镁钙系耐火材料在炉外精炼炉上的应用翻译
AOD精炼炉用镁钙砖的研制与使用

[摘 要] 叙述了 AOD 精炼炉用优质镁钙砖的生产工艺及使用情况,在 AOD 炉上试用,平均炉龄大于 90 次,单炉最
高 120 次。使用后的残砖表明,砖的侵蚀和剥落是镁钙砖损的主要原因。
[关键词] AOD 精炼炉衬;镁钙砖
[中图分类号] TQ175.79
[文献标识码] A
[文章编号] 1009-0142(2005)04-0014-02
1 实验
1.1 原料 根据浇注料的使用部位、施工厚度及生产的实际情况,
选用临界粒度为 12 mm,集料粒度分 5~12 mm、0~5 mm, 及 细粉<0.074 mm 三部分,配制原则为骨料:细粉=70:30。选 用一级高铝矾土熟料做为颗粒部分,选用莫来石细粉做为 基质部分,配合微粉,以聚磷酸钠与十二烷基苯磺酸钠做 复合减水剂。主要原料指标如表 1。
4 结论
太钢自主开发生产的镁钙砖适合太钢 AOD 炉冶炼工艺的要求, 并使 AOD 炉龄大幅度提高。通过近几年的不断改进,镁钙砖质量 有了更进一步的提高,与镁钙砖相适应的 AOD 单渣法不锈钢冶炼 工艺也更加成熟,目前太钢自产镁钙砖的 AOD 炉龄月平均已达到 160 次,单炉最高达到 187 次,达到了国内先进水平。S
≤8 3.11
80
3 MgO—CaO 砖在 AOD 炉上的应用
3.1 使用条件 太钢 AOD 设备概况及使用条件见表 3。
表 3 太钢 AOD 设备概况及使用条件
项目
AOD 炉
数量 容量 型式
气体
型式
供应
风口
吹炼最高温度/℃
吹炼时间/min
炉渣碱度
冶炼钢种
主要规格或操作条件
三座(三吹二)
40t/炉
镁钙系耐火材料抗渣性的研究进展_李致远

收稿日期:2010-09-19; 修订日期:2010-10-20作者简介:李致远(1985- ),河南三门峡人,硕士生.研究方向:冶金物理化学.V ol .31N o .12Dec .2010铸造技术F O UN D RY T ECH NO LOG Y镁钙系耐火材料抗渣性的研究进展李致远,杨 军,刘 薇,张拓燕(西安建筑科技大学冶金工程学院,陕西西安710055)摘要:镁钙系耐火材料作为碱性耐火材料,其显著特点是耐火度高,抗碱性渣能力强,是一种重要的高级耐火材料.介绍了镁钙系耐火材料国内外发展情况,分析了镁钙系耐火材料损毁机理,重点介绍镁钙系耐火材料抗渣性方面的研究进展,并提出相应的技术对策。
关键词:镁钙系耐火材料;抗渣性;研究进展中图分类号:TG244 文献标识码:A 文章编号:1000-8365(2010)12-1625-03Development and Application of the Magnesia -DolomiteRefractories MaterialsLI Zhi -yuan ,YANG Jun ,LIU Wei ,ZHANG Tuo -yan(Xi 'an University of Architecture &Technology Institute of Metallurgy ,Xian 710055,C hina )Abstra ct :As the basic refractory materials the excellent characteristics of the Magnesia -Dolomiterefractory materials are discu ssed ,especially for ou tstandin g feature high refractoriness and high capability of basic sla g resistance .The domestic and foreign development a nd application of these materials are introduced concernin g wear mechanism of th e materials .The developm ent and research of th e slag resistance of materials are mainly in trodu ced and the correspondin g technique coun termeasures are put forward .Key words :Magnesia -dolomite refractory materials ;Slag resistance ;Developm ent1 镁钙系耐火材料的性能优势镁钙系耐火材料的主要化学成分为Mg O 和CaO ,主要物相为方镁石和方钙石,它汇集了M gO 和CaO 各自的优点,表1为几种常见的氧化物耐火材料的热力学性质。
优质镁钙砖在AOD精炼炉上的应用

图 1 透气炉底改造示意图
3 改造后的使用效果分析
命 ,超过综合砌筑炉衬 。
(2) 两套炉衬均由于耳轴侧渣线损坏而报废 ,风眼区虽侵
蚀较为严重 ,但由于加厚了 300 mm ,而使渣线区成为目前炉衬
58 NAIHUO CAILIAO / 耐火材料 2004/ 1
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
mm 为原砖层 ,物理化学性能基本不变 。两者综合 ,残砖不同
层面的体积密度与显气孔率变化见图 3 和图 4 。由于受渣中
含量较高的 CaO 及其他成分的侵入的影响 ,残衬不同层面的
化学成分 CaO 、SiO2 、Al2O3 、FeO 均有不同程度的变化 ,具体情 况见表 2 。
4 结论
(1) 本次试验的两套全镁钙炉衬 ,均获得了较高的使用寿
图 4 AOD 炉衬渣线区残砖体积密度的变化
表 2 AOD 炉衬渣线区残砖化学成分的变化 ( w )
%
与热面的距离/ mm MgO
CaO
SiO2 Al2O3 Fe2O3
10
62. 5 25. 3 2. 85 0. 33 1. 4
30
64
24. 6 1. 95 0. 34 1. 75
110
67. 2 23. 2 1. 15 0. 42
2002 年 ,曾对未改造炉底的炉子和改造后的炉子的生产
aod炉渣对镁钙质耐火材料的侵蚀机理

aod炉渣对镁钙质耐火材料的侵蚀机理1.引言1.1 概述概述:镁钙质耐火材料作为一种重要的高温材料,被广泛应用于冶金工业中,如钢铁冶炼过程中用于炉墙、炉底和炉包等部位。
然而,在AOD(Argon Oxygen Decarburization)冶炼过程中,AOD炉渣对镁钙质耐火材料会产生侵蚀作用,降低其使用寿命,因此研究AOD炉渣对镁钙质耐火材料的侵蚀机理对于提高其耐火性能至关重要。
本文旨在深入探讨AOD炉渣对镁钙质耐火材料的侵蚀机理,以期为解决这一问题提供理论和实践依据。
本文首先对镁钙质耐火材料的特性进行分析,包括其热性能、化学成分以及微观结构等方面。
其次,将重点介绍AOD炉渣的特性,包括其化学成分、物理性质以及对镁钙质耐火材料的侵蚀机制等。
最后,本文将通过实验数据和理论分析,详细阐述AOD 炉渣对镁钙质耐火材料的侵蚀机理,并提出相应的影响因素及对策。
通过对AOD炉渣对镁钙质耐火材料的侵蚀机理的深入研究,我们可以更好地了解其破坏机制,进而提出相应的改进措施,以延长镁钙质耐火材料的使用寿命,降低生产成本。
此外,深入了解AOD炉渣对镁钙质耐火材料侵蚀机理的研究成果对于设计新型耐火材料、改进冶炼工艺具有重要的指导意义。
综上所述,本文将对AOD炉渣对镁钙质耐火材料的侵蚀机理进行全面深入的研究与讨论,为解决现有问题提供科学有效的解决方案,为相关行业的发展与进步做出贡献。
1.2 文章结构文章结构部分的内容应包括以下内容:文章结构部分旨在提供对整篇文章的整体安排和框架进行介绍。
本文将按照以下顺序来展开论述:第一部分是引言部分,其中包括概述、文章结构和目的。
在概述部分,我们将简要介绍aod炉渣对镁钙质耐火材料的侵蚀机理这一主题的背景和重要性。
接着,我们将详细说明本文的结构,并对每个章节的内容进行简要概述。
最后,我们将明确本文的目的,即为深入研究aod炉渣对镁钙质耐火材料的侵蚀机理,以便提供有针对性的改进措施。
第二部分是正文部分,其中包括镁钙质耐火材料的特性和aod炉渣的特性两个章节。
镁制耐火材料相关文献翻译

Characterization, microstructure and corrosion behavior of magnesia refractories produced from recycled refractory aggregatesAbstractThis paper aims to report the results of some investigations carried out in Iranian steel industries to reuse the spent magnesia graphite refractory bricks in the forms o f the new shaped and unshaped magnesia refractories. Economical aspects of recycling and minimizing the environmental effects of spent refractories landfills were the basic goals of this research. The spent MgO–C refractory bricks from electric arc (EAF) and ladle (LF) furnaces were analyzed in terms of microstructural and chemical properties. Different samples were prepared from natural sintered magnesia and 10–30 wt.% of recycled aggregates in the forms of magnesia refractory brick and ramming mix and their physical and mechanical properties were evaluated. Also the slag corrosion behavior and microstructural properties of corroded samples were investigated. The results showed that the addition of up to 30 wt.% of recycled aggregates had no negative effects on the properties of magnesia refractories.Keywords:Industrial minerals; Crushing; Particle size; Environmental; Recycling1. IntroductionRefractories are ceramic materials that are designed to withstand the variety of severe service conditions, high temperatures, corrosive liquids and gases, abrasion, mechanical and thermal induced stresses (Othman and Nour, 2005 and Bennet et al., 1995). Refractories are used by a variety of industries, including metal, ceramic, cement and glass manufacturers. When refractory materials have reached to end of their service life they are replaced with new refractories that have to be manufactured from natural raw materials and the spent refractories are typically disposed of in a landfill wasting valuable natural resources (Fang et al., 1999, Smith et al., 1999 and Bennet and Kwong, 1997). It is understood that recycling refers to use of a waste material in a manner similar to its original application. In contrast a wastematerial is typically defined as reused when it is used differently than the original product (Bennett et al., 2001 and Conejo et al., 2006).This paper aims to report the results of investigations carried out in Iranian Khuzestan Steel Complex (KSCo.) by refractory research division of Iran University of Science and Technology (IUST) to reuse the spent magnesia graphite refractory bricks. The goals of this research were characterizing spent refractories, establishing new way for minimizing wastes and spent refractories recycling, developing an applicable recycling technique and comparing the properties of the recycled products with those made from virgin material.2. Experimental procedure2.1. Spent refractories characterizationTable 1shows the chemical analysis of intact and spent magnesia graphite refractory bricks which used at ladle slag line (LF & B-LF) and EAF hot spot (EAF & B-EAF) regions. The chemical analyses of spent bricks were measured by X-ray fluorescence method (XRF) from hot face to 5 cm depth and the average was reported. As the results show, the analyses of spent bricks have no significant differences with original bricks.Table 1. Chemical analysis of bricks, raw materials and slag.Sample Carbon (graphite) SiO2Al2O3CaO MgO Fe2O3MnO L.O.IEAF 12.7Max0.5 Max0.5Max1.284.7Max0.5--- ---LF 9.3Max0.5 Max0.5Max1.290.5Max0.5B-EAF 15.3 1.7 0.7 3.56 86.1 4.7 --- --- B-LF 9.3 3.76 5.1 6.1 79.35 1.83 --- --- Iranian 91% sinteredmagnesia--- 4.5 1.0 3.5 91 --- --- 0.2 Ball clay (SQ, UK) --- 53.8 30.7 0.1 0.3 --- --- 10.5 Microsilica (Iran --- 93.6 1.32 0.49 0.97 0.87 --- ---SampleCarbon (graphite) SiO 2 Al 2O 3 CaO MgO Fe 2O 3 MnO L.O.IFerrosilicon Co.) Slag--- 28 13 35 6 9 9 ---At first the penetrated layers (3–5 cm from hot face) were cut and removed and then the none-reacted regions were crushed and screened. The recycled aggregates from ladle were mixed with aggregates obtained from EAF in equal weight percent. After crushing, the aggregates were screened in different particle size portions. In order to eliminate the residual graphite from recycled magnesia aggregates, they were heated in a rotary laboratory scale furnace at 1400 °C for 2 h.2.3. Application of spent bricks in shaped refractoriesIn order to evaluate the using of the recycled aggregates for the production of magnesia refractory bricks, the recycled aggregates were added in various percents into a magnesia brick composition as additive. Table 2 shows the particle size distribution and composition of designed magnesia bricks prepared from natural Iranian sintered magnesia (91% MgO and chemical properties according to Table 1) and recycled aggregates. Also it should be noted that just the range of 1–4 mm (coarse grains) of recycled aggregates were used in the samples. The reason for selecting this fraction of particles was based on the fact that the impurities were generally gathered more in the finer fractions of recycled aggregates than the coarser grains. Also the entrapping of impurities in coarser grains lead to less negative effects on refractory properties. The samples were mixed in a laboratory mixer with 1.5 wt.% MgCl 2 as binder and 3 wt.% water. After homogenizing and aging, the 4 × 6 cm cylindrical samples were shaped by hydraulic press at 100 MPa pressure. Then the samples were dried at 110 °C for 24 h and sintered at 1550 °C for 10 h in a gas furnace.Table 2. Composition and particle size distribution of magnesia bricks and monolithic refractory samples.Composition Particle size MBM MBR10 MBR20 M BR30BrickIranian 91% sintered magnesia 1–4 mm38 28188<1 mm30 <75 μm32Recycled aggregate1–4 mm102030CompositionParticle size MBM MBR10 MBR20 M BR30Composition RMB RM10 RM20 RM30MonolithicIranian 91% sintered magnesia 1–4 mm40 302010<1 mm30 <150 μm22Recycled aggregate 1–4 mm0 102030Ball clay 4 Microsilica2 Sodium hexa meta phosphate 2 Water5Table 2 shows the composition and particle size distribution of preparedrefractory ramming mixes. The used binder was industrially grade sodium hexa meta phosphate added in 2 wt.% dissolved in water. The compositions were mixed in a laboratory mixer and after homogenizing, shaped in 3 × 3 cm cylindrical die according to BS 1902 (Section 7:6 – 1987) standard test method for shaping refractory ramming mix samples. Then the samples dried at 110 °C for 24 h and heat treated in an electric furnace at 1050 and 1550 °C for 3 h.2.5. Corrosion studiesIn order to compare the corrosion resistance of natural sintered and recycled magnesia aggregates, MBM and MBR30 samples were selected for corrosion test study. The samples were placed in alumina crucibles and the slag powder poured around them. Chemical analysis of slag is shown in Table 1. Finally, the samples were exposed to the slag at 1600 °C for 5 h in an electric furnace. Afterward the sampleswere cut and the diffused and condensed regions were investigated by scanning electron microscopy (SEM) using SEM Tescan system at 15 keV.3. Results and discussionTable 3shows the measured bulk density, apparent porosity and cold crushing strength values from at least five brick and ramming mix samples. As the results show, the mechanical strength increases with increasing the firing temperatures. The MBM and RBM samples had any additive and the highest CCS values. The samples containing recycled aggregates as additive had slightly less mechanical and physical properties than the reference samples for both refractory monolithic and bricks. It is clear that the recycled aggregates obtained from spent materials generally have poorer strength and density. Also because of the expanded structure due to the grain adherence and the presence of micro cracks in recycled aggregates, they will have more porosity values. Finally it is obvious that the addition of recycled aggregates up to 30 wt.% had no significant negative effects on the mechanical and physical properties of refractory monolithic and bricks and the obtained values for magnesia refractories containing recycled aggregates are viable.Table 3. Mechanical and physical properties of samples fired at different temperatures.Temperature (°C) MBM MBR10 MBR20 MBR30 BrickCCS (MPa) 110 12.5 12.2 12.4 12.1 1050 22 22.1 21.8 21.5 1550 45.2 38.5 38.2 36Apparent porosity (%) 1550 16.2 18.5 18.5 20Balk density (g/cm3) 1550 2.95 2.85 2.85 2.43Temperature (°C) RMB RM10 RM20 RM30 MonolithicCCS (MPa) 110 37 36 34.5 34.5Temperature (°C) MBM MBR10 MBR20 MBR301050 29 28.5 28.5 27.51550 39 34 30.5 37Apparent porosity (%) 1550 25 27 31 31.5Balk density (g/cm3) 1550 2.85 2.8 2.78 2.6It is obvious that during the slag/refractory reactions, the viscosity of slag increases and the corrosion mechanisms become passive in this case (Poirier et al., 2007). Also it clarifies that the slag attacked to the sintered magnesia aggregates and dissolved grain boundaries and finally separated periclase grains in magnesia aggregates. Because of the presences of the large amount of impurities such as CaO and SiO2in grain boundaries, these regions are suitable places for slag attack and have low slag corrosion resistance (Lee and Zhang, 1999).Fig. 1. Scanning electron micrograph of (A) MBM corroded sample, (B) MBR30 fired at 1550 °C and(C) MBR30 corroded sample.Graphite bricks made for steel industries contain high quality sintered and fused magnesia. Especially fused magnesia has high slag corrosion resistance due to its large crystal sizes and no grain boundaries (Ebizawa, 1993 and Herron and Beechan, 1967). It is clear in Fig. 1B that the MBR30 sample contains some fused magnesia aggregates with no grain boundaries. Also the calcium silicate impurities made closedpores trapped inside the aggregate are shown in this figure. Fig. 1C shows the microstructure of slag penetrated area in MBR30 sample. According to slag/refractory interface it seems that the slag only attacks to the bond phase. In this figure a fused magnesia aggregate is shown near by the slag corroded zone. However it shows no magnesia grain separation and grain boundary dissolution by slag.4. ConclusionThe quantity of spent refractories produced from Iranian steelmaking industry is estimated about 75,000 Tons annually and developing new refractories recycling techniques will minimize significantly the spent refractories land filling in Iran. However the using of spent refractories as a portion of composition in the production of new shaped or monolithic refractories will minimize significantly the amounts of refractories landfilling. The physical and mechanical tests results of refractory brick and ramming mix samples containing recycled aggregates showed that the addition of up to 30 wt.% of recycled aggregates had no negative effects on the properties of magnesia refractories. Also the corrosion behavior of sample containing recycled aggregates was slightly better than the samples made from natural sintered magnesia. AcknowledgmentsThe authors wish to express their appreciation for the helpful financial and technical supporting of this work by Iran University of Science and Technology (IUST) and Iranian Khuzestan Steel Complex (KSCo.).用再生耐火骨料制备的镁砖的表征、显微结构和耐腐蚀性本文的目的是从伊朗钢铁行业重复使用废镁石的形式中,对新的定型和不定型镁质耐火材料耐火砖进行一些调查所得结果的报告。
外文翻译---用后耐火材料的再生利用

外文翻译---用后耐火材料的再生利用外文资料翻译Reuse and Reproduction of Used RefractoriesThe paper analyzed the recycle condition and developing trend of used refractories in China and other countries, including research achievement of recycles of used refractories such as MgO-C bricks, Al2O3-MgO-C bricks, Al2O3-SiC-C castable and MgO-Cr2O3bricks. Recycled refractory exhibit the same or even better properties compared with the original. In addition, prospects for recycle of used refractories are also discussed.1 IntroductionAbout 9 millions tons of refractories are consumed in China annually owing to the rapid development of the metallurgical industry,from which more than 4 million tons of used refract ories are inevitably generated.Most of used refractories are obsolescence, and only aminority is recycled as rawmaterials for refractory products. Discard of used refracto ries not only is lavish the natural resources but also is harmful to the environment Pollution of used refractories include following as pects of: 1) dust; 2) an thraco silicosis caused by crystalline silica dust; 3) radioactivity of zirconia rawmaterial; 4) carcinogenity of Cr+ 6; 5) carcinogenicity of refractory fiber and asbestos; 6) pollutant from volatile and the rmal decomposed substance of pitch and resin. Used refractories can be even processed into rawmaterials with high price, performing as high–quality second resources. Not only saving mineral resources and energy and reducing the environmental pollution, but also saving the cost of refractory and steelmaking, recycle of used refractories becomes an important cause to refractory enter prises.2Circum stances for used refractories in ChinaBaosteel pays great attention to reuse and reproduction of used refractories. Combine reuse and reproduction of used refractories with cutting down cost and increasing benefit, protecting environment and advancing enter prise level. Accelerate research and development on used refractories. The research results are reported as follows:Used MgO-C bricks for BOF and LF lining are selected to remove sundries such as dirt, slag and iron scraps, which decrease seriously the quality of reproduced refractories. Properties of MgO-C brick reproduced are shown in table 1.Tab.1Properties of MgO-C brick reproduced at R&D Bao steelMgO 876877C 12141114Cold rush Strength /M Pa 652652Bulk Density/ (g · cm- 3) 3.043.013.083.04Apparent Porosity/% 3 2 3 2Hot Modulus Of Rupture /M Pa 13121312Added ratio of used MgO-C brick /% 979788The MgO-C brick reproduced was used slag line of 300t ladle and service life reaches 82 heats that contains 20 heats ladle furnace Maxi mum wear speed at slag line is 1128mm /heat, and original MgO-C brick is 1140mm /heat Therefore, the performance of the reproduced MgO-C brick reaches level of original MgO-C brick .Tab2Properties of magnesia-chrome bricks reproducedMgO 60Cr 2O3 18180℃, 24h Bulk density/ ( g · cm- 3) 3.12 Apparent porosity/% 13 Cold crush strength /M Pa 64.31750℃, 3h Bulk density/ ( g · cm- 3) 3.14 Apparent porosity/% 17.7 Cold crush strength /M Pa 48.7Added ratio of magnesia-chrome brick used /% >70 Baosteel developed used magnesia-chrome brick for RH before 10 years, 20% used magnesia2 chrome brick was added into gunning mix for RH, and achieved favorable service result. Reproducing magne-sia- chrome brick is researched recently. Experimental result is shown in table 2. We have studied on AMC brick and ASC castable with AMC brick used for ladle and ASC castable used for iron runner system.3ProspectUsed refractories can reduce the cost of raw material for refractories and metallurgy auxiliary material. The reuse ratio on of used refractories is very low in Bao steel at present; but R&D has been carried out. Pattern of reuse and repoducing on used refractories is diversification, i. e. consumer uses directly, refractories plant reclaimes, building professional plant reclaiming used refractories and they unite. The key t o success is developing and researching high technology on reuse and reproduction of used refractories. Reuse and reproduction of used refractories is also a contribution on environment protection, and so, reuse and reproduction of used refractories increases rapidly. Trend of zero discard has been indicated.用后耐火材料的再生利用综述了国内外对用后耐火材料的再利用情况和发展趋势,报导了宝钢对用后镁碳砖、铝镁碳砖、铁沟料和镁铬砖等的再利用研究成果。
MgO_CaO系耐火材料的研究与应用
根据所用原料和工艺的不同 , MgO2CaO 系 耐火材料主要有以下两种生产方法 :
(1) 采用白云石或镁白云石 、石灰石加菱镁矿 等天然原料 ,用一步或二步煅烧工艺 ,把其预合成 MgO2CaO 烧结块熟料 。在基质中使用抗水化性 相对较好的镁砂细粉 ,耐火骨料为白云石熟料和 合成镁白云石 。
在精炼钢包上的应用表明[20] ,镁钙碳钢包衬 砖使用寿命比高铝砖 、镁碳砖 、铬镁砖和铝镁碳砖 都高 。它具有好的高温性能 ,高温氧化性好 ,抗渣 蚀性和抗热震性好 。这是由于碱性含碳制品使用 时 ,在 氧 化 脱 碳 层 中 , MgO2CaO 结 合 比 MgO2 MgO 结合与渣形成的两面角大 ,有利于抗渣渗 透 、提高抗蚀性 。MgO2CaO 结合材料比 MgO 材 料抗热震性好 。在使用时 ,制品内游离 CaO 的存 在 ,可与渣中的 SiO2 反应 , 生 成 高 熔 点 相 C3 S (2 070 ℃熔化) 和 C2 S (2 130 ℃熔化) ,延缓了熔 渣对耐火材料的蚀损 。 4. 4 中间包
2007 年第 2 期
魏耀武 ,等 :MgO2CaO 系耐火材料的研究与应用
143
材料中的 CaO 扩散到所渗进的渣中 ,提高了渣的 黏度与熔点 ,阻碍了渣对耐火材料的侵蚀 。然而 , 渣渗透层后面许多裂纹的出现说明了结构剥落是 损毁 的 主 要 因 素 之 一 。该 研 究 者 认 为 , 虽 然 Al2 O3 添加剂使侵蚀速率稍有增大 ,但它却改进 了材料抗渣的渗透性 ,并提高了抗热震稳定性。 这是因为 ,在增加渣黏度的方面 , Al2 O3 比 MgO 更为有效 ,渣的黏度的提高有助于耐火材料抗侵 蚀性能的提高 ;同时加入 Al2 O3 后导致尖晶石的 形成 ,增强了基质的烧结性能并且使基质中的气 孔尺寸降低 ,从而可抑制渣的渗透 。
镁钙砖的使用性能与分析
镁钙砖的使用性能与分析1 前言镁钙砖是以MgO和CaO为主要化学成分的碱性复合耐火制品,包括白云石砖和镁质白云石砖。
镁钙砖具有优良的使用性能,尤其具有净化钢水性能是其他类耐火材料所不具备。
因此,镁钙砖被大量地应用于AOD炉、VOD炉和LF炉等精炼设备上,并取得了良好的使用效果。
随着我国不锈钢和各种洁净钢产能不断扩大,各种镁钙砖需用量也将不断增加。
为今后更好的生产和使用镁钙砖,为我国炼钢工业及其他高温工业服务,对镁钙砖使用性能进行分析和讨论,详细了解和认识镁钙砖使用性能及其影响因素是很有必要的。
2 镁钙砖的使用性能及分析镁钙砖主要被用作炼钢工业的AOD炉、VOD炉和LF炉等精炼设备的内衬材料,在使用过程中承受着高温熔损;炉渣的化学侵蚀和渗透;炉渣、钢水和气流强烈冲刷磨损;温度急剧变化产生热冲击以及吸收水分发生水化等多种破坏作用。
针对镁钙砖在使用程中所受到的各种破坏作用,本文就镁钙砖的耐高温性能、抗渣性能、抗剥落性能、高温耐磨性能、净化钢水性能和抗水化性能及其影响因素进行定性分析和讨论。
2.1 镁钙砖耐高温性能镁钙砖耐高温性能是指镁钙砖在高温工作条件下不熔损,不软化变形,保持良好的高温稳定性和机械强度等。
镁钙砖用于AOD炉、VOD炉和LF炉等精炼设备,工作温度高,温度变化频繁。
如AOD炉氧化期温度在1700℃以上,有时可达1750℃左右,风眼区温度甚至更高。
如此苛刻的高温工作环境,要求镁钙砖必须具有优异的耐高温性能,才能满足生产需要。
镁钙砖的主要矿物MgO和CaO都是高温矿物,其中MgO的熔点为2800℃,CaO的熔点为2570℃,MgO和CaO在高温下不生成二元复合矿物,二者的最低共熔点为2370℃。
MgO 和CaO还具有良好的高温稳定性。
因此,MgO和CaO赋予了镁钙砖优异的耐高温性能。
但是,镁钙砖中少量杂质成分,对镁钙砖高温性能产生较大的负面影响。
杂质成分对镁钙砖高温性能影响与杂质的种类和数量有关,不同种类的杂质对镁钙砖高温性能的影响不同,杂质的含量不同影响也不同。
镁钙碳耐火材料的研究进展
镁钙碳耐火材料的研究进展陈洋;邓承继;余超;丁军;祝洪喜【摘要】回顾了近几年国内外镁钙碳耐火材料的发展及应用现状,总结了国内外研究人员为改善其性能所做的工作.重点介绍了结合剂的改性和开发、高效抗氧化剂的引入和防水化处理等在镁钙碳耐火材料中应用的研究结果,并在此基础上展望了镁钙碳耐火材料的发展方向.%The development and applications of MgO-CaO-C refractories in recent years were reviewed, the achievements in improving their properties by Chinese and overseas researchers were summarized, the effects of binder improvement, high-efficient antioxidant addition, and hydration resistance treatment on the performance of MgO-CaO-C refractories were mainly introduced. Finally, the future development directions of MgO-CaO-C refractories were explored.【期刊名称】《中国陶瓷工业》【年(卷),期】2018(025)002【总页数】5页(P15-19)【关键词】镁钙碳耐火材料;结合剂;抗氧化剂;防水化【作者】陈洋;邓承继;余超;丁军;祝洪喜【作者单位】武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081;武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081;武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081;武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081;武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081【正文语种】中文【中图分类】TQ174.750 引言钢铁工业是国民经济的基础行业,不仅为机械、能源、汽车、船舶、军工等制造业提供最主要的原材料,也为建筑业和民用品等发展提供基础材料。
耐火材料(耐材)行业产品中英文词汇大全
耐火原料Refractory Raw Materials高铝质耐火原料High Alumina-based Refractory Raw Material 烧结莫来石Sintered Mullite锆莫来石Zirconia Mullite电熔莫来石Fused Mullite蓝晶石Kyanite红柱石Andalusite硅线石Sillimanite均化铝矾土Homogenized Bauxite铝矾土Bauxite氧化铝质耐火原料Alumina-based Refractory Raw Material工业氧化铝Industrial Alumina棕刚玉Brown Fused Alumina白刚玉White Fused Alumina烧结刚玉Sintered Alumina (Tabular Alumina)亚白刚玉Sub-white Fused Alumina锆刚玉Zirconia Corundumα-氧化铝α-alumina铬刚玉Chromium Fused Alumina致密刚玉Densed Fused Alumina粘土质耐火原料Clay-based Refractory Raw Material焦宝石Flint Clay高岭土Kaolin球粘土Ball Clay白泥White Clay膨润土Bentonite硅质及半硅质耐火原料Silica-based and Semi Silica-based Refractory Raw Material微硅粉Silica Fume熔融石英Fused Silica叶蜡石Pyrauxide石英砂Silica Sand镁质耐火原料Magnesia-based Refractory Raw Material 菱镁矿Magnesite轻烧镁粉Caustic Calcined Magnesia重烧镁砂Dead Burnt Magnesia大结晶电熔镁砂Large Crystal Fused Magnesia普通电熔镁砂Fused Magnesia镁橄榄石Forsterite蛇纹石Serpentine滑石Talc白云石Dolomite镁钙砂Magnesite-Calcium Sand尖晶石质耐火原料Spinel-based Refractory Raw Material 烧结镁铝尖晶石Sintered Magnesia-Alumina Spinel电熔镁铝尖晶石Fused Magnesia-Alumina Spinel镁铬砂Magnesia Chrome Sand铁铝尖晶石Heercynite铬矿砂Chrome Ore隔热耐火原料Insulating Refractory Raw Material漂珠Cenosphere氧化铝空心球Alumina Bubble硅藻土Diatomite碳质耐火原料Carbon-based Refractory Raw Material 鳞片石墨Flake Graphite土状石墨Amorphous Graphite非氧化物耐火原料Non-oxide Refractory Raw Material碳化硅Silicon Carbide碳化硼Boron Carbide氮化硅铁Ferro-silicon Nitride氮化铝Alumina Nitride氮化硅Silicon Nitride氮化硼Boron Nitride其他耐火原料Other Refractory Raw Material锆英砂Zircon Sand氧化锆Zirconia氧化铬绿Chromium Oxide Green耐火材料用结合剂Binding agent for refractories铝酸盐水泥(高铝水泥)Aluminate Cement (Alumina Cement) 纯铝酸钙水泥Calcium Aluminate Cement速溶硅酸钠Soluble Sodium Silicate硅溶胶Silica Sol三聚磷酸钠Sodium Tripolyphosphate六偏磷酸钠Sodium Hexametaphosphate高温沥青High Temperature Pitch酚醛树脂Phenolic resin磷酸二氢铝Aluminium dihydrogen phosphate 磷酸Phosphoric acid木钙Calcium lignosulphonate煤焦油Coal tarρ-氧化铝ρ-alumina oxide氟硅酸钠Sodium fluosilicate中温沥青Mid-temperature pitch改质沥青Modified pitch球状沥青Spherical pitch耐火材料用外加剂Additive for refractories 金属硅粉Silicon metal powder金属铝粉Aluminium metal powder乌洛托品Urotropin硼酸Boric acid硼砂Borax防爆裂纤维Anti-explosion fiber不锈钢纤维Stainless steel fiber绢云母Sericite氟硅酸钠Sodium fluosilicate糊精Dextrin磷酸Phosphoric acid甲基纤维素Methylcellulose氢氧化铝Aluminium hydroxide耐材制品Refractory products铝硅系耐火材料Alumina-silica based refractory products 高铝砖High alumina brick高铝耐火泥High alumina refractory mortar粘土耐火泥Clay refractory mortar硅质耐火泥Silica refractory mortar刚玉浇注料Corundum refractory mortar高铝捣打料High alumina ramming mass磷酸结合可塑料Phosphate-binding plastic refractories 高铝喷补料High alumina gunning mix粘土砖Fireclay brick硅砖Silica brick刚玉捣打料Corundum ramming mass粘土结合可塑料Corundum-binding plastic refractories 水泥窑用硅莫砖Mullite-SiC brick for cement kiln浇钢砖Cast steel brick硅莫红砖Mullite-SiC-Andalusite brick灌浆料Grouting material挡渣球Slag stopper ball挡渣塞Slag stopper挡渣锥Slag dart陶瓷衬板Ceamics lining plate硅质干式料Silica based dry vibration mix叶腊石砖Pyrophyllite brick低水泥浇注料Low cement castable硅莫砖Mullite-SiC brick无水炮泥Taphole clay防渗浇注料Impermeable castable高铝浇注料High alumina castable锚固砖Anchoring brick电熔锆刚玉砖Fused AZS brick碳化硅砖Silicon carbide brick铁沟浇注料Castable for iron runner镁质耐火材料Magnesia based refractory products 镁砖Magnesia brick镁铬砖Magnesia chrome brick镁钙砖Magnesia calcium brick镁铝尖晶石砖Magnesia-alumina spinel brick镁质干式料Magnesia based dry vibration mix镁质耐火泥Magnesia refractory mortar镁质涂抹料Magnesia coating镁质捣打料Magnesia ramming mass镁质喷补料Magnesia gunning mix铝镁砖Alumina-magnesia brick镁铁铝尖晶石砖Magnesia hercynite brick铝镁浇注料Alumina-magnesia castable干打料Dry-Ramming Material中间包干式料Tundish dry vibration mix含碳耐火材料Carbon-based refractory product炭块Carbon block镁碳砖Magnesia carbon brick铝镁碳砖Alumina magnesia carbon brick铝碳化硅碳砖Alumina Silicon carbide carbon brick铝碳化硅碳质浇注料Alumina Silicon carbide carbon castable 中性浇注料Neutral castable中性可塑料Neutral plastic refractories高炉碳砖Carbon block for blast furnace功能耐火材料Functional Refractory Products滑动水口Sliding gate定径水口Metering nozzle透气砖Porous plug熔融石英水口Fused silica nozzle座砖Well block陶瓷管Ceramic tube快换水口Quick-Change Nozzle滑板Sliding plate上水口Upper Nozzle下水口Down nozzle塞棒Stopper浸入式水口Submersed nozzle长水口Long nozzle保温隔热耐火材料Insulating Refractory Products 陶粒砖Ceramsite brick轻质莫来石保温砖Light mullite insulating brick珍珠岩砖Perlite brick氧化铝空心球砖Alumina bubble ball brick轻质高铝砖Light high alumina brick陶瓷纤维制品Ceramic fiber product硅酸钙制品Calcium silicate product轻质隔热耐火浇注料Light insulating refractory castable 熔融石英浇注料Fused silica castable轻质硅砖Light silica brick轻质粘土砖Light fireclay brick硅质隔热板Silica insulating board硅藻土隔热砖Diatomite insulating brick隔热喷涂料Insulating Spray Grouts耐火混凝土Refractory concrete陶瓷蓄热体Ceramic regenerator保温冒口Insulating cone特种耐火材料Specialty Refractory Products氮化硅结合碳化硅砖Silicon nitride bonded silicon carbide brick 熔铸锆刚玉砖Fused cast zirconia-alumina brick熔铸莫来石砖Fused mullite brick烧结锆刚玉砖Sintered zirconia corundum brick碳化硅棚板Silicon carbide slab匣钵Sagger坩埚Crucible整体承包Contractor。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镁钙系耐火材料在炉外精炼炉上的应用摘要:综述了镁钙砂、烧成镁钙砖和不烧镁钙碳砖等镁钙系耐火材料的发展现状、生产工艺及性能,介绍了镁钙系材料在AOD 炉、VOD 炉、LF-VD 炉、GOR 炉等炉外精炼炉上的应用情况。
关键词:镁钙砂,镁钙砖,镁钙碳砖,炉外精炼炉镁钙系耐火材料是随着转炉炼钢和炉外精炼的发展而发展起来的。
1990 年之前,我国以平炉炼钢为主,镁铝炉顶砖、镁质炉墙砖、炉底镁钙铁合成砂是标准耐火材料;占比例较小的炼钢转炉采用焦油白云石砖作炉衬。
上世纪70 年代,我国加快了转炉炼钢的步伐,鞍钢建成了当时国内最大的150 t 转炉。
为提供炉衬材料,鞍钢大石桥镁矿采用二步煅烧工艺,合成了w(CaO) =20% 的镁钙砂,再以石蜡为结合剂制造了镁白云石砖,使转炉炉龄达到 1 107 次。
后来,宝钢300 t 转炉的建设进一步促进了我国镁钙系材料的发展。
辽宁镁矿公司从欧洲引进了高纯镁砂的生产线,上海第二耐火厂从日本引进高温隧道窑及镁白云石烧成砖的技术。
当时,我国自主生产的高纯镁白云石砖保证了宝钢转炉投产初期调试的需要。
近二十年来,特别是近十年来,我国精炼钢的发展,大大促进了镁钙系耐火材料的发展和技术进步。
烧成镁钙砖、不烧镁钙碳砖成为不锈钢等特种钢冶炼装置不可缺少且很难替代的耐火材料。
1 镁钙砂镁钙系耐火材料的原料基础是低杂质、高纯度的菱镁矿和白云石矿经不同的温度轻烧后,再按照一定的质量比压球,在竖窑或回转窑进行煅烧得到的镁钙砂。
目前,国内镁钙砂的生产工艺主要有4 种,分别为:(1)焦炭竖窑烧结工艺。
将轻烧白云石粉消化与轻烧镁砂粉按质量比共磨,将共磨粉放到混碾机加水搅拌,待水和物料搅拌均匀后压球,自然干燥后,入焦炭竖窑煅烧。
(2)油竖窑烧结工艺。
将轻烧白云石粉消化并与轻烧镁砂粉按一定比例共磨,待共磨至足够细后,干压压球,压好的白球干燥后,入重油竖窑进行煅烧。
(3)电熔工艺。
以天然菱镁矿和白云石矿为原料,按照一定的比例混配,在2 750 ℃以上的高温下熔融。
(4)回转窑烧结工艺。
将白云石破碎为2 ~8 mm的粒度,在燃油回转窑中一步煅烧成1 ~7 mm 的粒度料。
各工艺对应的镁钙砂的理化性能见表1 和表2表 1 5 种不同MgO-CaO 砂原料的化学组成及体积密度表 2 5 种不同的MgO-CaO 砂在0.15 MPa,120 ℃水化2 h后的水化率由表1 可见,颗粒体积密度由小到大依次为:焦炭竖窑白云石砂<焦炭竖窑镁钙砂<回转窑白云石砂<油竖窑镁钙砂<电熔镁钙砂;Al2O3、SiO2、Fe2O3杂质含量的总和由小到大依次为:电熔镁钙砂<回转窑白云石砂<油竖窑镁钙砂<焦炭竖窑白云石砂<焦炭竖窑镁钙砂。
由表 2 可见,抗水化性能由强到弱依次为:回转窑白云石砂(不破碎) >焦炭竖窑镁钙砂(破碎) >电熔镁钙砂(破碎) >焦炭竖窑白云石砂(破碎) >回转窑白云石砂(破碎)。
2 烧成镁钙砖的制备、性能及其在炉外精炼炉上的应用2.1生产工艺要点镁钙砖是以白云石砂、镁钙砂、镁砂为原料,以无水结合剂混练,高压成型,高温烧成而制备的。
其生产工艺要点:1)原料的MgO 和CaO 分布要均匀,杂质少,颗粒体积密度高;2)自动称量,保证配比的准确性,科学确定MgO与CaO 质量比;3)选择性能好的无水结合剂;4)适宜温度混练泥料,高压成型,双面加压;5)适宜的高温烧成制度(热工和压力曲线);6)制品的浸蜡处理和防水化包装。
2.2性能为了满足炉外精炼各个部位的不同使用要求,镁钙砖逐步发展为系列产品。
不同牌号烧成镁钙砖的典型性能见表3。
(1)抗渣性:镁钙砖抗高SiO2渣侵蚀性能强。
侵入砖中的炉渣与砖中的CaO 反应生成C2S、C3S,使熔渣黏度提高,抑制了炉渣的进一步渗透,防止形成厚的变质层。
(2)抗热震性:炉外精炼炉通常是间歇操作,温度变化剧烈,耐火材料常因热震而损毁。
由于镁钙砖含有游离CaO,在高温下蠕变大,具有较大的塑性,可以缓冲因温度波动产生的热应力,加上使用时不会产生厚的变质层,所以,镁钙砖具有良好的抗热震性,适合于炉外精炼中温度变化剧烈的工作环境。
(3)高温真空下的稳定性:炉外精炼大都是在高温真空下进行的,由于高纯镁钙砖在高温真空下很稳定,质量损失速度很小,这点明显优越于镁铬砖,更适合于使用在具有高温真空工作环境的炉外精炼中。
(4)净化钢液:镁钙砖存在游离CaO,易与钢液中的S、P 等杂质反应,使其转移到炉渣中,具有除杂质,净化钢液功能,此外游离CaO 具有很低的氧势,适合冶炼低氧钢。
这是其他耐火材料无法比拟的显著特性,在冶炼纯净钢、特殊钢时是首选的最佳耐火材料。
表3 烧成镁钙砖的典型性能MgO、CaO 含量的变化影响镁钙砖的高温使用性能,其影响见表4。
由表 4 可知,MgO 含量越高,抗FeO、Fe2O3、Al2O3渣侵蚀和抗水化性能越强;CaO 含量越高,抗高SiO2渣的能力越强,高温蠕变越大,抗剥落性能和脱硫、脱磷的效果越好,但抗水化性能和抗FeO、Fe2O3、Al2O3侵蚀的性能越差。
因此,应根据炉外精炼炉不同部位的使用条件,合理选择镁钙砖中的m(MgO) /m(CaO)。
必须指出的是,当选料和配料的差别大时,即使砖中m(MgO) /m(CaO)相同,镁钙砖的性能也会有较大的变化。
将 3 种CaO 质量分数皆为20% 的镁钙砖在6 t AOD 炉(FS 工厂)进行对比试验。
试验用砖为:MG20A———标准镁钙砖,MG20B———强化基质后的镁钙砖,MG20C———在MG20B 中引入添加剂的镁钙砖。
冶炼钢种为1Gr18Ni9Ti。
表 4 MgO、CaO 含量的变化对镁白云石砖性能的影响将每种砖砌在风眼区域第3 层和第4 层各10块,炉役结束时,逐块测量残砖厚度,并计算每种砖的平均蚀损率,结果见图1。
由图1 可见,强化基质的与有添加剂的镁钙砖的抗渣侵蚀性能较强。
因此,应根据使用条件的不同,选用适宜的原料,调整MgO、CaO含量,并强化工艺装备及质量管理,才能生产出高性能的镁钙砖。
图 1 CaO 含量相同的 3 种镁钙砖的蚀损2.3 在AOD 炉、VOD 炉、GOR 炉的应用2.3.1在AOD 炉上的应用AOD 法是氩氧脱碳法,它是冶炼不锈钢的方法之一,其冶炼特点: 1)冶炼温度高( >1 700 ℃);2)间歇式操作,炉衬工作面温度波动大;3) 由于喷吹大量的高压气体(O2、Ar) ,造成熔融金属涡流的剧烈搅动;4) 经历脱碳、还原、脱硫 3 个阶段,对应的炉渣由酸性到碱性变化,而酸性渣对镁钙砖的侵蚀程度大。
AOD 炉的蚀损情况见图2。
由图2 可见,风眼区蚀损最为严重,风眼侧炉底砖蚀损后为尖角铅笔头状。
因此,风眼及风眼区是AOD 炉最关键的部位。
图 2 AOD 蚀损曲线图及风眼区蚀损图针对风眼区的蚀损机制及镁钙砖的特性,风眼区适合采用抗剥落性与抗侵蚀性皆好的高钙镁钙砖(CaO质量分数为30% ~40%),而其他部位可以采用CaO含量较低的镁钙砖。
AOD针对风眼区的蚀损机制及镁钙砖的特性,风眼区图 3 某钢厂50 t AOD 炉配砖图对于30 t 以上的大型AOD 炉,全使用镁钙砖时,其炉龄100 ~200 次;而对于30 t 以下的小型AOD炉,风口区用镁铬砖,其他部位用镁钙砖,其炉龄为30 ~60 次。
2.3.2 在VOD 炉上的应用VOD 法是真空吹氧脱碳法,其适用于冶炼超低碳、超低氮特种不锈钢。
由于VOD 炉在真空下作业,其冶炼条件比AOD 炉更为严酷,在所有精炼炉中,VOD 炉的使用寿命最低。
VOD 炉用砖典型配置见图4。
国外某钢厂80 t VOD 炉全用镁钙砖,其中渣线用QMG30,包壁、包底用QMG20。
精炼时间为60min。
采用镁钙砖的炉龄为40 ~50 次,而采用其他砖的炉龄大多为10 ~20 次。
图4某钢厂90 t VOD 炉配砖图2.3.3在GOR 转炉上的应用GOR 转炉主要冶炼中、低档不锈钢。
镁钙砖用在GOR 转炉上的配置见图5。
典型的用户是四川西南不锈钢公司65 t GOR 和福建德盛镍业70 t GOR,前者的平均炉龄150 次,后者的平均炉龄为160 次。
图 5 某钢厂85 t GOR 炉配砖图3 不烧镁钙碳砖的制备、性能及其在炉外精炼炉上的应用3.1制备要点不烧镁钙碳砖以白云石砂、镁钙砂、镁砂、石墨为在于防水化处理。
原料须充分干燥,以无水热塑酚醛树脂为结合剂,成型后,砖的表面涂上一层防水化膜后入干燥窑在220 ℃进行热处理,出窑后还得进行浸蜡和抽真空热塑包装。
3.2 性能为了适合炉外精炼技术的发展,MgO-CaO-C 砖也逐步发展成系列产品。
由于MgO-CaO-C 砖的种类较烧成镁钙砖复杂,下面仅针对典型的炉外精炼炉LF、LF-VD、GOR 等,列出其使用的MgO-CaO-C 砖的性能,见表5。
表5不烧MgO-CaO-C 砖的典型性能除具备镁钙砖的特性外,镁钙碳砖相比镁碳砖来说,具有更好的真空稳定性、抗热震性。
(1)真空稳定性:CaO 在高温真空下的分解压远小于MgO,且CaO 与 C 在高温真空下反应的平衡压力小于MgO 与 C 的,前者比后者低 2 个数量级。
因此,MgO-CaO-C 砖比MgO-C 砖在高温下更为稳定,其更适合于高温真空下的冶炼条件。
(2)抗热震性:MgO-C 砖与MgO-CaO-C 砖的热应力与温度关系图见图6。
从中可见,当温度高于700 ℃时,MgO-C 砖的热应力比MgO-CaO-C 砖大,因此,MgO-CaO-C 砖缓冲热应力的能力好于MgO-C砖。
图6 MgO-C 砖与MgO-CaO-C 砖热应力与温度的关系图MgO-CaO-C 砖的性能同时取决于CaO 的含量及其引入方式、C 的含量。
CaO 含量越高,抗剥落性能越强,净化钢液的效果越好;C 含量越高,抗渣侵蚀和抗剥落性能越强。
当冶炼超低碳钢时,要求熔池部位的砖 C 含量低,否则会污染钢水,但C 含量低,抗剥落性能差。
为了弥补这一缺陷,须提高CaO 的含量。
3.3 在LF 炉、LF-VD 炉、VOD 炉、GOR 炉的应用3.3.1 在LF 或LF-VD 炉上的应用LF 是以电弧加热为主要技术特征的炉外精炼方法,主要用于精炼不锈钢和特殊钢。
高温、精炼时间长,熔渣侵蚀严重,抽真空处理,吹氩搅拌,间歇式操作,使用环境苛刻。
镁钙碳砖具有良好的高温体积稳定性、抗热震性及抗高碱度渣性,因能适应LF 炉或LF-VD 炉的使用条件而被广泛使用。
LF-VD 炉用砖典型配置见图7。
熔池及炉底采用镁钙碳砖,也有渣线采用镁钙碳砖的,如LF 炉。
图7 某钢厂LF-VD 炉配砖图镁钙碳砖在LF 炉或LF-VD 炉有良好的使用效果:镁钙碳砖(见表5)在某钢厂180 t LF 钢包的渣线、包壁与炉底的使用过程中具有好的抗热震性和抗侵蚀性能,平均炉龄50 次左右;而采用镁钙砖作内衬时,剥落严重,平均炉龄仅35 次左右。