7.运筹学之目标规划(胡运权版)

合集下载

运筹学PPT完整版胡运权

运筹学PPT完整版胡运权

C
m n
基可行解:满足变量非负约束条件的基本解,简称基可
行解。
可行基:对应于基可行解的基称为可行基。
可 行 解
非可行解
基解
基可行解
线性规划问题的数学模型
例1.4 求线性规划问题的所有基矩阵。
Page 30
解: 约束方程的系数矩阵为2×5矩阵 r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。
aij x j bi
aij x j xni bi
xni 0 称为松弛变量
aij x j bi
aij x j xni bi
xni 0 称为剩余变量
变量 x j 的变0换 可令 xj x,j 显x然j 0
Page 23
用 x3 x3 替换 x3 ,且 x3 , x3 0
线性规划问题的数学模型
Page 25
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0

7.运筹学之目标规划(胡运权版)

7.运筹学之目标规划(胡运权版)

第七章目标规划§1 目标规划的提出线性规划问题是讨论一个给定的线性目标函数在一组线性约束条件下的最大值或最小值问题。

对于一个实际问题,管理科学者根据管理层决策目标的要求,首先确定一个目标函数以衡量不同决策的优劣,且根据实际问题中的资源、资金和环境等因素对决策的限制提出相应的约束条件以建立线性规划模型;然后用计算机软件求出最优方案并作灵敏度分析以供管理层决策之用。

而在一些问题中,决策目标往往不只一个,且模型中有可能存在一些互相矛盾的约束条件的情况,用已有的线性规划的理论和方法无法解决这些问题。

因此,1961年美国学者查恩斯(A。

Charnes)和库柏(W。

W。

Coopor)提出了目标规划的概念与数学模型,以解决经济管理中的多目标决策问题。

我们将通过几个例子来说明在实际应用中线性规划存在一系列的局限性.例1某厂生产A、B两种产品每件所需的劳动力分别为4个人工和6个人工,所需设备的单位台时均为1。

已知该厂有10个单位机器台时提供制造这两种产品,并且至少能提供70个人工。

又,A、B产品的利润,每件分别为300元和500元。

试问:该厂各应生产多少件A、B产品,才能使其利润值最大?解设该厂能生产A、B产品的数量分别为,x x件,则有12121212max 30050010..46700, 1,2.jz x x x x s t x x x j =+⎧+≤⎪+≥⎨⎪≥=⎩ 图解法求解如下:由上图可得,满足约束条件的可行解集为∅,即机时约束和人工约束之间产生矛盾,因而该问题无解.但在实际中,该厂要增加利润,不可能不生产A 、B 两种产品,而由线性规划模型无法为其找到一个合适的方案。

例2 某厂为进行生产需采购A 、B 两种原材料,单价分别为70元/公斤和50元/公斤。

现要求购买资金不超过5000元,总购买量不少于80公斤,而A 原材料不少于20公斤。

问如何确定最好的采购方案(即花掉的资金最少,购买的总量最大)?解 这是一个含有两个目标的数学规划问题。

运筹学完整版胡运权

运筹学完整版胡运权

运筹学简述
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
线性规划问题的数学模型
Page 16
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
x3) x3)
x5 2 5
x1 , x2 , x3 , x3, x4 , x5 0
Page 25
线性规划问题的数学模型
Page 26
4. 线性规划问题的解
线性规划问题
n
max Z c j x j (1) j1
s.t
n j1
aij x j
bi
(i 1,2,, m)
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
绪论

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。

并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。

1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。

运筹学胡运权第五版课件

运筹学胡运权第五版课件
运筹学胡运权第五 版课件大纲
单击此处添加副标题
汇报人:
目录
添加目录项标题 运筹学基础知识 整数规划 图论与网络优化
课件概览 线性规划 动态规划
01
添加章节标题
02
课件概览
课件简介
课程名称:运筹学胡运权第五版课件 课程内容:包括线性规划、非线性规划、整数规划、动态规划、图与网络优化等 课程目标:帮助学生掌握运筹学的基本理论和方法提高分析和解决问题的能力 课程特点:理论与实践相结合注重案例分析和实际问题的解决
最小生成树问题:在无向图中寻找最小生 成树
最大流问题:在流网络中寻找最大流
最小费用流问题:在流网络中寻找最小费 用流
网络可靠性问题:评估网络可靠性提高网 络稳定性
网络优化算法:如Dijkstr算法、Floyd算 法、Kruskl算法等
网络优化算法
最短路径算 法:Dijkstr
算法、 Floyd算法

图论与网络优化应用案例
物流网络优化:通过图论方 法优化物流网络降低物流成 本
社交网络优化:通过图论方 法优化社交网络提高社交网
络的稳定性和可靠性
交通网络优化:通过图论方 法优化交通网络提高交通效 率
电力网络优化:通过图论方 法优化电力网络提高电力系
统的稳定性和可靠性
感谢观看
汇报人:
课件结构
• 运筹学概述 • 线性规划 • 非线性规划 • 动态规划 • 随机规划 • 决策分析 • 网络规划 • 排队论 • 库存论 • 博弈论 • 运筹学应用案例 • 运筹学发展前景 • 运筹学与其他学科的关系 • 运筹学学习方法与技巧
课件特点
内容全面:涵盖了运筹学的基本概念、理论和方法 结构清晰:按照章节进行划分便于理解和掌握 实例丰富:提供了大量的实例和案例便于理解和应用 习题丰富:提供了大量的习题和练习便于巩固和提高

运筹学第五章 整数规划 胡运权

运筹学第五章  整数规划 胡运权
运筹学
赵明霞
山西大学经济与管理学院
第五章 整数规划
1. 整数规划的数学模型
2. 割平面法 3. 分支定界法 4. 0-1整数规划
5. 指派问题
6. 应用
2018/10/8 2
求整数解的线性规划问题,不是用四舍五入法或去尾法对线性规
划的非整数解加以处理都能解决的,而要用整数规划的方法加
以解决。
在整数规划中:
仅取值 0 或 1。这时 x j 称为 0 1变量,或称二进制变量。
0-1规划的分支定界法
0-1规划的适用背景
①双态变量的归一化(变量)
②不相容约束的归一化(约束条件)
③分段线性函数的归一化(目标函数)
2018/10/8
23
①双态变量的归一化
u j , 若采取行为j xj v j , 否则
n aij x j -Myi bi (i 1 2 m) j 1 s.t. m y m k (最多只能有k个约束同时起作用, 1 k m) i i 1
1, 第i个约束不起作用 yi 0,
25
5x1 4 x2 24 或 7 x1 3x2 45 或 2x1 5x2 12
7 2018/10/8 7
第二节 割平面法
2 x1 2 x2 11
13/4,5/2
松弛问题 x1+x2≤5
第一次切割 4,1
第二次切割
2018/10/8 8
设纯整数规划
max Z c j x j
j 1
n
n aij x j bi s.t. j 1 x 0且为整数,j 1, j
x j u j y j v j (1 y j )=v j (u j v j)y j 1, 若采取行为j yj 0, 否则

运筹学学习题(胡运权版)

运筹学学习题(胡运权版)
某工厂生产I、II、III三种产品,分别经过A、B、C三种设备 加工。已知生产单位各种产品所需的设备台时、设备的现 有加工能力及每件产品的预期利润见下表:
A B C 单位利润(元) I 1 10 2 10 II 1 4 2 6 III 1 5 6 4 设备能力(台时) 100 600 300
(1)求获利最大的产品生产计划; (2)产品III每件的利润增加到多大时才值得安排生产; (3)如有一种新产品,加工一件需设备A、B、C的台时各为1, 4,3小时,预期每件的利润为8元,是否值得安排生产。 14
ci b
i
xB
x1 x m x m 1 x n
1 0 0 1 a1, m 1 a m , m 1 a1n amn
n
i
1
Hale Waihona Puke c1 cmx1 xm
m
检验数
z cib cB B b
练习2:
已知下列线性规划问题,求: (1)用单纯形法求解,并指出问题属于哪一类解; (2)写出该问题的对偶问题,并求出对偶问题的最优解;
m a xz 6 x1 3 x 2 3 x 3 3 x1 x 2 x 3 6 0 2 x1 2 x 2 4 x 3 2 0 s .t . 3 x1 3 x 2 3 x 3 6 0 x , x , x 0 1 2 3
x4
1 0 0 0 1 0 0 0 5/3 -2/3 -2
x5
0 1 0 0 -0.1 0.1 -0.2 -1 -1/6 1/6 0
x6
0 0 1 0 0 0 1 0 0 0 1 0
100 60 150 200/3 150 150

运筹学胡运权第07章

运筹学胡运权第07章

动态规划方法与“时间”关系很密切, 随着时间过程的发展而决定各时段的决策, 产生一个决策序列,这就是“动态”的意思。 然而它也可以处理与时间无关的静态问题, 只要在问题中人为地引入“时段”因素,就 可以将其转化为一个多阶段决策问题。在本 章中将介绍这种处理方法。
2.多阶段决策问题举例
§1 多阶 段决 策过 程的 最优 化
§1 多阶 段决 策过 程的 最优 化
4 )资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题 ( 后面我们将 详细讨论这个问题)。
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介

上个世纪50年代 创始时间 美国数学家贝尔曼 创始人 (Richard. Bellman)

是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一 种方法多阶段决策过程:
属于多阶段决策类的问题很多, 例如: 1)工厂生产过程:由于市场需求 是一随着时间而变化的因素,因此, 为了取得全年最佳经济效益,就要在 全年的生产过程中,逐月或者逐季度 地根据库存和需求情况决定生产计划 安排。

§1 多阶 段决 策过 程的 最优 化
例1:某厂与用户签订了如表所示 的交货合同,表中数字为月底的交 货量。该厂的生产能力为每月400 件,该厂仓库的存货能力为300件。 已知每百件货物的生产费用为 10000元。在进行生产的月份,工 厂还要支付经常费4000元。仓库保 管费为每百件货物每月1000元。假 设开始时及6月底交货后无存货。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章目标规划§1 目标规划的提出线性规划问题是讨论一个给定的线性目标函数在一组线性约束条件下的最大值或最小值问题。

对于一个实际问题,管理科学者根据管理层决策目标的要求,首先确定一个目标函数以衡量不同决策的优劣,且根据实际问题中的资源、资金和环境等因素对决策的限制提出相应的约束条件以建立线性规划模型;然后用计算机软件求出最优方案并作灵敏度分析以供管理层决策之用。

而在一些问题中,决策目标往往不只一个,且模型中有可能存在一些互相矛盾的约束条件的情况,用已有的线性规划的理论和方法无法解决这些问题。

因此,1961年美国学者查恩斯(A.Charnes)和库柏(W.W.Coopor)提出了目标规划的概念与数学模型,以解决经济管理中的多目标决策问题。

我们将通过几个例子来说明在实际应用中线性规划存在一系列的局限性。

例1某厂生产A、B两种产品每件所需的劳动力分别为4个人工和6个人工,所需设备的单位台时均为1。

已知该厂有10个单位机器台时提供制造这两种产品,并且至少能提供70个人工。

又,A、B产品的利润,每件分别为300元和500元。

试问:该厂各应生产多少件A、B产品,才能使其利润值最大?解设该厂能生产A、B产品的数量分别为,x x件,则有12121212max 30050010..46700, 1,2.jz x x x x s t x x x j =+⎧+≤⎪+≥⎨⎪≥=⎩ 图解法求解如下:由上图可得,满足约束条件的可行解集为∅,即机时约束和人工约束之间产生矛盾,因而该问题无解。

但在实际中,该厂要增加利润,不可能不生产A 、B 两种产品,而由线性规划模型无法为其找到一个合适的方案。

例2 某厂为进行生产需采购A 、B 两种原材料,单价分别为70元/公斤和50元/公斤。

现要求购买资金不超过5000元,总购买量不少于80公斤,而A 原材料不少于20公斤。

问如何确定最好的采购方案(即花掉的资金最少,购买的总量最大)?解 这是一个含有两个目标的数学规划问题。

设12,x x 分别为购买两种原材料的公斤数,()112,f x x 为花掉的资金,()212,f x x 为购买的总量。

建立该问题的数学模型形式如下:()()11212212121212112 min ,7050 max , 70505000 80.. 20,0f x x x x f x x x x x x x x s t x x x =+=++≤⎧⎪+≥⎪⎨≥⎪⎪≥⎩对于这样的多目标问题,线性规划很难为其找到最优方案。

极可能的结果是,第一个方案使第一目标的结果值优于第二方案,同时第二方案使第二目标的结果值优于第一方案。

也就是说很难找到一个最优方案,使两个目标的函数值同时达到最优。

另外,对于多目标问题,还存在有多个目标存在有不同重要程度的因素,而这也是线性规划所无法解决的。

在线性规划的基础上,建立了一种新的数学规划方法——目标规划法,用于弥补线性规划的上述局限性。

总的来说,目标规划和线性规划的不同之处可以从以下几点反映出来:1、线性规划只能处理一个目标,而现实问题往往存在多个目标。

目标规划能统筹兼顾地处理多个目标的关系,求得切合实际需求的解。

2、线性规划是求满足所有约束条件的最优解。

而在实际问题中,可能存在相互矛盾的约束条件而导致无可行解,但此时生产还得继续进行。

即使存在可行解,实际问题中也未必一定需要求出最优解。

目标规划是要找一个满意解,即使在相互矛盾的约束条件下也找到尽量满足约束的满意解,即满意方案。

3、线性规划的约束条件是不分主次地等同对待,这也并不都符合实际情况。

而目标规划可根据实际需要给予轻重缓急的考虑。

§2 目标规划的基本概念与数学模型§2.1 基本概念在这一小节里介绍与目标规划有关的基本概念。

1.偏差变量对于例1,造成无解的关键在于约束条件太死板。

设想把约束条件“放松”,比如占用的人力可以少于70人的话,机时约束和人工约束就可以不再发生矛盾。

在此基础上,引入了正负偏差的概念,来表示决策值与目标值之间的差异。

i d +——正偏差变量,表示决策值超出目标值的部分,目标规划里规定0i d +≥;i d -——负偏差变量,表示决策值未达到目标值的部分,目标规划里规定0i d -≥。

实际操作中,当目标值(也就是计划的利润值)确定时,所作的决策可能出现以下三种情况之一:(1)决策值超过了目标值(即完成或超额完成计划利润值),表示为0i d +≥,0i d -=;(2)决策值未达到目标值(即未完成计划利润值),表示为0i d +=,0i d -≥;(3)决策值恰好等于目标值(即恰好完成计划利润指标),表示为0i d +=,0i d -=。

以上三种情况,无论哪种情况发生,均有i d + •i d -=0。

2.绝对约束与目标约束绝对约束也称系统约束,是指必须严格满足的等式约束和不等式约束,它对应于线性规划模型中的约束条件。

目标约束是目标规划所特有的。

当确定了目标值,进行决策时,允许与目标值存在正或负的偏差。

因而目标约束中加入了正、负偏差变量。

如,例1中假定该企业计划利润值为5000元,那么对于目标函数 12max 300500z x x =+,可变换为123005005000i i x x d d -+++-=。

该式表示决策值与目标值5000之间可能存在正或负的偏差(请读者分别按照上面所讲的三种情况来理解)。

绝对约束也可根据问题的需要变换为目标约束。

此时将约束右端项看作所追求的目标值。

如,例1中绝对约束1210x x +≤,可变换为目标约束1210i i x x d d -+++-=。

3.目标规划的目标函数对于满足绝对约束与目标约束的所有解,从决策者的角度来看,判断其优劣的依据是决策值与目标值的偏差越小越好。

因此目标规划的目标函数是与正、负偏差变量密切相关的函数,我们表示为()min ,i i z f d d +-=。

它有如下三种基本形式:(1)要求恰好达到目标值,即正、负偏差变量都尽可能地小。

此时,构造目标函数为:min i i z d d +-=+(2)要求不超过目标值,即允许达不到目标值,正偏差变量尽可能地小。

此时构造目标函数为:min i z d +=(3)求超过目标值,即超过量不限,负偏差变量尽可能地小。

此时构造目标函数为:min i z d -=4.优先次序系数与权系数一个规划问题往往有多个目标。

决策者在实现这些目标时,存在有主次与轻重缓急的不同。

对于有K 级目标的问题,按照优先次序分别赋予不同大小的大M 系数:1M ,2M ,,K M 。

1M ,2M ,,K M 为无穷大的正数,并且,1M 2M K M (“”符号表示“远大于”),这样,只有当某一级目标实现以后(即目标值为0) ,才能忽略大M 的影响,否则目标偏离量会因为大M 的原因而无穷放大。

并且由于1k k M M +,所以只有先考虑忽略k M 影响(实现第k 级目标)后,才能考虑第1k +级目标。

实际上这里的大M 是对偏离目标值的惩罚系数,优先级别越高,惩罚系数越大。

权系数i ω用来区别具有相同优先级别的若干目标。

在同一优先级别中,可能包含有两个或多个目标,它们的正负偏差变量的重要程度有差别,此时可以给正负偏差变量赋予不同的权系数i ω+和i ω-。

各级目标的优先次序及权系数的确定由决策者按具体情况给出。

§2.2 目标规划的数学模型综上所述,目标规划模型由目标函数、目标约束、绝对约束以及变量非负约束等几部分构成。

目标规划的一般数学模型为:目标函数 ()11min K L k kl l kl l k l Z M d d ωω--++===+∑∑目标约束 ()1 1,2,n i j j ll l j c x d d g l L-+=+-==∑ 绝对约束 ()()1, 1,2,n i j j i j ax b i m ==≥≤=∑ 非负约束 ()01,2,j x j n ≥= (),0 1,2,,k k d d k K -+≥=例3 在例1中,假定目标利润不少于15000元,为第一目标;占用的人力可以少于70人,为第二目标。

求决策方案。

解 按决策者的要求分别赋予两个目标大M 系数12,M M 。

列出模型如下:1122121112221212 min 30050015000 4670.. 10,,,0 1,2,3. i iz M d M d x x d d x x d d s t x x x x d d i -+-+-+-+=+⎧++-=⎪++-=⎪⎨+≤⎪⎪≥=⎩例4 某纺织厂生产A 、B 两种布料,平均生产能力均为1千米/小时,工厂正常生产能力是80小时/周。

又A 布料每千米获利2500元,B 布料每千米获利1500元。

已知A 、B 两种布料每周的市场需求量分别是70千米和45千米。

现该厂确定一周内的目标为:第一优先级:避免生产开工不足;第二优先级:加班时间不超过10小时;第三优先级:根据市场需求达到最大销售量;第四优先级:尽可能减少加班时间。

试求该问题的最优方案。

解 设12,x x 分别为生产甲、乙布料的小时数。

对于第三优先级目标,根据A 、B 布料利润的比值2500:15005:3=,取二者达到最大销量的权系数分别为5和3。

该问题的目标规划模型为:()1122334411211122213324412min 53 80 90.. 7045 ,,,0 1,,4.i i z M d M d M d d M d x x d d x x d d s t x d d x d d x x d d i -+--+-+-+-+-+-+=++++⎧++-=⎪++-=⎪⎪+-=⎨⎪+-=⎪⎪≥=⎩综上所述,目标规划建立模型的步骤为:1、 根据问题所提出的各目标与条件,确定目标值,列出目标约束与绝对约束;2、根据决策者的需要将某些或全部绝对约束转换为目标约束,方法是绝对约束的左式加上负偏差变量和减去正偏差变量;3、给各级目标赋予相应的惩罚系数k M (1,2,k K =),k M 为无穷大的正数,且1M 2M K M ;4、对同一优先级的各目标,再按其重要程度不同,赋予相应的权系数kl ω;5、根据决策者的要求,各目标按三种情况取值:①恰好达到目标值,取i i d d +-+②允许超过目标值,取i d -③不允许超过目标值,取i d +;然后构造一个由惩罚系数、权系数和偏差变量组成的、要求实现极小化的目标函数。

§3 目标规划的求解3.1 图解法只有两个决策变量的目标规划数学模型,可以使用简单直观的图解法求解。

其方法与线性规划图解法类似,先在平面直角坐标系第一象限内作出各约束等式或不等式的图象,然后由绝对约束确定了可行域,由目标约束和目标函数确定最优解或满意解。

相关文档
最新文档