尔格/厘米2); PbF2 次之(900尔格/厘米2); CaF2 最大(2500尔格/厘米2)
无机材料科学基础
2、粉体表面结构
在熔体转变为玻璃体的过程中,为了保持 最小表面能,玻璃表面各成分将按其对表面自 由能的贡献能力自发地转移和扩散。
在玻璃成型和退火过程中,碱、氟等易挥发 组分自表面挥发损失。
玻璃中的极化离子会对表面结构和性质产 生影响。
无机材料科学基础
4、固体表面的几何结构
实验观测表明,固体实际表面是不规则 而粗糙的,存在着无数台阶、裂缝和凹凸不 平的峰谷。这些不同的几何状态同样会对表 面性质产生影响,其中最重要的是表面粗糙 度和微裂纹。
无机材料物理化学固体表面与界面

无机材料物理化学固体表面与界面在材料科学的世界中,无机材料物理化学是一个极其重要的研究领域,特别是在固体表面与界面方面的研究。
这些研究涵盖了各种无机材料,包括金属、非金属、半导体和绝缘体等,它们的表面和界面行为对材料的性质和性能有着深远的影响。
我们来看看固体表面的物理化学。
固体表面是一个具有特殊结构和性质的相,它与相邻的介质(如气体、液体或另一种固体)相互作用。
这种相互作用会影响材料的润湿性、吸附性、反应性以及电子传输等性质。
例如,通过改变表面的粗糙度或化学活性,我们可以控制材料表面的润湿性,进而影响其与液体的相互作用。
界面在无机材料中同样扮演着重要的角色。
在无机材料中,界面可以是两种不同材料之间的接触面,也可以是同一材料不同晶面之间的接触面。
这些界面上的原子排列和电子结构会不同于体相材料,从而影响材料的物理和化学性质。
例如,石墨烯和氮化硼之间的界面可以影响电子传输和热导率。
我们还研究了固体表面和界面在光电、催化、储能等领域的应用。
这些应用需要我们对材料的表面和界面性质有深入的理解,才能实现高效的能量转化和优异的性能。
例如,在太阳能电池中,我们需要优化半导体材料的表面结构以增加光吸收和载流子分离效率;在催化剂中,我们需要理解表面结构对反应活性的影响以设计高效的催化剂。
无机材料物理化学中的固体表面与界面研究为我们提供了理解和控制材料性质的新途径。
通过深入了解材料的表面和界面性质,我们可以设计出具有优异性能的新材料,并优化其在能源、环保、信息技术等领域的应用。
在过去的几十年中,纳米科技的发展取得了令人瞩目的成就。
无机纳米材料,作为一种重要的纳米科技领域,具有许多独特的物理、化学和机械性质,因此在许多领域具有广泛的应用前景。
然而,由于其表面能高,无机纳米材料容易团聚和稳定性差,这限制了其实际应用。
为了解决这些问题,表面修饰改性成为了一种有效的手段。
通过对无机纳米材料进行表面修饰改性,可以有效地提高其稳定性、相容性和生物活性,从而进一步拓展其应用范围。
第五章 表面、相界和晶界 无机材料物理化学 教学课件

第二节 固体表面的特性
2. 表面自由焓的理论计算 离子晶体的表面自由焓计算常常是利用晶格能的数据。 设有一块离子晶体具有清洁表面,处于真空和0K的条件
下。当某一被考察离子从晶体内移至晶体表面,其内能变化 为△U=U表面-U体系
Uib、UiS分别表示第i个原子在体内和在表面与一个最近邻 原子的作用能。
10
第一节 表面现象
➢ 在水中的气泡或玻璃液中的气泡都是凹液面的例子。
➢ 按凹液面考虑,在平衡时是液体中气泡内的压强大于周围液体的压 强。
➢ 若把高温陶瓷体中,孤立的气泡近似地看成是液态中的气泡,那么 由于表面张力的作用,相当于有一个2γ/R的正压力促使气泡自动缩 小,推动致密化的进程。
➢ 在实际情况中,经常遇到非球面的弯曲表面,这种表面的 内外压差是:△p=γ(1/r1+1/r2)。 r1,r2分别为非球面弯曲表面的两个主曲率半径。
T
p A
比较上面两式可得:
G
A T , p
同理有: U H F
A S,V A S, p A T ,V
5
第一节 表面现象
➢上面结果表明,原来我们称之为表面张力的γ,从热力学的 角度来看,是指等温、等压条件下,单位面积的自由焓。表 面自由焓是体系自由焓的一部分,只不过这部分自由焓与表 面有密切关系。 ➢表面张力和表面自由焓的定义不一样,单位在形式上也不 相同,前者是N/m,后者是J/m2,为什么在讨论液体的表面 现象时,把它们等同起来呢?
dH TdS Vdp W非 dF SdT pdV W非 dG SdT Vdp W非
4
第一节 表面现象
若δW非就是表面功,克服表面张力所做的功应为: δW非=力×距离=γ·2l·dx=-γ·dA
无机材料科学基础第五章表面与界面

第5章固体表面与界面一、名词解释1.阳离子交换容量:为PH=7 时100g干粘土所吸附的离子的毫克当量数2.可塑性:粘土与适当的水混合均匀制成泥团,当其受到高于某一个剪切应力值时,可以塑造成任何形状,这种去除应力能够保持形状。
3.触变性:泥浆的稀释流动状态到泥浆的稠化凝聚状态之间还有一个中间态,通过扰动和摇动,凝固的泥浆又变回流动状态,当停止扰动或摇动,又变回凝固的泥浆4.滤水性:用石膏模型注浆成型时,泥浆形成的固化泥层透过水的能力5.聚沉值:使一定量的胶体溶液在一定的时间内开始凝聚所需要的电解质浓度6.粘土阳离子交换:粘土颗粒吸附的阳离子被溶液中其它浓度大、价数高的阳离子所交换二、填空与选择1.范氏力主要来源于三种不同效应:发生在极性分子和极性分子之间的静电力;发生在极性分子和非极性分子之间的诱导力和发生在非极性分子和非极性分子之间的色散力。
2.不同类型的物体在应力作用下出现的流动形式可有:粘性流动、宾汉流动、塑性流动、假塑性流动和膨胀流动。
3.粘土阳离子交换顺序为 H+>Al3+>Ba2+>Sr2+>Ca2+>NH4+>K+>Na +>Li+(半径大、电价高交换能力强)。
4.粘土荷电的主要原因有:类质同晶取代、边棱破键和腐殖质电离。
5.水和粘土作用以后,水在粘土胶粒周围随着距离的增大可分为:牢固结合水、疏松结合水和自由水。
(电价低、半径小结合水多)6.当液体与固体相接触,固相不被液体所润湿,则两相的表面张力的关系应是D 。
( A γSV -γSL >γLV;B γSV >γSL;C γSV -γSL <γLV;D γSV <γSL )7.离子晶体通常借助表面离子的极化变形和重排来降低其表面能,对于下列离子晶体的表面能,最小的是 PbI 2、 。
( CaF 2、PbF 2、PbI 2、BaSO 4 、SrSO 4 )8.粘土的很多性能与吸附阳离子种类有关,当吸附下列不同阳离子后的变化规律以箭头表示(小→大):−−−−−−−−−−−→−++++++++++Li Na K NH Mg Ca Sr Ba Al H 422223 与这样变化规律有关的性能是 A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Transient dipoles
• At any instant
• Electrons are
unevenly
• Electrons touring distributed
固体分散度的变化
例如:石英的粉碎。1kg直径为1cm米变成 1nm米,表面积和表面能增加143倍。由于高 分散系比低分散系能量高得多,必然使物系由 于分散度的变化而使性质方面有很大差别。
物理性质 熔点、沸点、蒸汽压、 溶解度、吸附、 润湿和烧结等
化学性质 化学活性、催化、 固相反应等
表面质点不对称受力能量升高
表面质点不对称结构
无机材料科学第五章固体表面与界 面
内容提要
固体表面力场与表面能。 离子晶体在表面力场作用下,离子的极化与重排过程。 多相体系中的界面化学:如弯曲效应、润湿与粘附,表面改性。 多晶材料中的晶界分类,多晶体的组织,晶界应力与电荷。
第一节 固体的表面
表面:一个相和它本身蒸汽或真空接触的分界面 界面:一相与另一相(结构不同)接触的分界面。
– At least a tendency
无机材料科学第五章固体表面与界 面
Transient Induced Dipoles
• An instant later…
• Electrons moved
• Dipole aligned parallel
– Unfavorable
• Like charges repel
第五章 表面与界面
总述 理想晶体和玻璃体/实际晶体和玻璃体
理想晶体和玻璃体:任一个原子或离子都处在三维无 限连续的空间中,周围对它作用 完全相同。
实际晶体和玻璃体:有限处于物体表面的质点,其境
遇和内部是不同的,表面的质点 受力不均衡而处于较高的能阶。
无机材料科学第五章固体表面与界 面
无机材料科学第五章固体表面与界 面
3、 NaCl形成双电层厚度为0.02nm,在Al2O3、SiO2、ZrO2 等表面上也会形成双电层。
4、当表面形成双电层后,它将向内层发生作用,并引起 内层离子的极化和重排,这种作用随着向晶体的纵深推移而 逐步衰减。表面效应所能达到的深度,与阴、阳离子的半径 差有关,差愈大深度愈深。
5、离子极化性能愈大,双电层愈厚,从而表面能愈低。
内部原子对称配位受力平衡 表面原子无不机材对料称科学配第五位章受固体力表面不与平界 衡
面
表面力的分类
(1)范得华力(分子引力) (2) 长程力
无机材料科学第五章固体表面与界 面
(1) 范得华力(分子引力)
是固体表面产生物理吸附或气体凝聚的原因。 与液体内压、表面张力、蒸汽压、蒸发热等性质有关。
through orbital
space
• Dipole
• Evenly distributed • Transient: an
about nucleus
instant later,
– On overage
electrons will have
无ed
Induced Dipoles
• The effect of one dipole on a neighboring atom:
• Electrons of atom 2 drawn towards +ve side of atom 1
• “Induced” dipole in atom 2
• Aligned antiparallel
表面力的作用: 液体: 总是力图形成球形表面来降低系统的表面能。 固体: 使固体表面处于较高的能量状态(因为固体不能流动),只能 借助于离子极化、变形、重排并引起晶格畸变来降低表 面能,其结果使固体表面层与内部结构存在差异。
NaCl 晶 体
图3-1 离子晶体表面的电子云变形和离子重排
说明:
1. 离子晶体MX在表面力 作用下,处于表面层的负 离子X在外侧不饱和,负 离子极化率大,通过电子 云拉向内侧正离子一方的 极化变形来降低表面能。 这一过程称为松弛,它是 瞬间完成的,接着发生离 子重排。
一、固体表面的特征 二、晶体表面结构 三、固体的表面能
无机材料科学第五章固体表面与界 面
一、固体表面的特征
1. 固体表面的不均匀性,表现在: (1)绝大多数晶体是各向异性,同一晶体有许多性能不同的表面。 (2)同一种物质制备和加工条件不同也会有不同的表面性质。 (3)晶格缺陷、空位或位错而造成表面不均匀。 (4)在空气中暴露,表面被外来物质所污染,吸附外来原子可占据
NaCl 晶 体
图3-1 离子晶体表面的电子云变形和离子重排
2. 从晶格点阵稳定性 考虑作用力较大,极 化率小的正离子应处 于稳定的晶格位置而 易极化的负离子受诱 导极化偶极子排斥而 推向外侧,从而形成 表面双电层。重排结 果使晶体表面能量趋 于稳定。
无机材料科学第五章固体表面与界 面
无机材料科学第五章固体表面与界 面
不同的表面位置,形成有序或无序排列,引起表面不均匀。 (5)固体表面宏观光滑,原子尺寸衡量,实际上也是凹凸不平的。
2. 固体表面力场
固体表面力定义:晶体中每个质点周围都存在着一个力 场,在晶体内部,质点力场是对称的。但在固体表面, 质点排列的周期重复性中断,使处于表面边界上的质点 力场对称性破坏,表现出剩余的键力。
• Or pointing in
completely
different 无机材料科学第五章固体表面与界 面
direction
表达式:F范=FK+FD+FL 1/r7
说明:分子间引力的作用范围极小,一般为3~5埃。 当两个分子过分靠近而引起电子层间斥力约等于B/r3 , 故范得华力只表现出引力作用。
无机材料科学第五章固体表面与界 面
(2) 长程力: 属固体物质之间相互作用力,本质仍是范得华力。 按作用原理可 分为: A. 依靠粒子间的电场传播的,如色散力,可以加和 B. 一个分子到另一个分子逐个传播而达到长距离的。诱导作用力
二、晶体表面结构 1. 离子晶体表面
超细结构(微观质点排列) 显微结构(表面几何状态)