复合材料单层板理论

复合材料单层板理论
复合材料单层板理论

复合材料单层板理论

复合材料是一类新型材料复合材料是一类新型材料,其强度高、刚度大、质量轻,并具有抗疲劳、耐高温、减振、可设计等一系列优点,近几十年来,在航空航天、能源、交通、建筑、机械、信息、化工、医疗和体育等部门日益得到广泛应用。复合材

料是一种多相材料,它具有非均匀性和各向异性,其强度和刚度分析的理论与方法不

同于金属材料。随着对复合材料力学特性的深入研究,已经形成了复合材料力学学科

体系并得到蓬勃发展。ABC电子国内外许多高等院校巳将复合材料力学列为力学及相

关专业本科生和研究生的必修和选修课程。为了满足高等学校力学专业本科生和研究

生的复合材料力学课程教学的需要,笔者在参考国内外复合材料力学书籍的基础上,

结合多年来从事复合材料力学教学的体会,编写了这本《复合材料力学基础》。本书

阐述了连续纤维增强复合材料力学基础、复合材料宏观力学基本理论和分析方法。全

书内容分为7章。

第1窜是复合材料概述,第2章介绍变形体几何分析和基本守恒原理,第3章是

线弹性各向异性弹性力学本构方程,第4章为复合材料单层板理论,第5章是复合材

料单层板强度理论,第6章是复合材料层合板理论,第7章介绍复合材料层合板弯曲、屈曲和振动。本书可供高等院校力学及相关专业本科生、研究生复合材料力学课程作

为教材使用,也司供有关科技人员学习参考。复合材料是指两种或两种以上具有不同

性能的材料在宏观尺度上组合成的一种多相材料。每一种组成材料称为复合材料的组分,包容组分称为基体IC现货材料(简称为基体),被包容材料称为增强材料,基体与

增强材料的结合面称为界面(基体与增强材料在其界面上束发生化学反应,无相互溶解)。在工程上,复合材料是指通过物理和化学方法格一种(或几种)材料按照一定方式

加入到另一种材料中,从而克服单一材料性能的某些弱点。对于复合材料力学,单一

材料性能的改善主要是指材料的力学性能(比强度、比刚度、耐腐蚀和耐磨损、湿热效应等)。从不同的角度来看,复合材料具有不同的含义。

如果披原子或分子的层次,从微观尺度严格意义上来讲,几乎所有材料都可以被

认为是复合材料(如通常的合金类材料)。因此,上述关于复合材料的定义是宏观意义

上的。如果按丁程用的性质来分,又可分为两大类:具有特殊功能的功能性复合材料(导电复合材料、烧蚀复合材料、滓阻复合材料等)。

由基体材料和增强析料组成的结构复合材料(颗粒增强材料与基体材料IC现货构

成的颗放复合材料,纤维增强材料与基体构成的纤维增强复合材料,一种或一种以上

片状增强材料与基体构成的层复合材料。本书中所指的复合材料均是纤维增强复合材料。纤姓增强复合材料的贫类纤维增强复合材料可以按照纤维材料的不同和基体材料

的不同进行分类为。共符威足强反问、延毕权人出半里索取肋纱、纤维布(带、绳等)。

(2)硼纤维。硼纤维是由网蒸气在钨丝上沉积制成的(以钨丝为芯、沉积砌为表面的复相

材料)纤维。硼纤维成本高,钨丝的直径较大(难以制成织物),因此影响了其应用和发展。 (3)碳纤维。碳纤维由各种有机纤维(主要是聚丙烯腊纤维一—PAN)经过两次热处理碳化、石墨化制成。碳纤维和石墨纤维属于同类材料(2000℃以下热处理得到的是碳纤维,接受3000霓热处理得到的是石墨纤维)。碳纤维(直径一般为6一lo Pm)又可细分为高强度、高模量、极高模量等几种。碳纤维特点是制作工艺较简单,相对硼纤

维价格便宜;其密度比玻璃纤维。ABC电子小,模量比玻璃纤维高;碳纤维应力—应

变关系为一直线,且直到纤维断裂之前其变性行为呈现为弹性性质;与其他纤维不同,碳纤维的热膨胀系数具有各向异性性质沿纤维方向为一垂直纤维方向为碳纤维可以制

成各种织物。人们竿她公姓名协纤维助书香技理若酞胺有棚。cjmc%ddz

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

(完整版)12级复合材料结构设计参考资料

复合材料结构设计参考资料复合材料与工程 考试形式 笔试闭卷 考试时间和地点 时间:2015年6月25日14:00--15:40 地点:材料学院A107 题型与分数分布 一.名词解释 二.填空题 三.简答题 四.计算题

一、绪论 1.复合材料:由两种或两种以上具有不同的化学或物理性质的组分材料组成的一种与组分材料性质不同的新材料,且各组分材料之间具有明显的界面。 一相为连续相,称为基体;起连接增强体、传递载荷、分散载荷的作用。 一相为分散相,称为增强体(增强相)或功能体。是以独立的形态分布在整个连续相中的,两相之间存在着相界面。(分散相可以是增强纤维,也可以是颗粒状或弥散的填料) 主要起承受载荷的作用,赋予复合材料以一定的物理、化学功能。 2.复合材料分类: A按基体材料分:树脂基的复合材料、金属基复合材料、无机非金属复合材料 B按分散相形态分:连续纤维增强、纤维织物增强、片状材料增强、短纤维增强、颗粒增强C按增强体材料种类分类:玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维。 D按用途分类:结构复合材料:利用复合材料的各种良好力学性能用于制造结构的材料。 功能复合材料:指具有除力学性能以外其他物理性能的复合材料 3.复合材料的结构层次: 三次结构:纤维缠绕压力容器,即平常所说的制品结构(a) 二次结构:从容器壁上切取的壳元即是由若干具有不同纤 维方向的单层材料按一定顺序叠合而成的层合 板(b) 一次结构:层合板的一个个铺层,是层合板的基本单元(c) 二、单层板的宏观力学分析 1.单层板的正轴刚度 正向:也就是说应力方向与坐标方向一致方向为正向,相反为负向。 正面:截面外法线方向与坐标轴方向一致的面,否则为负面。 σ1和σ2——表示正应力分量:拉伸为正,压缩为负,也就是使整 个单层板产生拉伸时的应力为正应力,而使单层板产生压缩时的应 力为负应力。 τ12——表示剪应力分量:其中正面正向为正;负面负向也为正。 A.力学实验 a.纵向单轴试验: 纵向泊松比v1是单层板由于纵向单轴应力σ1而引起的横向线应变ε2(1)与纵向线应变ε1(1)的比值。(ε2(1)表示的是这个应变是由纵向应力σ1引起的) b.横向单轴试验

复合材料界面层材料的研究

复合材料界面层材料的研究* 卢国锋1,2 ,乔生儒1,许 艳3 (1 西北工业大学,超高温结构复合材料国家重点实验室,西安710072;2 渭南师范学院装备工程技术中心, 渭南714000;3 渭南师范学院图书馆,渭南714000)摘要 界面层是复合材料中的关键组成部分,因对复合材料的各项性能都有重要影响,而成为复合材料研究的重点之一。在叙述界面层功能的基础上,分别对层状结构界面层材料(包括层状晶体结构材料和多层陶瓷界面相)和非层状结构界面层材料进行了讨论,分析了研究中存在的问题,指出了未来研究的方向和重点。 关键词 界面层 复合材料 力学性能 抗氧化性能中图分类号:TB332 文献标识码:A Studies on the Interphase of the Comp ositesLU Guofeng1, 2,QIAO Sheng ru1,XU Yan3 (1 National Key Laboratory  of Thermostructure Composite Materials,Northwestern Polytechnical University,Xi’an 710072;2 Center for Armament Engineering  Technology,Weinan Normal University,Weinan 714000;3 Library  of Weinan Normal University,Weinan 714000)Abstract The interlayer is a key component of the composites,and has important influence on the properties ofthe materials.Based on the description of the functionality of interphase,the research status of the interphase mate-rials with layer structure,including layered crystal structure and multilayer ceramic interphase,and the interphase ma-terials without layered structure is introduced.The problems in the research work are analyzed,the direction and fo-cus of future research are p ointed out.Key  words interphase,composites,mechanical property,oxidation resistance *国家自然科学基金( 50772089);渭南师范学院科研项目(13YKS003) 卢国锋:男,1975年生,博士,副教授,主要研究方向为陶瓷基复合材料和功能材料 E-mail:lug uof75@163.com0 引言 界面层是复合材料中处于增强体和基体之间的一个局部微小区域。它将增强体和基体彼此良好地结合在一起,起着传递载荷,阻止裂纹越过增强体表面进行扩展,缓解残余热应力,阻挡基体和纤维间元素的相互扩散、溶解和有害化 学反应, 阻止纤维在高温环境下发生氧化的作用[1] 。界面层在复合材料中所占的体积分数虽不足10%,但却是影响陶瓷基复合材料力学性能、抗环境侵蚀能力等的关键因素之一。特别是对于脆性纤维增强脆性基体复合材料来说,纤维与基体间的界面层是决定复合材料强度和韧性的重要因素。因此,对界面层材料及其结构的研究一直是复合材料研究的热点之一。本文对近年来在复合材料界面层领域的研究进行了综述。 1 复合材料界面层的功能 一般来讲,界面层的功能主要有4个:传递、阻止裂纹扩展、缓解和阻挡。传递作用是指界面层作为一个“桥梁”将作用于基体的载荷充分传递至复合材料的主要承载者———纤维增强体上。阻止裂纹扩展是指当基体裂纹扩展到界面层 区域时, 基体和纤维沿它们之间的界面发生分离,并使裂纹的扩展方向发生改变,即裂纹偏转,阻止裂纹直接越过纤维表面进行扩展。缓解作用是指界面层通过过渡作用和界面滑移减少残余热应力。阻挡作用是指阻挡基体和纤维间元素的相互扩散、 溶解和有害化学反应,阻止外界环境对纤维增强体的侵害[ 1,2] 。以上只是一般意义上的界面层功能,但不同功用的复合材料对界面层的要求不同。例如:以承受载荷为主要目的的复合材料对前3种功能有更为苛刻的要求, 而以抗氧化为主要目的的复合材料则对阻挡功能要求更严。一种界面层所具有的功能主要取决于界面层的材质、结构、厚度以及界面层与纤维或基体间的相互作用等因素。为了满足不同复合材料功能的需求, 不同功用的复合材料应具有不同的界面层。复合材料界面层的研究正是在这种需求下不断进行的。目前常被研究的界面层材料有很多,大致可分为两类:层状结构材料和非层状结构材料,其中层状结构材料又包括层状晶体结构材料和多层陶瓷界面相。 2 层状晶体结构界面层材料 具有层状晶体结构的材料由于其层间结合力较弱,当外 ·04·材料导报A:综述篇 2 013年11月(上)第27卷第11期

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

《复合材料结构设计基础》课程介绍

《复合材料结构设计基础》课程介绍 一、课程简介 《复合材料结构设计基础》是复合材料与工程专业的承前启后的专业方向课,它包含材料力学基础、弹性力学基础、材料设计、结构设计等,因而是具有立体性质的一个科学领域。其主要任务是使学生掌握复合材料结构设计的基础理论、基本知识和基本技能。通过本科程学习,要求学生掌握复合材料经典层合板理论、刚度和强度的计算方法、复合材料结构元件的分析和典型产品结构设计的基本步骤和方法等内容,为后续专业课的学习以及从事复合材料领域的生产和科研奠定坚实的理论基础;学习科学思维方法和研究问题的方法,达到开阔思路、激发探索和创新精神、增强理论分析能力与实践能力的目的。 课程的主要教学内容包括: 第一章绪论 学习了解什么是复合材料特别是什么是纤维增强树脂基复合材料;了解复合材料的发展历史及现状;了解复合材料的结构设计的特点。 第二章单层的刚度与强度 掌握平面应力状态下单轴的正轴应力-应变关系等。掌握单层的偏轴应力-应变关系;掌握单层弹性模量、柔量及工程弹性常数的计算。掌握单层的弹性指标和单层的失效准则。 第三章层合板的刚度与强度 掌握层合板的表示法、掌握对称层合板面内内力与面内应力的关系。掌握几种典型对称层合板的面内刚度系数的计算。了解对称层合板弯曲矩与曲率的关系、掌握对称层合板弯曲工程弹性常数及弯曲刚度系数的计算。了解一般层合板的面内力与面内应变的关系、了解一般层合板工程弹性常数、刚度系数的计算。掌握如何依据单层的强度来预测层合板的最先一层失效强度。 第四章复合材料结构分析 了解在复材构件进行结构分析时所采用的弹性力学的基本方法。了解复材层合梁、薄壁梁等构件的分析方法及设计计算的基本公式。 第五章复合材料连接 了解复材连接方式、掌握胶接连接接头的内力与应力分析计算方法、了解胶

复合材料结构设计基础(试卷B格式)

西安航空职业技术学院2011 ~ 2012 学年度 第 2 学期课程考试 试题纸(第 1 页 共 2 页) 安航空职业技术学院 课程考试试题(卷)纸 4分,共20分) 1 性对称面 2 特殊正交各向异性层压板 3 屈曲 4 设计许用值 5 层压板。 1分,共20分) 夹芯板通常由三部分组成, 、 和 ,两侧部分的材料也称为面板。 在小变形的情况下,板主要以弯曲变形承受外载荷,相对应,壳体则主要由 承受外载荷。由于壳体的承力特点,可以使壳体的构件设计得 而且 ,因而这种结构形式在航空、航天、高速交通车辆、风力发电的叶片以及其他工业部门中得到广泛的应用。 由蒙皮/筋条和肋、梁共同构成的受力盒段,蒙皮主要承受 ,弯矩引起的轴向载荷由筋条、梁缘条和蒙皮组成的壁板承受,因此筋条与梁以 铺层为主。梁腹板以±45o铺层为主要承受 。 由于复合材料的研制特点以及低成本制造技术的需要,复合材料结构比 金属结构更强调从研制开始,就要求在 中,包括设计、分析、材料、工艺制造、维护和用户在内的各阶段的专家、参与者协同工作,尽量利用 ,实施复合材料结构 一体化。 5. 合理确定设计许用值的通用原则,应该考虑 以及应变可能带来的损伤,既能够满足设计的基本要求,又可以避免 过大,结构沉重而降低结构的效率,加重各项负担。 6. 层压板的设计中,各种铺设方向铺层的层数应通过计算或计算图表确定。一般先求出 ,再根据所需总层数求得各种铺设角层组的 。 7. 考虑连接部位的破坏时,任何部件的连接部位都是 的敏感部位,复合材料也不例外,无论是目前普遍使用的机械连接方式,还是源自复合材料制造工艺的二次固化或 ,全部是 。 三、选择题(每题2分,共20分。) 1. 在广义胡克定律表达式[][][]j ij i C εσ=(ij=1,2,……,6)中,将 [] C ij 表示的矩阵称谓( )。 a 、可逆矩阵 b 、刚性矩阵 c 、对称矩阵 d 、柔性矩阵 2. 具有一个弹性对称面的情况下,在材料性能的刚性矩阵中,所表示材料的独立弹性常数有( )个。 a 、 13 b 、 2 c 、 5 d 、 9

复合材料结构设计基础(试卷B格式)(可编辑修改word版)

i j ij 西安航空职业技术学院 2011 ~ 2012 学年度 第 2 学期课程考试 试题纸(第 1 页 共 2 页) 西安航空职业技术学院 课程考试试题(卷)纸 (考生应将全部答题都写在答题纸上,否则做无效处理。) 一、名词解释(每小题 4 分,共 20 分) 1 性对称面 2 特殊正交各向异性层压板 3 屈曲 4 设计许用值 5 层压板。 二、填空(每空 1 分,共 20 分) 1. 夹芯板通常由三部分组成, 、 和 ,两侧 部分的材料也称为面板。 2. 在小变形的情况下,板主要以弯曲变形承受外载荷,相对应,壳体则主要由 承受外载荷。由于壳体的承力特点,可以使壳体的构件设计得 而且 ,因而这种结构形式在航空、航天、高速 交通车辆、风力发电的叶片以及其他工业部门中得到广泛的应用。 3. 由蒙皮/筋条和肋、梁共同构成的受力盒段,蒙皮主要承受 ,弯 金属结构更强调从研制开始,就要求在 中,包括设计、分析、 材料、工艺制造、维护和用户在内的各阶段的专家、参与者协同工作, 尽量利用 ,实施复合材料结构 一体化。 5. 合理确定设计许用值的通用原则,应该考虑 以及应变可能带来的损伤,既能够满足设计的基本要求,又可以避免 过大, 结构沉重而降低结构的效率,加重各项负担。 6. 层压板的设计中,各种铺设方向铺层的层数应通过计算或计算图表确定。一般先求出 ,再根据所需总层数求得各种铺设角层组 的 。 7. 考虑连接部位的破坏时,任何部件的连接部位都是 的敏感部 位,复合材料也不例外,无论是目前普遍使用的机械连接方式,还是源自复合材料制造工艺的二次固化或 ,全部是 。 三、选择题(每题 2 分,共 20 分。) 1. 在广义胡克定律表达式[] = [C ] [](ij=1,2,……,6)中,将 ] 表示的矩阵称谓( )。 矩引起的轴向载荷由筋条、梁缘条和蒙皮组成的壁板承受,因此筋条与梁以 铺层为主。梁腹板以±45o铺层为主要承受 。 4. 由于复合材料的研制特点以及低成本制造技术的需要,复合材料结构比 a 、可逆矩阵 b 、刚性矩阵 c 、对称矩阵 d 、柔性矩阵 2. 具有一个弹性对称面的情况下,在材料性能的刚性矩阵中,所表示材料的独立弹性常数有( )个。 a 、 13 b 、 2 c 、 5 d 、 9 * 学 号 部: * * * * * * * * * * 姓 名: * * * * * * * * * * * * * * ** 系 * * * 专业年级: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * [C ij 课程名称 复合材料结构设计基础 ( B 卷 ) 考试方式 闭 卷 考试类型 考 试 所属系部 航空材料工程系 印刷份数 适用班级 108011 和 108012 附答题纸 2 页

(完整版)复合材料结构设计基础考点

第一章 绪论 1. 复合材料的定义:两种或两种以上具有不同的化学或物理性质的组分材料组成的一种与 组分材料性质不同的新材料。 2. 比强度:强度与密度之比 比模量:模量与密度比 3. 层间强度低:纤维增强复合材料的层间剪切强度和层间拉伸强度分别低于基体的剪切强 度和拉伸强度,这是由于界面的作用所致。因此在层间应力作用下很容易引起层合板分层破坏,从而导致复合材料结构的破坏,这是影响复合材料在某些结构物使用的重要因素。 4. 纤维增强复合材料是由两种基本原材料------基体和纤维组成的,构成复合材料的基体单 元是单层板。 第二章 单层的刚度与强度 5. 对于各向同性材料,表达其刚度性能的参数是工程弹性常数E 、G 、v ,他们三者之间的 关系 G=E/(2(1+v)) 所以独立的弹性常数只有2个。而对于呈正交各向异性的单层,常数将增加到5个,独立的有4个。 6. 单层正轴的应变---应力关系式 ??????????????????? ?--=??????????321321/1000/1/0//1σσσεεεLT T L L T T L G E E v E v E 也可用柔量分量表示应变 应力的关系式 ?? ??????????????????=??????????122166222112113210000τσσεεεS S S S S 但必须写出S ij 7.例题:已知铝的工程弹性常数E=69Gpa ,G=26.54Gpa ,v=0.3,试求铝的柔量分量和模量分量。由于铝是各项同性材料,所以EL=ET=69Gpa Glt=G=26.54GPa vL=vT=v=0.3. (1)柔量分量 S11=S22=1/E=14.49/(TPa ) S12=-v/E=-4.348/(TPa) S66=1/G=37.68/TPa (2)模量分量 m=(1-vLvT)1-=(1-v 2)1 - Q11=Q22=mE=75.82GPa Q12=mvE=22.75 Q66=G=26.54GPa 8.单轴的偏轴应力应变关系公式。偏轴的应变应力关系公式。:课本p16 2-27 2-30 9.单层的失效准则:单层的失效准则的以判别单层在偏轴向应力作用或平面应力状态下是否失效的准则。 10. 最大应力失效准则:S Y X 12t 2t 1===τσσ 表明单层正轴向的任何一个应力分量到达极限应力 时,单层就失效。

复合材料结构设计的专用软件ESAComp

复合材料结构设计的专用软件ESAComp 作者:MarkkuPalanters 简介:复合材料层合板的设计过程存在着同传统金属结构设计不同的阶段。例如,复合材料的结构设计有许多种可能的材料组合,而且,材料的各向异性力学行为在设计阶段是能通过选择特定的纤维方向和叠层次序就确定了的。虽然有限元程序能够用来对复合材料进行分析,但是却不能够涵盖所有涉及复合材料具体设计和分析方面。因此,还需要专业化的复合材料设计工具来对复合材料进行设计。一些比较先进的设计工具,如本文中涉及的ESAComp软件,同有限元软件包结合起来,组成了复合材料结构设计过程的整个部分。关键词:复合材料,复合材料结构,层合板,夹层结构,分析,设计,软件,ESAComp 1. 复合材料的设计需要软件工具 在很多方面,复合材料的结构设计同金属材料的结构设计都存在着差异。在设计阶段纤维增强复合材料结构和夹层结构的力学性能就已经被确定下来。通过选择不同的材料、铺层角和叠层次序可以无限设计出具有不同力学性能特征的复合材料来。要充分利用复合材料优异的比刚度、比强度就需要非常强调复合材料的设计工作。 通过使用各向异性壳单元,所有的主流有限元软件对复合材料结构分析都提供了很大的帮助。但是,在复合材料的初始设计阶段对整个结构进行有限元分析的起始准备工作,包括材料种类的选择、层合和夹层结构的设计以及层合板铺层方式设计,有限元软件的实用性不大。当在层合板结构的不同层的级别上来对复合材料行为进行细节研究时,有限元软件包提供的后处理能力尤其有限。这也再次说明了专业复合材料分析工具的必要性。 从文件输入\输出的内部代码方式到电子数据表格的应用和完全交互式视窗程序,许多的软件工具被开发出来对层合板进行分析。当前一些比较高级的软件工具已经从基本的层合板分析发展到了对类似梁、板和夹层面板中复合材料层板的连接等这样的结构单元进行分析。一些层合板分析工具可以为商用的有限元软件提供界面。 本篇文章的基础是在开发ESAComp软件过程中获得的经验。接下来的章节中,将ESAComp软件作为先进复合材料设计软件中的一个典型,对其所具有的设计能力进行介绍。并在最后部分讨论了复合材料设计工具同有限元程序的系统问题。

复合材料的复合原则及界面

复合材料的复合原则及界面 第一节复合原则 要想制备一种好的复合材料,首先应根据所要求的性能进行设计,这样才能成功地制备出性能理想的复合材料。 复合材料的设计应遵循的原则如下: 一、材料组元的选择 挑选最合适的材料组元尤为重要。 在选择材料组元时,首先应明确各组元在使用中所应承担的功能,也就是说,必须明确对材料性能的要求。 对材料组元进行复合,即要求复合后材料达到如下性能,如高强度、高刚度、高耐蚀、耐磨、耐热或其它的导电、传热等性能或者某些综合性能如既高强又耐蚀、耐热。 因此,必须根据复合材料所需的性能来选择组成复合材料的基体材料和增强材料。 例如,若所设计的复合材料是用作结构件,则复合的目的就是要使复合后材料具有最佳的强度、刚度和韧性等. 因此,设计结构件复合材料时,首先必须明确其中一种组元主要起承受载荷的作用,它必须具有高强度和高模量。这种组元就是所要选择的增强材料; 而其它组元应起传递载荷及协同的作用,而且要把增强材料粘结在一起,这类组元就是要选的基体材料。 其次,除考虑性能要求外,还应考虑组成复合材料的各组元之间的相容性,这包括物理、化学、力学等性能的相容,使材料各组元彼此和谐地共同发挥作用。 在任何使用环境中,复合材料的各组元之间的伸长、弯曲、应变等都应相互或彼此协调一致。 第三,要考虑复合材料各组元之间的浸润性,使增强材料与基体之间达到比较理想的具有一定结合强度的界面。 适当的界面结合强度不仅有利于提高材料的整体强度,更重要的是便于将基体所承受的载荷通过界面传递给增强材料,以充分发挥其增强作用。 若结合强度太低,界面很难传递载荷,不能起潜在材料的作用,影响复合材料的整体强度; 但结合强度太高也不利,它遏制复合材料断裂对能量的吸收,易发生脆性断裂。 除此之外,还应联系到整个复合材料的结构来考虑。 具体到颗粒和纤维增强复合材料来说,增强效果与颗粒或纤维的体积含量、直径、分布间距及分布状态有关。 颗粒和纤维增强复合材料的设计原则如下: 1. 颗粒增强复合材料的原则 (1)颗粒应高度弥散均匀地分散在基体中,使其阻碍导致塑性变形的位错运动(金属、陶瓷基体)或分子链的运动(聚合物基体)。 (2)颗粒直径的大小要合适。 因为颗粒直径过大,会引起应力集中或本身破碎,从而导致材料强度降低; 颗粒直径太小,则起不到大的强化作用。因此,一般粒径为几微米到几十微米。 (3)颗粒的数量一般大于20%。数量太少,达不到最佳的强化效果。 (4)颗粒与基体之间应有一定的粘结作用。 2.纤维增强复合材料的原则 (1)纤维的强度和模量都要高于基体,即纤维应具有高模量和高强度,因为除个别情况外,在多数情况下承载主要是靠增强纤维。

复合材料界面理论简介

复合材料界面理论简介 摘要:纤维复合材料作为先进材料,质量轻,强度高等特点使其在航空、航天、船舶、汽车等工程领域应用越来越发挥其重要性。随着复合材料应用领域的扩展,对材料性能提出了更高的要求。复合材料的性能取决于增强体纤维、树脂基体和界面性能,其中纤维和树脂之间的界面粘结力是一个重要因素。界面粘结强度,即纤维断裂处通过基体向纤维传递应力的能力,直接影响到复合材料的强度、韧性和破坏模式等宏观力学行为。因此,研究界面之间的相互作用,对于界面的设计、预测有非常重要的作用。本文介绍了几种常见的几面之间的相互作用理论。关键词:界面;形成;相互作用理论; 1界面简介 复合材料是由两种或两种以上化学和物理性质不同的材料复合而成的,那么必然存在着异种材料的接触面,这个接触面就是界面。一般人们对复合材料界面的定义是,指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。 聚合物基复合材料界面的形成可以分成两个阶段: 第一阶段是基体与增强纤维的接触与浸润过程。增强纤维优先吸附能较多降低其表面能的组分,因此界面聚合物在结构上与聚合物基体是不同的。第二阶段是聚合物的固化阶段。聚合物通过物理的或化学的变化而固化,形成固定的界面层。 2界面作用理论 2.1浸润性理论 1963年,Zisman提出浸润性理论,认为浸润是形成界面的基本条件之一,若两相物质能实现完全浸润,则表面能较高的一相物体表面的物理吸附将大大超过另一相物体的内聚能强度,从而使两相物体具有良好的粘合强度。这种理论认为两相物体间的结合模式属于机械互锁和浸润吸附。其中机械粘合是一种机械互锁现象,即在形成复合材料的两相相互接触过程中,若浸润性差,两相接触的只是一些点,接触面有限(见图1(a))。若浸润性好,液相可扩展到另一相表面的坑凹中,因而两相接触面积大,结合紧密,产生机械锚合作用(见图1(b))。而物理吸附主要为范德华力的作用。

相关文档
最新文档