高二数学 人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案

合集下载

高二数学人教版选修2-1习题第2章圆锥曲线与方程2.4.1Word版含答案

高二数学人教版选修2-1习题第2章圆锥曲线与方程2.4.1Word版含答案

9 2x

x2=
4 3
y.
一、选择题
1.若动点 M(x,y)到点 F (4,0)的距离比它到直线 x+ 5= 0 的距离小 1,则点 M 的轨迹方程是 ( )
A . x+ 4= 0 B . x-4= 0 C. y2= 8x
D . y2=16x
[答案 ] D
[解析 ] 依题意可知 M 点到点 F 的距离等于 M 点到直线 x=- 4 的距离,因此其轨迹是抛
[解析 ] ∵点 M 到对称轴的距离为 6, ∴设点 M 的坐标为 (x,6). 又∵点 M 到准线的距离为 10,
62= 2px, ∴ x+ p2= 10.
x= 9,
x= 1,
解得

p= 2,
p= 18.
故当点 M 的横坐标为 9 时,抛物线方程为 y2= 4x.
当点 M 的横坐标为 1 时,抛物线方程为 y2= 36x.
知, P 点的横坐标 xP= 3 2,从而 yP= ±2 6,

S△
POF

1 2
|OF
|
·|yP|=
12×
2×2
6=2
3.
3.已知抛物线 y2= 2px(p>0) 的焦点为 F,点 P1(x1,y1)、P2(x2, y2)、P3(x3,y3)在抛物线上,且
2x2= x1+ x3,则有 ( ) A . |P1F |+ |P2F|= |FP 3| C. 2|P2F|= |P1F |+ |P3F |
物线,且 p= 8,顶点在原点,焦点在 x 轴正半轴上,
∴其方程为 y2= 16x,故答案是 D.
2.O 为坐标原点, F 为抛物线 C: y2=4 2x 的焦点, P 为 C 上一点,若 |PF |= 4 2,则△ POF 的面积为 ( )

高中数学人教A版选修2-1圆锥曲线与方程(答案).docx

高中数学人教A版选修2-1圆锥曲线与方程(答案).docx

2.1曲线与方程【例题选讲】B .1 6,0.2-==b a3.解:3032212322=⇔=--⇒⎪⎩⎪⎨⎧=+=x x x x y x y 或1-=x 32y x =+与212y x =交于)21,1(),29,3(-B A 24=AB4.解:设),(),,(),,(2211y x Q y x B y x A 则x x x 221=+ y y y 221=+【方法一】(点差法)⎩⎨⎧=+=+424222222121y x y x )(221222122y y x x --=-⇒ yxk y y x x x x y y AB 22112121212-=⇔++-=--⇔42)2(2422=++⇔-=+=⇔y x y xx y k PQ AB 中点Q 的轨迹方程为42)2(22=++y x )01(≤<-x 【方法二】(韦达定理法)设过点P 的直线)4(:+=x k y l043216)12()4(42222222=-+++⇒⎩⎨⎧+==+k x k x k x k y y x 两根为21,x x点Q 的坐标满足:⇒⎪⎩⎪⎨⎧+=+-=⇔⎩⎨⎧+=+=)4(128)4(22221x k y k k x x k y x x x 42)2(22=++y x 016100)18)(12(162562224≤<-⇒<≤⇔>-+-=∆x k k k kAB 中点Q 的轨迹方程为42)2(22=++y x )01(≤<-x 【巩固练习A 】1.B2.C3.D4.C5.24x y = 6.1±=xy 7.)0(0596≠=+-y y x 8. 36【提高练习B 】9.解:设抛物线22(21)1y x m x m =+++-()m R ∈的顶点),(y x P则434)12()1(421222-=⇒⎪⎩⎪⎨⎧+--=+-=x y m m y m x 抛物线22(21)1y x m x m =+++-的顶点的轨迹方程为0344=--y x10.解:设),(),,(00y x H y x A 则 由题易得 00,3x x y ==930)3)(3(0200=±⇔=++-⇔=⋅y x y y x x CA BH ABC ∆的垂心H 的轨迹方程为932=±y x11.解:设所求直线l 与曲线1422=-y x 交于),(),,(2211y x B y x A 则621=+x x 221-=+y y【方法一】(点差法))(444442122212222222121y y x x y x y x -=-⇒⎩⎨⎧=-=- 43)(412121212-=⇔++=--⇔AB k y y x x x x y y 直线l 的方程为0543=-+y x 【方法二】(韦达定理法)设过点M 的直线)3(1:-=+x k y l 0)23(12)13(8)41(44)13(22222=+-++-⇒⎩⎨⎧=-+-=k k x k k x k y x k kx y 两根为21,x x 621=+x x 43614)13(82-=⇔=-+⇔k k k k 直线l 的方程为0543=-+y x12.解:直线2+=kx y 与曲线212y x =交于),(),,(2211y x B y x A则04221222=--⇒⎪⎩⎪⎨⎧=+=kx x x y kx y 两根为21,x x ⎩⎨⎧-==+⇒422121x x k x x 16)4)(1(4]4))[(1())(1(2221211221222≥++=-++=-+=k k x x x x k x x k AB 当且仅当0=k 时,4min =AB ,此时方程0422=--kx x 有两个不相等的根2.2椭圆的标准方程【例题选讲】1.D 2. (1)4 (2)4≥a 3.解:设n PF m PF ==21,则:5220,62=≤-≤==+c n m a n m]9,4[]36,16[)()(422∈⇔∈--+=mm n m n m mn 21PF PF ⋅的最大值为9,最小值为44.解:设(m PF =P 是椭圆13422=+y x 上任一点)及数列}{F P n 是公差为d 则点P 到椭圆的另一焦点的距离为m m a -=-42 311222)4(≤≤⇔≤-⇔=≤--m m c m m由题意得 213)1(1=-≤-=-d n PF PF n1001>d Θ 20121001<⇔<-n n ∴n 的最大值为200 【巩固练习A 】1.A 2。

人教版高中数学选修2-1第二章圆锥曲线与方程练习题

人教版高中数学选修2-1第二章圆锥曲线与方程练习题

人教版高中数学选修2-1第二章圆锥曲线与方程练习题1.去掉文章中间的乱码和格式错误。

2.改写每段话:第二章圆锥曲线基础训练A组]一、选择题1.已知椭圆 $\frac{x^2}{25}+\frac{y^2}{16}=1$ 上的一点$P$ 到椭圆一个焦点的距离为 $3$,则 $P$ 到另一焦点距离为()。

A。

2B。

3C。

5D。

72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为 $18$,焦距为 $6$,则椭圆的方程为()。

A。

$\frac{x^2}{16}+\frac{y^2}{9}=1$B。

$\frac{x^2}{25}+\frac{y^2}{9}=1$C。

$\frac{x^2}{9}+\frac{y^2}{16}=1$D。

以上都不对3.动点 $P$ 到点 $M(1,0)$ 及点 $N(3,0)$ 的距离之差为 $2$,则点 $P$ 的轨迹是()。

A。

双曲线B。

双曲线的一支C。

两条射线D。

一条射线4.设双曲线的半焦距为 $c$,两条准线间的距离为 $d$,且 $c=d$,那么双曲线的离心率 $e$ 等于()。

A。

2B。

3C。

$\sqrt{2}$D。

$\sqrt{3}$5.抛物线 $y=10x$ 的焦点到准线的距离是()。

A。

5B。

5/2C。

5/3D。

106.若抛物线 $y=8x$ 上一点 $P$ 到其焦点的距离为 $9$,则点 $P$ 的坐标为()。

A。

$(7,\pm 14)$B。

$(14,\pm 14)$C。

$(7,\pm 2\sqrt{14})$D。

$(-7,\pm 2\sqrt{14})$二、填空题1.若椭圆 $x+my=1$ 的离心率为 $\frac{2}{3}$,则它的长半轴长为 _____________。

2.双曲线的渐近线方程为 $x\pm 2y=\pm \infty$,焦距为$10$,这双曲线的方程为 _____________。

3.若曲线 $x^2y^2+2kx^2y+k^2x^2=4$ 表示双曲线,则$k$ 的取值范围是 _____________。

数学人教B选修2-1讲义:第二章 圆锥曲线与方程 2.4.1 Word版含答案

数学人教B选修2-1讲义:第二章 圆锥曲线与方程 2.4.1 Word版含答案

§2.4拋物线2.4.1抛物线的标准方程学习目标 1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程及其推导.3.明确抛物线标准方程中p的几何意义,并能解决简单的求抛物线标准方程问题.知识点一抛物线的定义1.平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.2.定义的实质可归纳为“一动三定”:一个动点,设为M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(即点M到点F的距离与它到定直线l的距离之比等于1∶1).知识点二抛物线的标准方程由于抛物线焦点位置不同,方程也就不同,故抛物线的标准方程有以下几种形式:y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0),x2=-2py(p>0).现将这四种抛物线对应的图形、标准方程、焦点坐标及准线方程列表如下:1.到定点的距离与到定直线的距离相等的点的轨迹是抛物线.( × ) 2.拋物线标准方程中的p 表示焦点到准线的距离.( √ ) 3.拋物线的方程都是二次函数.( × ) 4.抛物线的开口方向由一次项确定.( √ )题型一 求抛物线的标准方程例1 分别求符合下列条件的抛物线的标准方程. (1)经过点(-3,-1);(2)焦点为直线3x -4y -12=0与坐标轴的交点. 考点 抛物线的标准方程 题点 求抛物线的方程解 (1)因为点(-3,-1)在第三象限, 所以设所求抛物线的标准方程为 y 2=-2px (p >0)或x 2=-2py (p >0). 若抛物线的标准方程为y 2=-2px (p >0), 则由(-1)2=-2p ×(-3),解得p =16;若抛物线的标准方程为x 2=-2py (p >0), 则由(-3)2=-2p ×(-1),解得p =92.故所求抛物线的标准方程为y 2=-13x 或x 2=-9y .(2)对于直线方程3x -4y -12=0, 令x =0,得y =-3;令y =0,得x =4,所以抛物线的焦点为(0,-3)或(4,0). 当焦点为(0,-3)时,p2=3,所以p =6,此时抛物线的标准方程为x 2=-12y ; 当焦点为(4,0)时,p2=4,所以p =8,此时抛物线的标准方程为y 2=16x .故所求抛物线的标准方程为x 2=-12y 或y 2=16x . 反思感悟 用待定系数法求抛物线标准方程的步骤注意:当抛物线的类型没有确定时,可设方程为y 2=mx (m ≠0)或x 2=ny (n ≠0),这样可以减少讨论情况的个数.跟踪训练1 根据下列条件分别求出抛物线的标准方程: (1)准线方程为y =23;(2)焦点在y 轴上,焦点到准线的距离为5. 考点 抛物线的标准方程 题点 求抛物线的方程解 (1)易知抛物线的准线交y 轴于正半轴,且p 2=23,则p =43,故所求抛物线的标准方程为x 2=-83y .(2)已知抛物线的焦点在y 轴上,可设方程为x 2=2my (m ≠0),由焦点到准线的距离为5,知|m |=5,m =±5,所以满足条件的抛物线有两条,它们的标准方程分别为x 2=10y 和x 2=-10y .题型二 抛物线定义的应用命题角度1 利用抛物线定义求轨迹(方程)例2 已知动圆M 与直线y =2相切,且与定圆C :x 2+(y +3)2=1外切,求动圆圆心M 的轨迹方程. 考点 抛物线的定义 题点 抛物线定义的直接应用解 设动圆圆心为M (x ,y ),半径为r ,由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等.由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为x 2=-12y .反思感悟 解决轨迹为抛物线问题的方法抛物线的轨迹问题,既可以用轨迹法直接求解,也可以先将条件转化,再利用抛物线的定义求解.后者的关键是找到满足动点到定点的距离等于到定直线的距离且定点不在定直线上的条件,有时需要依据已知条件进行转化才能得到满足抛物线定义的条件.跟踪训练2 已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程.考点 抛物线的定义 题点 抛物线定义的直接应用解 设动点M (x ,y ),⊙M 与直线l :x =-3的切点为N , 则|MA |=|MN |,即动点M 到定点A (3,0)和定直线l :x =-3的距离相等,∴点M 的轨迹是抛物线,且以A (3,0)为焦点,以直线l :x =-3为准线, ∴p2=3,∴p =6, 故动圆圆心M 的轨迹方程是y 2=12x . 命题角度2 利用抛物线定义求最值例3 如图,已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求此时P 点坐标.考点 求抛物线的最值问题 题点 根据抛物线定义转换求最值解 将x =3代入抛物线方程y 2=2x ,得y =±6.∵6>2,∴A 在抛物线内部.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d .由图可知,当P A ⊥l 时,|P A |+d 最小,最小值为72.即|P A |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2. ∴点P 坐标为(2,2). 引申探究若将本例中的点A (3,2)改为点(0,2),求点P 到点A 的距离与P 到该抛物线准线的距离之和的最小值.解 由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离. 由图可知,P 点,A 点和抛物线的焦点F ⎝⎛⎭⎫12,0三点共线时距离之和最小,所以最小距离d =⎝⎛⎭⎫0-122+(2-0)2=172.反思感悟抛物线的定义在解题中的作用,就是灵活地对抛物线上的点到焦点的距离与到准线的距离进行转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.跟踪训练3已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是()A. 3B. 5 C.2 D.5-1考点求抛物线的最值问题题点根据抛物线定义转换求最值答案 D解析由题意知,抛物线的焦点为F(1,0).设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为|2+3|22+(-1)2=5,所以d+|PF|-1的最小值为5-1.抛物线的实际应用问题典例河上有一抛物线形拱桥,当水面距拱桥顶5 m时,水面宽为8 m,一小船宽4 m,高2 m,载货后船露出水面上的部分高0.75 m,问:水面上涨到与抛物线形拱桥拱顶相距多少m时,小船开始不能通航?考点抛物线的标准方程题点抛物线方程的应用解如图,以拱桥的拱顶为原点,以过拱顶且平行于水面的直线为x轴,建立平面直角坐标系.设抛物线方程为x 2=-2py (p >0), 由题意可知,点B (4,-5)在抛物线上, 故p =85,得x 2=-165y .当船面两侧和抛物线接触时,船开始不能通航, 设此时船面宽为AA ′,则A (2,y A ), 由22=-165y A ,得y A =-54.又知船面露出水面上的部分高为0.75 m , 所以h =|y A |+0.75=2(m).所以水面上涨到与抛物线形拱桥拱顶相距2 m 时,小船开始不能通航.[素养评析] 首先确定与实际问题相匹配的数学模型.此问题中拱桥是抛物线型,故利用抛物线的有关知识解决此问题,操作步骤为: (1)建系:建立适当的坐标系. (2)假设:设出合适的抛物线标准方程. (3)计算:通过计算求出抛物线的标准方程. (4)求解:求出需要求出的量.(5)还原:还原到实际问题中,从而解决实际问题.1.抛物线y 2=x 的准线方程为( ) A .x =14 B .x =-14 C .y =14 D .y =-14答案 B解析 抛物线y 2=x 的开口向右,且p =12,所以准线方程为x =-14.2.已知抛物线y =2px 2过点(1,4),则抛物线的焦点坐标为( ) A .(1,0) B.⎝⎛⎭⎫116,0 C.⎝⎛⎭⎫0,116 D .(0,1) 考点 求抛物线的焦点坐标及准线方程 题点 求抛物线的焦点坐标 答案 C解析 由抛物线y =2px 2过点(1,4),可得p =2, ∴抛物线的标准方程为x 2=14y ,则焦点坐标为⎝⎛⎭⎫0,116,故选C. 3.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P (m ,-2)到焦点的距离为4,则m 的值为( )A .4B .-2C .4或-4D .12或-2 答案 C解析 由题意可设抛物线的标准方程为x 2=-2py (p >0),由定义知点P 到准线的距离为4,故p2+2=4, ∴p =4,∴x 2=-8y .将点P 的坐标代入x 2=-8y , 得m =±4.4.若抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________. 答案 2解析 因为抛物线上的动点到焦点的距离为动点到准线的距离,所以抛物线上的动点到焦点的最短距离为顶点到准线的距离,即p2=1,p =2.5.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 答案 2 2解析 抛物线y 2=2px (p >0)的准线方程是x =-p2,因为抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点F 1(-2,0), 所以-p2=-2,解得p =2 2.1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F ⎝⎛⎭⎫m 4,0,准线方程为x =-m4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F ⎝⎛⎭⎫0,m 4,准线方程为y =-m 4. 2.设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若M (x 0,y 0)在抛物线y 2=2px (p >0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF |=x 0+p2.一、选择题1.关于抛物线x =4y 2,下列描述正确的是( ) A .开口向上,焦点坐标为(0,1) B .开口向上,焦点坐标为⎝⎛⎭⎫0,116 C .开口向右,焦点坐标为(1,0) D .开口向右,焦点坐标为⎝⎛⎭⎫116,0 答案 D解析 由x =4y 2得y 2=14x ,∴开口向右,焦点坐标为⎝⎛⎭⎫116,0. 2.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线的焦点坐标为( ) A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 答案 B解析 抛物线y 2=2px (p >0)的准线方程为x =-p 2,由题设知-p2=-1,即p =2,故焦点坐标为()1,0.3.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12 B .1 C .2 D .4 答案 C解析 抛物线y 2=2px 的准线方程为x =-p2,它与圆相切,所以必有3-⎝⎛⎭⎫-p 2=4,p =2. 4.若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线 答案 D解析 方法一 设动点P 的坐标为(x ,y ).则(x -1)2+(y -1)2=|3x +y -4|10.整理,得x 2+9y 2+4x -12y -6xy +4=0, 即(x -3y +2)2=0,∴x -3y +2=0. 所以动点P 的轨迹为直线.方法二 显然定点F (1,1)在直线l :3x +y -4=0上,则与定点F 和直线l 距离相等的动点P 的轨迹是过F 点且与直线l 垂直的一条直线.5.若点P 在抛物线y 2=x 上,点Q 在圆(x -3)2+y 2=1上,则|PQ |的最小值是( ) A.3-1 B.102-1 C .2 D.112-1 答案 D解析 设圆(x -3)2+y 2=1的圆心为O ′(3,0), 要求|PQ |的最小值,只需求|PO ′|的最小值. 设点P 坐标为(y 20,y 0), 则|PO ′|=(y 20-3)2+y 20=(y 20)2-5y 20+9=⎝⎛⎭⎫y 20-522+114, ∴|PO ′|的最小值为112, 从而|PQ |的最小值为112-1. 6.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716 B.1516 C.78 D .0 答案 B解析 抛物线方程化为x 2=14y ,准线为y =-116,由于点M 到焦点的距离为1,所以M 到准线的距离也为1,所以M 点的纵坐标等于1-116=1516.7.已知直线l 与抛物线y 2=8x 交于A ,B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是( )A.254B.252C.258D .25 答案 A解析 抛物线的焦点F 的坐标为(2,0),直线l 的方程为y =43(x -2). 由⎩⎪⎨⎪⎧y =43(x -2),y 2=8x ,得B 点的坐标为⎝⎛⎭⎫12,-2. ∴|AB |=|AF |+|BF |=2+8+2+12=252. ∴AB 的中点到准线的距离为254. 8.已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是点Q ,点A 的坐标是(8,7),则|P A |+|PQ |的最小值为( )A .7B .8C .9D .10考点 抛物线的定义题点 抛物线定义与其它知识结合的应用答案 C解析 抛物线的焦点为F (0,1),准线方程为y =-1,根据抛物线的定义知,|PF |=|PM |=|PQ |+1.∴|P A |+|PQ |=|P A |+|PM |-1=|P A |+|PF |-1≥|AF |-1=82+(7-1)2-1=10-1=9. 当且仅当A ,P ,F 三点共线时,等号成立,则|P A |+|PQ |的最小值为9.二、填空题9.已知抛物线y 2=2x 上一点P (m,2),则m =________,点P 到抛物线的焦点F 的距离为________.答案 2 52解析 将(m,2)代入抛物线中得4=2m ,得m =2,由抛物线的定义可知点P 到抛物线的焦点F 的距离为2+12=52. 10.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则点B 到该抛物线准线的距离为________.答案 324解析 如图所示,由已知,得点B 的纵坐标为1,横坐标为p 4,即B ⎝⎛⎭⎫p 4,1.将其代入y 2=2px ,得1=2p ×p 4,解得p =2,故点B 到准线的距离为p 2+p 4=34p =324.11.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________.答案 8解析 如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x,43),代入抛物线方程y 2=8x ,得8x =48,∴x =6,∴|PF |=x +2=8.三、解答题12.已知拋物线的顶点在原点,焦点在y 轴上,拋物线上一点M (m ,-3)到焦点的距离为5,求m 的值,拋物线方程和准线方程.解 设所求拋物线方程为x 2=-2py (p >0),则焦点为F ⎝⎛⎭⎫0,-p 2.∵M (m ,-3)在拋物线上,且|MF |=5,∴⎩⎪⎨⎪⎧ m 2=6p , m 2+⎝⎛⎭⎫-3+p 22=5,解得⎩⎪⎨⎪⎧p =4,m =±26, ∴m =±26, 拋物线方程为x 2=-8y ,准线方程为y =2.13.平面上动点P 到定点F (1,0)的距离比点P 到y 轴的距离大1,求动点P 的轨迹方程. 考点 抛物线的定义题点 抛物线定义的直接应用解 方法一 由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y =0上的点适合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x =-1的距离相等,故点P 的轨迹是以F 为焦点,x =-1为准线的抛物线,方程为y 2=4x .故所求动点P 的轨迹方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0. 方法二 设点P 的坐标为(x ,y ),则有(x -1)2+y 2=|x |+1,两边平方并化简得y 2=2x +2|x |.∴y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0. 即点P 的轨迹方程为y 2=⎩⎪⎨⎪⎧ 4x ,x ≥0,0,x <0.14.如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |等于( )A .n +10B .n +20C .2n +10D .2n +20答案 A解析 由抛物线的方程y 2=4x 可知其焦点为(1,0),准线为x =-1,由抛物线的定义可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,所以|P 1F |+|P 2F |+…+|P n F |=x 1+1+x 2+1+…+x n +1=(x 1+x 2+…+x n )+n =n +10.15.如图所示,抛物线C 的顶点为坐标原点O ,焦点F 在y 轴上,准线l 与圆x 2+y 2=1相切.(1)求抛物线C 的方程;(2)若点A ,B 都在抛物线C 上,且FB →=2OA →,求点A 的坐标.考点 抛物线的标准方程题点 求抛物线的方程解 (1)依题意,可设抛物线C 的方程为x 2=2py (p >0),其准线l 的方程为y =-p 2. ∵准线l 与圆x 2+y 2=1相切,∴圆心(0,0)到准线l 的距离d =0-⎝⎛⎭⎫-p 2=1, 解得p =2.故抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21=4y 1, ①x 22=4y 2, ② 由题意得F (0,1),∴FB →=(x 2,y 2-1),OA →=(x 1,y 1),∵FB →=2OA →,∴(x 2,y 2-1)=2(x 1,y 1)=(2x 1,2y 1),即⎩⎪⎨⎪⎧x 2=2x 1,y 2=2y 1+1,代入②得4x 21=8y 1+4, 即x 21=2y 1+1,又x 21=4y 1,所以4y 1=2y 1+1,解得y 1=12,x 1=±2, 即点A 的坐标为⎝⎛⎭⎫2,12或⎝⎛⎭⎫-2,12.。

选修2-1数学第2章_圆锥曲线与方程单元练习题含答案

选修2-1数学第2章_圆锥曲线与方程单元练习题含答案

选修2-1数学第2章圆锥曲线与方程单元练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某几何体是由直三棱柱与圆锥的组合体,起直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()A.√2B.12C.√24D.√222. 如图,已知双曲线E:x2a2−y2b2=1(a>0,b>0),长方形ABCD的顶点A,B分别为双曲线E的左、右焦点,且点C,D在双曲线E上,若|AB|=6,|BC|=52,则此双曲线的离心率为()A.√2B.32C.52D.√53. 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为B.若|BF2|=|F1F2|=2,则该椭圆的标准方程为()A.x24+y23=1 B.x23+y2=1 C.x22+y2=1 D.x24+y2=14. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的顶点和焦点到C的同一条渐近线的距离之比为12,则双曲线C的离心率是()A.√2B.2C.√3D.35. 已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线相交于M,与其准线相交于点N,若|FM|:|MN|=2:√5,则a=()A.2B.4C.6D.86. 焦点为(0,2)的抛物线的标准方程是()A.x2=8yB.x2=4yC.y2=4xD.y2=8x7. 椭圆x2+4y2=1的离心率为()A.√32B.34C.√22D.238. 若双曲线x24−m +y2m−2=1的渐近线方程为y=±13x,则m的值为()A.1B.74C.114D.59. 抛物线y=2x2的通径长为( )A.2B.1C.12D.1410. 已知双曲线C:x24−y2=1,则C的渐近线方程为 ( )A.y=±14x B.y=±13x C.y=±12x D.y=±x11. 椭圆x24+y25=1的离心率是()A.3 5B.√55C.25D.1512. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F作直线l与两条渐近线交于A,B两点.若△OAB为等腰直角三角形(O为坐标原点)则△OAB的面积为( )A.a2B.2a3C.2a2或a2D.2a2或12a213. 已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.14. 若直线y=x+b与曲线x=√1−y2恰有一个公共点,则b的取值范围是________.15. 与椭圆x25+y23=1共焦点的等轴双曲线的方程为________.16. 已知双曲线x2−y28=1上有三个点A,B,C,且AB,BC,AC的中点分别为D,E,F,用字母k表示斜率,若k OD+k OE+k OF=−8(点O为坐标原点,且k OD,k OE,k OF均不为零),则1k AB +1k BC+1k AC=________.17. 设命题p:方程x2a+6+y2a−7=1表示中心在原点,焦点在坐标轴上的双曲线;命题q:存在x∈R,使得x2−4x+a<0.若“p∧(¬q)”为真,求实数a的取值范围.18. 回答下列问题:(1)求过点(2,−2)且与双曲线x 22−y2=1有公共渐近线的双曲线的方程;(2)求双曲线x 24−y25=1的焦点到其渐近线的距离.19. 如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆C上任意一点,A关于原点O的对称点为B,有|AF1|+|BF1|=4,且∠F1AF2的最大值为π3.(1)求椭圆C的标准方程;(2)若A′是A关于x轴的对称点,设点N(4,0),连接NA与椭圆C相交于点E,问直线A′E与x轴是否交于一定点,如果是,求出该定点坐标;如果不是,说明理由.20. 已知椭圆的焦点在α轴上,一个顶点为(0,1),离心率为e=√5,过椭圆的右焦点F的直线1与坐标轴不垂直,且交椭圆于A,B两点.(1)求椭圆的方程.(2)设点C是点A关于x轴的对称点,在α轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点N的坐标;若不存在,说明理由.21. 已知直线l:x−y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为12,点P(1, 32)为椭圆上一点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)如图,过点C(0, 1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM,BN的斜率分别为k1,k2,若k1=2k2,求直线l斜率的值.参考答案与试题解析选修2-1数学第2章 圆锥曲线与方程单元练习题含答案一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1.【答案】 D【考点】 椭圆的定义 【解析】根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a 2−b 2=c 2,和离心率公式e =ca ,计算即可.【解答】解:设正视图正方形的边长为2,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b =2,俯视图的宽就是圆锥底面圆的直径2√2,得到俯视图中椭圆的长轴长2a =2√2, 则椭圆的半焦距c =√a 2−b 2=1, 根据离心率公式得,e =c a =√2=√22; 故选D . 2. 【答案】 B【考点】双曲线的标准方程 【解析】本题主要考查双曲线的几何性质. 【解答】解:因为2c =|AB|=6,所以c =3. 因为b 2a =|BC|=52,所以5a =2b 2. 又c 2=a 2+b 2,所以9=a 2+5a 2,解得a =2或a =−92(舍去),故该双曲线的离心率e =c a=32.故选B . 3. 【答案】 A【考点】椭圆的标准方程 【解析】由|BF 2|=|F 1F 2|=2,可得a =2c =2,即可求出a ,b ,从而可得椭圆的方程. 【解答】解:∵ |BF 2|=|F 1F 2|=2,∴a=2c=2,∴a=2,c=1,∴b=√3,∴椭圆的方程为x24+y23=1.故选A.4.【答案】B【考点】双曲线的离心率【解析】【解答】解:∵双曲线C的顶点和焦点到同一条渐近线的距离之比为12,由三角形相似得ac =12,∴e=ca=2.故选B.5.【答案】D【考点】斜率的计算公式抛物线的性质【解析】无【解答】解:依题意F点的坐标为(a4,0),作MK垂直于准线,垂足为K,由抛物线的定义知|MF|=|MK|,因为|FM|:|MN|=2:√5,则|KN|:|KM|=1:2.k FN =0−1a4−0=−4a ,k FN =−|KN||KM|=−12,所以−4a =−12,求得a =8. 故选D . 6. 【答案】 A【考点】抛物线的标准方程 【解析】 此题暂无解析 【解答】解:由题意得,抛物线的焦点为(0,2), 可得p =4.又抛物线的焦点在y 轴的正半轴, 所以抛物线的标准方程为x 2=8y . 故选A. 7. 【答案】 A【考点】 椭圆的离心率 【解析】 此题暂无解析 【解答】 此题暂无解答 8.【答案】 B【考点】 双曲线的定义 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 C【考点】 抛物线的定义 抛物线的性质 【解析】抛物线y =−2x 2,即x 2=−12y ,可得2p .解:抛物线y=2x2,化为标准方程为x2=12y,可得2p=12,因此通径长为12.故选C.10.【答案】C【考点】双曲线的渐近线【解析】根据双曲线的方程求出双曲线的渐近线即可. 【解答】解:由题意可得,a=2,b=1,则双曲线的渐近线方程为y=±ba x=±12x.故选C.11.【答案】B【考点】椭圆的离心率椭圆的标准方程【解析】根据椭圆的标准方程求出a,b的值,根据椭圆中c2=a2−b2就可求出c,再利用离心率e=ca得到离心率.【解答】解:由椭圆方程为x 24+y25=1可知,a2=5,b2=4,∴c2=a2−b2=1,a=√5,∴c=1,∴椭圆的离心率e=ca =√55.故选B.12.【答案】D【考点】双曲线的简单几何性质双曲线中的平面几何问题本题主要考查双曲线的性质以及直线和双曲线的关系,联立方程组,求出点的坐标,再求出面积即可.【解答】解:①若∠AOB=90∘,则∠AOF=45∘,∴ba=1故c=√a2+b2=√2a,∴S△OAB=12⋅2c⋅c=c2=2a2;②若∠BAO=90∘,则l与y=bax垂直且过F点,垂足为A,∴ l的斜率为−ab,则直线l的方程为y=−ab(x−c),联立{y=−ab⋅(x−c),y=bax,解得x=a 2c ,y=abc,则点A为(a 2c ,ab c)∴ △OAB为等腰直角三角形,OB为斜边,∴ OA=AB,OA2=(a2c )2+(abc)2=a2,∴S△OAB=12OA⋅AB=12OA2=12a2.综上所述S△OAB=2a2或12a2.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】√15【考点】与椭圆有关的中点弦及弦长问题【解析】此题暂无解析【解答】解:由椭圆方程可知a=3,c=2,∴F(−2, 0),根据题意,画出图形:设线段PF中点为M,椭圆右焦点为F1,∵M在以O为圆心,|OF|为半径的圆上,∴F1也在圆上,连接OM, PF1, MF1,则∠FMF1=90∘,OM是△FPF1的中位线,∴|PF1|=2|OM|=2|OF|=2×2=4,由椭圆定义|PF|+|PF1|=2a=6,得|PF|=2,|MF|=|PF|2=1,又∵∠FMF1为直角,|MF1|2=|FF1|2−|MF|2=15,∴tan∠MFF1=|MF1||MF|=√151=√15,∴直线PF的斜率是√15.故答案为:√15.14.【答案】(−1,1]∪{−√2}【考点】曲线与方程直线与圆的位置关系【解析】此题暂无解析【解答】x=√1−y2⇔x2+y2=1(x≥0)方程x2+y2=1(x≥0)所表示的曲线为半圆(如图)当直线与圆相切时或在l2与l3之间时,适合题意.此时−1<b≤1或b=−√2,所以b的取值范围是(−1,1]∪{−√2}.15.【答案】x2−y2=1【考点】双曲线的标准方程圆锥曲线的共同特征【解析】利用椭圆的三参数的关系求出双曲线的焦点坐标;利用等轴双曲线的定义设出双曲线的方程,据双曲线中三参数的关系求出双曲线的方程.【解答】解:对于x 25+y23=1知半焦距为c=√5−3=√2所以双曲线的焦点为(±√2,0)设等轴双曲线的方程为x 2a2−y2a2=1据双曲线的三参数的关系得到2a2=2所以a2=1所以双曲线的方程为x2−y2=1.故答案为:x2−y2=116.【答案】−1【考点】斜率的计算公式中点坐标公式与双曲线有关的中点弦及弦长问题【解析】【解答】解:设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=2x0,y1+y2=2y0,x12−y128=1,x22−y228=1,两式相减得(x1−x2)(x1+x2)=(y1+y2)(y1−y2)8,整理可得x1−x2y1−y2=y08x0,即1k AB=k OD8,同理得1k BC =k OE8,1k AC=k OF8.因为k OD+k OE+k OF=−8,所以1k AB +1k BC+1k AC=−1.故答案为:−1.三、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 【考点】逻辑联结词“或”“且”“非” 双曲线的标准方程 一元二次不等式的解法【解析】 此题暂无解析 【解答】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 18. 【答案】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线, 所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2,所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.【考点】双曲线的离心率 【解析】 此题暂无解析 【解答】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线,所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2, 所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.19.【答案】解:(1)点A 为椭圆C 上任意一点, A 关于原点O 的对称点为B , 由|AF 1|+|BF 1|=4知 2a =4, 得a =2.又∠F 1AF 2的最大值为π3,知当A 为上顶点时,∠F 1AF 2最大, 所以a =2c , 得c =1,所以b 2=a 2−c 2=3. 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题知NA 的斜率存在,设NA 方程为 y =k(x −4),与椭圆联立,得(4k 2+3)x 2−32k 2x +64k 2−12=0.① 设点A (x 1,y 1),E (x 2,y 2), 则A ′(x 1,−y 1).直线A ′E 方程为y −y 2=y 2+y1x 2−x 1(x −x 2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y1=k(x1−4),y2=k(x2−4)代入,整理得,x=2x1x2−4(x1+x2)x1+x2−8.②x1+x2=32k24k2+3,x1x2=64k2−124k2+3.代入②整理,得x=1.所以直线A′E与x轴交于定点Q(1,0). 【考点】圆锥曲线中的定点与定值问题与直线关于点、直线对称的直线方程直线与椭圆结合的最值问题椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:(1)点A为椭圆C上任意一点,A关于原点O的对称点为B,由|AF1|+|BF1|=4知2a=4,得a=2.又∠F1AF2的最大值为π3,知当A为上顶点时,∠F1AF2最大,所以a=2c,得c=1,所以b2=a2−c2=3.所以椭圆C的标准方程为x 24+y23=1.(2)由题知NA的斜率存在,设NA方程为y=k(x−4),与椭圆联立,得(4k2+3)x2−32k2x+64k2−12=0.①设点A(x1,y1),E(x2,y2),则A′(x1,−y1).直线A′E方程为y−y2=y2+y1x2−x1(x−x2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y 1=k (x 1−4),y 2=k (x 2−4)代入, 整理得,x =2x 1x 2−4(x 1+x 2)x 1+x 2−8.②x 1+x 2=32k 24k 2+3, x 1x 2=64k 2−124k 2+3.代入②整理,得x =1.所以直线A ′E 与x 轴交于定点Q(1,0). 20. 【答案】(1)椭圆C 的标准方程为x 25+y 2=1.(2)存在定点N (52,0),使得C .B .N 三点共线. 【考点】直线与椭圆结合的最值问题 椭圆的标准方程【解析】 此题暂无解析 【解答】 解:(1)由椭圆的焦点在x 轴上, 设椭圆C 的方程为x 2a2+y 2b 2=1(ab >0),椭圆C 的一个顶点为(0,1),即b =1, 由e =ac √1−b 2a 2=√5解得a 2=5,∴ 椭圆C 的标准方程为x 25+y 2=1.(2)由得F (2,0),设A (x 1,y 1),B (x 2,y 2)设直线l 的方程为y =k (x −2)(k ≠0),代入椭圆方程,消去y 可得 (5k 2+1)x 2−20k 2x +20k 2−5=0, 则x 1+x 2=20k 25k 2+1,x 1x 2=20k 2−55k 2+1.∵ 点C 与点A 关于x 轴对称, ∴ C (x 1,−y 1) .假设存在N (t,0),使得C ,B ,N 三点共线, 则BN →=(t −x 2,−y 2),CN →=(t −x 1,y 1). ∵ C ,B ,N 三点共线,∴ BN →//CN →,∴ (t −x 2)y 1+(t −x 1)y 2=0, 即(y 1+y 2)t =x 2y 1+x 1y 2 ∴ t =k (x 1−2)x 2+k (x 2−2)x 1k (x 1−2)+k (x 2−2) =2⋅20k 2−55k 2+1−2⋅20k 25k 2+120k 25k 2+1−4=52∴ 存在定点N (52,0),使得C .B .N 三点共线.21.【答案】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 【考点】直线与抛物线结合的最值问题 二次函数在闭区间上的最值 抛物线的标准方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 22. 【答案】(1)根据题意,椭圆的离心率为12,即e =ca =2,则a =2c . 又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0. ∴ 由韦达定理可知:x 1+x 2=−8k 3+4k2,x 1x 2=−83+4k 2.∵ k 1=y 1x 1+2,k 2=y 2x 1−2,且k 1=2k 2,∴y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x 12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0. 解得:k =16或k =32. 又由k >1,则k =32. 【考点】 椭圆的离心率 【解析】(1)根据题意,由椭圆离心率可得a =2c ,进而可得b =√3c ,则椭圆的标准方程为x 24c 2+y 23c 2=1,将P 的坐标代入计算可得c 的值,即可得答案; (2)根据题意,设直线l 的方程为y =kx +1,设M(x 1, y 1),N(x 2, y 2),将直线的方程与椭圆联立,可得(3+4k 2)x 2+8kx −8=0,由根与系数的关系分析,:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2,结合椭圆的方程与直线的斜率公式可得3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0,解可得k 的值,即可得答案. 【解答】(1)根据题意,椭圆的离心率为12,即e =c a=2,则a =2c .又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0.∴ 由韦达定理可知:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2.∵ k 1=y 1x1+2,k 2=y 2x 1−2,且k 1=2k 2,∴ y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k 3+4k 2)+12=0,即12k 2−20k +3=0.解得:k =16或k =32. 又由k >1,则k =32.。

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.4.1 Word版含答案

第二章一、选择题.在平面直角坐标系内,到点()和直线+=的距离相等的点的轨迹是( ).直线.抛物线.圆.双曲线[答案][解析]∵点()在直线+=上,故所求点的轨迹是过点()且与直线+=垂直的直线..(·山东荷泽高二检测)过点()且与轴相切的圆的圆心的轨迹为( ).圆.椭圆.直线.抛物线[答案][解析]如图,设点为满足条件的一点,不难得出结论:点到点的距离等于点到轴的距离,故点在以点为焦点,轴为准线的抛物线上,故点的轨迹为抛物线,因此选..(·广东深圳市宝安区高二期末调研)抛物线=上一点的纵坐标为,则点与抛物线焦点的距离为( )....[答案][解析]解法一:∵=,∴=·=,∴=±,∴(±),焦点坐标为(),∴所求距离为==.解法二:抛物线的准线为=-,∴到准线的距离为,又∵到准线的距离与到焦点的距离相等.∴距离为..抛物线=的焦点为,点()在此抛物线上,为线段的中点,则点到该抛物线准线的距离为( )....[答案][解析]∵点()在抛物线上,∴()=,∴=,到抛物线准线的距离为-(-)=,到准线距离为,∴到抛物线准线的距离为==..已知抛物线=(>)的准线与圆+--=相切,则的值为( )...[答案][解析]抛物线的准线为=-,将圆方程化简得到(-)+=,准线与圆相切,则-=-,∴=,故选..(·黑龙江哈师大附中高二期中测试)设抛物线=上一点到轴的距离是,则点到该抛物线焦点的距离为( )....[答案][解析]∵点到轴的距离为,∴点到抛物线=的准线=-的距离=+=,根据抛物线的定义知点到抛物线焦点的距离为.二、填空题.抛物线=的准线方程是=,则的值为[答案]-[解析]抛物线方程化为标准形式为=,由题意得<,∴=-,∴=-,∴准线方程为==-=,∴=-..沿直线=-发出的光线经抛物线=反射后,与轴相交于点(),则抛物线的准线方程为(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行)[答案]=-[解析]由直线=-平行于抛物线的轴知()为焦点,故准线方程为=-.三、解答题.若抛物线=(>)上一点到准线及对称轴的距离分别为和,求点的横坐标及抛物线方程[解析]∵点到对称轴的距离为,∴设点的坐标为().又∵点到准线的距离为,∴(\\(=,+()=.))解得(\\(=,=,))或(\\(=,=.))故当点的横坐标为时,抛物线方程为=.当点的横坐标为时,抛物线方程为=..求顶点在坐标原点,对称轴为坐标轴,过点(-)的抛物线的标准方程[解析]∵点(-)在第二象限,。

高二数学 (人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.4.2 Word版含答案

高二数学  (人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程  2.4.2 Word版含答案

2.4.2 抛物线的简单几何性质1.抛物线的简单几何性质设抛物线的标准方程为y 2=2px(p>0)(1)范围:抛物线上的点(x ,y)的横坐标x 的取值范围是________,抛物线在y 轴的______侧,当x 的值增大时,|y|也________,抛物线向右上方和右下方无限延伸.(2)对称性:抛物线关于________对称,抛物线的对称轴叫做________________.(3)顶点:抛物线和它的轴的交点叫做抛物线的________.抛物线的顶点为____________. (4)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的__________,用e 表示,其值为______.(5)抛物线的焦点到其准线的距离为______,这就是p 的几何意义,顶点到准线的距离为p2,焦点到顶点的距离为________. 2.直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px(p>0)的交点个数决定于关于x 的方程________________________的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有______个不同的公共点;当Δ=0时,直线与抛物线有______个公共点;当Δ<0时,直线与抛物线________公共点.当k =0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点. 3.抛物线的焦点弦设抛物线y 2=2px(p>0),AB 为过焦点的一条弦,A(x 1,y 1),B(x 2,y 2),AB 的中点M(x 0,y 0),则有以下结论.(1)以AB 为直径的圆与准线________.(2)|AB|=________(焦点弦长与中点坐标的关系). (3)|AB|=x 1+x 2+______.(4)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1x 2=________,y 1y 2=________.一、选择题1.顶点在原点,对称轴为坐标轴的抛物线过点(-2,3),它的方程是( )A .x 2=-92y 或y 2=43xB .y 2=-92x 或x 2=43yC .y 2=-92xD .x 2=43y2.若抛物线y 2=2px (p>0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点F 的距离的关系是( ) A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 3.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .172B .3C . 5D .924.设斜率为2的直线l 过抛物线y 2=ax(a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2=±4x B .y 2=±8xC .y 2=4xD .y 2=8x5.设直线l 1:y =2x ,直线l 2经过点P(2,1),抛物线C :y 2=4x ,已知l 1、l 2与C 共有三个交点,则满足条件的直线l 2的条数为( )A .1B .2C .3D .46.过抛物线y 2=ax (a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若PF 与FQ 的长分别为p 、q ,则1p +1q 等于( )A .2aB .12aC .4aD .4a二、填空题7.已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为________.8.已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M(2,2),则△ABF的面积等于________.9.过抛物线x2=2py (p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴的左侧),则|AF||FB|=________.三、解答题10.设抛物线y=mx2 (m≠0)的准线与直线y=1的距离为3,求抛物线的标准方程.11.过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q所平分,求AB所在的直线方程.能力提升12.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|等于()A.4 3 B.8 C.8 3 D.1613.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.1.抛物线上一点与焦点的距离问题,可转化为该点到准线的距离.2.直线与抛物线的位置关系,可利用直线方程与抛物线方程联立而成的方程组的解来判定;“中点弦”问题也可使用“点差法”.2.4.2 抛物线的简单几何性质知识梳理1.(1)x ≥0 右 增大 (2)x 轴 抛物线的轴 (3)顶点 坐标原点 (4)离心率 1 (5)p p 22.k 2x 2+2(kb -p )x +b 2=0 两 一 没有 平行或重合 一3.(1)相切 (2)2(x 0+p 2) (3)p (4)p 24-p 2作业设计1.B [由题意知所求抛物线开口向上或开口向左,利用待定系数法可求得方程.] 2.A [设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23,所以x 1+x 3=2x 2, 即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |.] 3.A [如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.] 4.B [y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,过焦点且斜率为2的直线方程为y =2⎝⎛⎭⎫x -a 4,令x =0得y =-a2.∴12×|a |4×|a |2=4,∴a 2=64,∴a =±8.] 5.C [∵点P (2,1)在抛物线内部,且直线l 1与抛物线C 相交于A ,B 两点,∴过点P 的直线l 2在过点A 或点B 或与x 轴平行时符合题意.∴满足条件的直线l 2共有3条.]6.D [可采用特殊值法,设PQ 过焦点F ⎝⎛⎭⎫a 4,0且垂直于x 轴,则|PF |=p =x P +a 4=a 4+a 4=a 2, |QF |=q =a 2,∴1p +1q =2a +2a =4a.]7.y 2=4x解析 设抛物线方程为y 2=ax .将y =x 代入y 2=ax ,得x =0或x =a ,∴a2=2.∴a =4.∴抛物线方程为y 2=4x . 8.2解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.9.13解析 抛物线x 2=2py (p >0)的焦点为F ⎝⎛⎭⎫0,p 2,则直线AB 的方程为y =33x +p 2, 由⎩⎪⎨⎪⎧x 2=2py ,y =33x +p 2,消去x ,得12y 2-20py +3p 2=0, 解得y 1=p 6,y 2=3p2.由题意可设A (x 1,y 1),B (x 2,y 2),由抛物线的定义,可知|AF ||FB |=y 1+p 2y 2+p 2=p 6+p 23p 2+p 2=13.10.解 由y =mx 2 (m ≠0)可化为x 2=1my ,其准线方程为y =-14m.由题意知-14m =-2或-14m =4,解得m =18或m =-116.则所求抛物线的标准方程为x 2=8y 或x 2=-16y . 11.解 方法一 设以Q 为中点的弦AB 端点坐标为 A (x 1,y 1)、B (x 2,y 2), 则有y 21=8x 1,① y 22=8x 2,②∵Q (4,1)是AB 的中点, ∴x 1+x 2=8,y 1+y 2=2.③①-②,得(y 1+y 2)(y 1-y 2)=8(x 1-x 2).④ 将③代入④得y 1-y 2=4(x 1-x 2),即4=y 1-y 2x 1-x 2,∴k =4.∴所求弦AB 所在的直线方程为y -1=4(x -4),即4x -y -15=0. 方法二 设弦AB 所在直线方程为y =k (x -4)+1.由⎩⎪⎨⎪⎧y 2=8x ,y =k (x -4)+1,消去x , 得ky 2-8y -32k +8=0,此方程的两根就是线段端点A 、B 两点的纵坐标,由根与系数的关系和中点坐标公式,得y 1+y 2=8k,又y 1+y 2=2,∴k =4.∴所求弦AB 所在的直线方程为4x -y -15=0. 12.B [如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43). 设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8,选B.]13.解 由y 2=4x ,得p =2,其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2).分别过A 、B 作准线的垂线,垂足为A ′、B ′.(1)由抛物线的定义可知,|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3. ∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点,则k≠0,并设其两根为x1,x2,则x1+x2=2+4k2. 由抛物线的定义可知,|AB|=x1+x2+p=4+4k2>4.当直线l的斜率不存在时,直线l的方程为x=1,与抛物线相交于A(1,2),B(1,-2),此时|AB|=4,所以,|AB|≥4,即线段AB的长的最小值为4.。

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.3.1 Word版含答案

高中数学人教版选修2-1习题 第2章 圆锥曲线与方程 2.3.1 Word版含答案

第二章一、选择题.在方程-=中,若<,则方程的曲线是( ).焦点在轴上的椭圆.焦点在轴上的双曲线.焦点在轴上的椭圆.焦点在轴上的双曲线[答案][解析]方程-=可化为:-=,∵<,∴->,∴方程的曲线是焦点在轴上的双曲线..双曲线-=上的点到一个焦点的距离为,则到另一个焦点的距离为( ) .或...[答案][解析]∵=,∴=,由双曲线定义可得-=,由题意知=,∴-=±,∴=或. .若∈,方程+=表示焦点在轴上的双曲线,则的取值范围是( ).-<<-.<-.<-或>-.>-[答案][思路分析]由于方程表示焦点在轴上的双曲线,故+>,+<.[解析]由题意可知,(\\(+>+<)),解得-<<-..椭圆+=与双曲线-=有相同的焦点,则的值是( ).±..-.不存在[答案][解析]验证法:当=±时,=,对椭圆来说,=,=,=.对双曲线来说,=,=,=,故当=±时,它们有相同的焦点.直接法:显然双曲线焦点在轴上,故-=+.∴=,即=±..(·福建八县一中高二期末测试)△中,(-)、(),点在双曲线-=上,则=( ).±.-.±[答案][解析]在△中,=,=,==.∴==.又∵-=±,∴=±=±..已知双曲线的左、右焦点分别为、,过的直线与双曲线的左支交于、两点,线段的长为,若=,那么△的周长是( )....[答案][解析]-==,-==,∴+-(+)=,∴+=+=,∴△的周长为++=+=.二、填空题.双曲线的一个焦点坐标是(,-),经过点(-,),则双曲线的标准方程为[答案]-=[解析]解法一:由已知得,=,且焦点在轴上,则另一焦点坐标是().因为点(-)在双曲线上,所以点与两焦点的距离的差的绝对值是常数,即=-=-=,得=,=-=-=.因此,所求的双曲线标准方程是-=.解法二:由焦点坐标知=,∴+=,∴双曲线方程为-=.∵双曲线过点(-),∴-=,∴=,=.双曲线方程为-=..已知双曲线与椭圆+=有相同的焦点,且与椭圆的一个交点的纵坐标为,则双曲线的方程为[答案]-=[解析]椭圆的焦点为(,-),(),故可设双曲线方程为-=(>,>),且=,+=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 2.4 2.4.1一、选择题1.在平面直角坐标系内,到点(1,1)和直线x +2y =3的距离相等的点的轨迹是( )A .直线B .抛物线C .圆D .双曲线[答案] A[解析] ∵点(1,1)在直线x +2y =3上,故所求点的轨迹是过点(1,1)且与直线x +2y =3垂直的直线.2.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为( )A .圆B .椭圆C .直线D .抛物线[答案] D[解析] 如图,设点P 为满足条件的一点,不难得出结论:点P 到点A 的距离等于点P 到y 轴的距离,故点P 在以点A 为焦点,y 轴为准线的抛物线上,故点P 的轨迹为抛物线,因此选D.3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .5[答案] D[解析] 解法一:∵y =4,∴x 2=4·y =16,∴x =±4, ∴A (±4,4),焦点坐标为(0,1), ∴所求距离为42+(4-1)2=25=5.解法二:抛物线的准线为y =-1,∴A 到准线的距离为5,又∵A 到准线的距离与A 到焦点的距离相等.∴距离为5.4.抛物线y 2=mx 的焦点为F ,点P (2,22)在此抛物线上,M 为线段PF 的中点,则点M 到该抛物线准线的距离为( )A .1B .32 C .2D .52[答案] D[解析] ∵点P (2,22)在抛物线上,∴(22)2=2m ,∴m =4,P 到抛物线准线的距离为2-(-1)=3,F 到准线距离为2, ∴M 到抛物线准线的距离为d =3+22=52.5.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .4[答案] C[解析] 抛物线的准线为x =-p2,将圆方程化简得到(x -3)2+y 2=16,准线与圆相切,则-p2=-1,∴p =2,故选C.6.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为( )A .12B .8C .6D .4[答案] B[解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 二、填空题7.抛物线y =ax 2的准线方程是y =2,则a 的值为________.[答案] -18[解析] 抛物线方程化为标准形式为x 2=1a y ,由题意得a <0,∴2p =-1a ,∴p =-12a ,∴准线方程为y =p 2=-14a =2,∴a =-18.8.沿直线y =-2发出的光线经抛物线y 2=ax 反射后,与x 轴相交于点A (2,0),则抛物线的准线方程为________(提示:抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行).[答案] x =-2[解析] 由直线y =-2平行于抛物线的轴知A (2,0)为焦点,故准线方程为x =-2. 三、解答题9.若抛物线y 2=2px (p >0)上一点M 到准线及对称轴的距离分别为10和6,求M 点的横坐标及抛物线方程.[解析] ∵点M 到对称轴的距离为6, ∴设点M 的坐标为(x,6). 又∵点M 到准线的距离为10,∴⎩⎪⎨⎪⎧62=2px ,x +p 2=10.解得⎩⎪⎨⎪⎧ x =9,p =2,或⎩⎪⎨⎪⎧x =1,p =18.故当点M 的横坐标为9时,抛物线方程为y 2=4x . 当点M 的横坐标为1时,抛物线方程为y 2=36x .10.求顶点在坐标原点,对称轴为坐标轴,过点(-2,3)的抛物线的标准方程.[解析] ∵点(-2,3)在第二象限,∴设抛物线方程为y 2=-2px (p >0)或x 2=2p ′y (p ′>0), 又点(-2,3)在抛物线上,∴p =94,p ′=23,∴抛物线方程为y 2=-92x 或x 2=43y .一、选择题1.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则点M 的轨迹方程是( ) A .x +4=0 B .x -4=0 C .y 2=8xD .y 2=16x[答案] D[解析] 依题意可知M 点到点F 的距离等于M 点到直线x =-4的距离,因此其轨迹是抛物线,且p =8,顶点在原点,焦点在x 轴正半轴上,∴其方程为y 2=16x ,故答案是D.2.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4[答案] C[解析] 抛物线C 的准线方程为x =-2,焦点F (2,0),由|PF |=42及抛物线的定义知,P 点的横坐标x P =32,从而y P =±26,∴S △POF =12|OF |·|y P |=12×2×26=2 3.3.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|P 1F |+|P 2F |=|FP 3|B .|P 1F |2+|P 2F |2=|P 3F |2C .2|P 2F |=|P 1F |+|P 3F |D .|P 2F |2=|P 1F |·|P 3F |[答案] C[解析] ∵点P 1、P 2、P 3在抛物线上,且2x 2=x 1+x 3,两边同时加上p , 得2(x 2+p 2)=x 1+p 2+x 3+p2,即2|P 2F |=|P 1F |+|P 3F |,故选C.4.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为( )A.522 B .522+1 C.522-2D .522-1[答案] D[解析] 设抛物线焦点为F ,过P 作P A 与准线垂直,垂足为A ,作PB 与l 垂直,垂足为B ,则d 1+d 2=|P A |+|PB |-1=|PF |+|PB |-1,显然当P 、F 、B 三点共线(即P 点在由F 向l 作垂线的垂线段上)时,d 1+d 2取到最小值,最小值为522-1.二、填空题5.已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段F A 交抛物于点B ,过B 点作l 的垂线,垂足为M ,若AM ⊥MF ,则p =________.[答案]2[解析] 由抛物线的定义可得BM =BF ,F (P2,0),又AM ⊥MF ,故点B 为线段F A 中点,即B (p 4,1),所以1=2p ×p4⇒p = 2.6.在平面直角坐标系xOy 中,点B 与点A (-1,0)关于原点O 对称.点P (x 0,y 0)在抛物线y 2=4x 上,且直线AP 与BP 的斜率之积等于2,则x 0=________.[答案] 1+ 2[解析] ∵点B 与点A (-1,0)关于原点O 对称,∴B (1,0),根据题意,得y 20x 20-1=2,又y 20=4x 0,∴2x 0=x 20-1,即x 20-2x 0-1=0,解得x 0=2±82=1±2,舍去负值,得x 0=1+ 2. 三、解答题7.求适合下列条件的抛物线的标准方程:(1)过抛物线y 2=2mx 的焦点F 作x 轴的垂线交抛物线于A 、B 两点,且|AB |=6; (2)抛物线顶点在原点,对称轴是x 轴,点P (-5,25)到焦点的距离是6.[解析] (1)设抛物线的准线为l ,交x 轴于K 点,l 的方程为x =-m2,如图,作AA ′⊥l于A ′,BB ′⊥l 于B ′,则|AF |=|AA ′|=|FK |=|m |,同理|BF |=|m |.又|AB |=6,则2|m |=6. ∴m =±3,故所求抛物线方程为y 2=±6x .(2)设焦点F (a,0),|PF |=(a +5)2+20=6,即a 2+10a +9=0,解得a =-1或a =-9.当焦点为F (-1,0)时,p =2,抛物线开口方向向左,其方程为y 2=-4x ;当焦点为F (-9,0)时,p =18,抛物线开口方向向左,其方程为y 2=-36x .8.一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[解析] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则B 点的坐标为(a2,-a 4),如图所示,设隧道所在抛物线方程为x 2=my ,则(a 2)2=m ·(-a 4),∴m =-a ,即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得 0.82=-ay , 即y =-0.82a.欲使卡车通过隧道,应有y -(-a 4)>3,即a 4-0.82a >3,由于a >0,得上述不等式的解为a >12.21,∴a 应取13.。

相关文档
最新文档