hedgehog信号通路总结
Hedghog信号通路与肿瘤发生.

Hedghog信号通路与肿瘤发生【关键词】 Hedgehog Signaling Pathway Patched Smoothened Cubitus interruptus Gli 0 引言 Hh是由英文“刺猬”(hedgehog)简写而来的。
这类基因最早是在果蝇里发现,果蝇和其他动物一样身体分成多个节段,幼虫的每个节段内一部分有毛、一部分无毛,Hh基因突变使无毛部分变成有毛部分,所以被戏称为“刺猬”基因。
果蝇Hh基因是美国霍普金斯大学毕淇实验室在90年代初克隆的,在果蝇只有一个Hh基因,以后多个实验室在高等动物发现有三个Hh基因。
Hedgehog通路不仅在胚胎正常发育中起着重要作用,通路的异常还可引发畸形和肿瘤。
本文就Hedgehog通路的构成、途径及在胚胎发育和肿瘤形成中的作用、肿瘤治疗的进展进行综述。
1 Hedgehog通路的基本构成 1.1 Hedgehog蛋白家族果蝇只有一个hedgehog基因,脊椎动物有3种hedgehog基因,包括:Desert hedgehog(Dhh), Indian hedgehog(Ihh), Sonic hedgehog(SHh)。
Dhh与果蝇的Hedgehog基因的关系最近;Ihh和SHh之间的关系较近。
Hedgehog蛋白是一种分泌蛋白,必须经过自身的修饰才能获得活性。
Hh蛋白包含一个N端信号结构域,和一个C端催化结构域。
C端催化结构域可以共价结合胆固醇,并使其结合到N端信号结构域,再将N端信号结构域一个半胱氨酸棕榈酰化,这个过程需要Skinny hedgehog酰基转移酶。
从鸡的sonic hedgehog (SHh)蛋白出发,用BLAST法找到其在人、小鼠、大鼠等脊椎动物的同源蛋白共16个,组成Hedgehog蛋白家族。
1.2 Patched(Ptch)蛋白 Ptch蛋白是细胞表面接受Hh信号蛋白的受体,具有二种功能,一是与Hh结合,二是抑制Smoothened(Smo)。
hedgehog信号通路总结

Controlled cell proliferation is a predominant theme in normal embryonic and post-embryonic development, and, in many instances, cell-type specification and cell proliferation are intimately coupled. Several secreted intercellular signaling proteins that behave as morphogens during pattern formation are also implicated in the regulation of the cell cycle. Hedgehogs (Hhs) are one such class of morphogens that regulate an enormous variety of developmental events in the fly and vertebrate embryo and plays a central role in several cancers.The vertebrate Hh family is represented by at least three members: Dhh (Desert Hh), Ihh (Indian Hh) and Shh (Sonic Hh), two Patched homologs, Ptc1 (Patched-1) and Ptc2 (Patched-2); and three homologs of Ci (Cubitus interruptus, a 155 kDa cytoplasmic zinc finger protein), Gli1, Gli2 and Gli3 (Ref.1). Shh is the most extensively characterized vertebrate homolog, and is involved in morphogenesis of several organs including the eye, hair and lungs. It acts as both a short-range, contact-dependent factor and as along-range, diffusible morphogen. Shh genes are highly conserved and have been identified within a variety of species, including human, mouse, frog, fish, and chicken. In the human embryo, Shh is expressed in the notochord, the floorplate of the neural tube, the gut, and in the developing limbs. Dhh and Ihh play more restricted roles: Dhh acts in the regulation of spermatogenesis and organization of the perineurium, which ensheaths peripheral nerves, and Ihh in coordinating proliferation and maturation of chondrocytes during development of the endochondral skeleton. Hh signals act as morphogens to induce distinct cell fates at specific concentration thresholds. In Drosophila, Hh patterns the segment, wing, leg, eye, and regions of the fly brain either directly, or through the recruitment of other signaling factors such as Dpp (Decapentaplegic) and Wg (Wingless) (Ref.2).The Hh-signaling pathway comprises three main components: the Hh ligand; a transmembrane receptor circuit composed of the negative regulator Ptc plus an activator, Smo (Smoothened) a GPCR (G-Protein Coupled Receptor); and finally a cytoplasmic complex that regulates the Ci or Gli family of transcriptional effectors. Additional pathway components are thought to modulate the activity or subcellular distribution of these molecules. There is positive and negative feedback at the transcriptional level as the Gli1 and Ptc1 genes are direct transcriptional targets of activation of the pathway (Ref.3). Ptc, a twelve-pass membrane protein binds Hh ligand, and in the absence of ligand, Ptc interacts with and inhibits Smo, a seven-pass membrane protein. This repression culminates in a transcription factor, Ci (Ci75) in Drosophila and Gli in vertebrates acting as a transcriptional repressor. When Hh binds Ptc, its interactions with Smo are altered such that Smo is no longer inhibited. This leads to Ci/Gli protein entering the nucleus and acting as a transcriptional activator for the same genes it represses when Ptc is free to interact with and inhibit Smo. The determination of diverse cell fates by Shh signaling occurs by regulating the combination of Gli genes expressed in a cell. The transcriptional effects of Hh signaling are directed to particular target genes by the specificity of the Ci zinc fingers in DNA sequence recognition (Ref.4). The processing and nuclear import of Ci is regulated via a complex of Ci with the cytoplasmic members of the Hh signaling pathway, Cos2 (Costal-2; Cos-FlyBase), Fused (Fu) and SUFU (Suppressor of Fused). Cos2 tethers the Ci-containing complex to the microtubules. On Hh signaling, the complex is released from microtubules and full-length Ci enters the nucleus (Ref.5). Kinases including GSK3Beta (Glycogen Synthase Kinase-3Beta), Slimb and PKA (Protein Kinase-A) oppose activation of the Shh pathway by regulating the stability of intermediate signaling transcription factors of Hh pathway. SUFU interacts directly with Ci proteins, repressing Hh signaling. In the absence of Hh signal, Cos2 and SUFU binding to Ci prevent Ci activation and retain it in the cytoplasm. Most of Ci is available for cleavage in a process which is dependent upon its phosphorylation by the PKA and which involves Cos2and Slimb. Uncleaved, full-length Ci is actively exported from the nucleus. Upon Hh reception, Fu is activated and acts on Cos2 and SUFU, alleviating their negative effect on Ci. As a result, Ci cleavage is reduced, Ci155 nuclear import overcomes its export and Ci is activated. Ci activation requires Cos2 and Fu to antagonize SUFU negative effect. Activated nuclear Ci interacts with the CBP (CREB Binding Protein) to fully activate the transcription of Hh target genes (Ref.6).Since their isolation, members of the Hh family of intercellular signaling proteins have been recognized as key mediators of many fundamental processes in embryonic development. Their activities are central to the growth, patterning, and morphogenesis of many different regions within the body plans of vertebrates and insects, and most likely other invertebrates (Ref.7). Inactivation of Shh or components in its signal transduction pathway, such as Gli2 and Gli3, gives rise to various degrees of lung and foregut malformations, with fusion of lung lobes, hypoplasia and esophageal atresia or stenosis (Ref.1). Further, misregulation of Hh signaling in humans is associated with congenital malformations of the CNS (Central Nervous System, spina bifida, holoprosencephaly type 3, hpe3), head (cleft palate), and limb (syn- and polydactyly) and with a predisposition for developing a variety of tumors of the skin (basal cell carcinoma) and CNS (medulloblastoma, glioblastoma) (Ref.8). Hh signal transduction has been the focus of intense research over the past decade due to the central role it plays in development and its emerging biomedical relevance in areas ranging from regenerative medicine to oncology (Ref.3).。
Hedgehog信号通路在肺癌中的研究进展

Hedgehog信号通路在肺癌中的研究进展Hedgehog信号通路是一种参与胚胎发育和成体组织修复的重要调控机制。
它被广泛研究,并在多种肿瘤中表达异常,特别是肺癌。
在肺癌中,研究发现Hedgehog信号通路的异常活化与肿瘤的发生和发展密切相关。
多个研究表明,Hedgehog信号通路的异常活化与肺癌的细胞增殖、迁移和侵袭等生理过程相关。
一些研究发现,Hedgehog信号通路成员如Sonic hedgehog、GLI1和GLI2在肺癌组织中的表达明显增加,并且与肺癌的分期、转移和预后等临床指标密切相关。
研究还发现Hedgehog信号通路可以通过调节细胞周期、促进血管生成和调控免疫应答等机制,促进肺癌的发展。
研究还发现Hedgehog信号通路与肺癌干细胞的调控有关。
肺癌干细胞是一小部分具有自我更新和多向分化潜能的肺癌细胞,被认为在肿瘤的发生、复发和转移中起着重要作用。
研究发现,Hedgehog信号通路可以维持肺癌干细胞的干性特性,并促进它们的增殖和存活。
抑制Hedgehog信号通路可能成为治疗肺癌的一种策略,特别是对于肺癌干细胞相关的疾病。
研究还发现Hedgehog信号通路与其他信号通路的相互作用对肺癌的发生和发展具有重要影响。
研究发现Hedgehog信号通路可以通过与Wnt信号通路、EGFR信号通路和Notch信号通路等相互作用,促进肺癌细胞的增殖和侵袭。
联合靶向这些信号通路可能具有更好的治疗效果。
Hedgehog信号通路还被发现参与了肺癌的耐药性的形成。
研究发现,一些肺癌细胞在经过治疗后可以通过激活Hedgehog信号通路来获得耐药性。
针对Hedgehog信号通路的治疗可能可以延缓或逆转肺癌的耐药性。
Hedgehog信号通路在肺癌中具有重要的调控作用,并且与肺癌的发生、转移、干细胞特性、相互作用和耐药性等方面密切相关。
深入研究Hedgehog信号通路在肺癌中的作用机制和治疗潜力,有助于开发更有效的肺癌治疗策略。
Hedgehog信号通路在肺癌中的研究进展

Hedgehog信号通路在肺癌中的研究进展肺癌是全球范围内的主要癌症,其发病率和死亡率一直居高不下。
许多分子信号通路参与肺癌的发生和发展,其中Hedgehog信号通路是近年来研究的热点之一。
Hedgehog信号通路由Hedgehog(Hh)配体、Smoothened(Smo)、Patched(Ptch)等组成,在没有Hh配体时,Ptch作为Hh信号通路的负调控因子抑制Smo的活化,从而抑制Hh信号通路的活性。
而在有Hh配体时,它与Ptch结合释放Smo活化Hh信号通路,通过转录因子Gli家族调节基因表达进而影响细胞增殖、细胞命运决定和上皮-间充质转变等过程。
其中,Gli1是该通路中最突出的下游基因之一,其在多种肺癌中高表达,和肿瘤分级、预后等密切相关。
在非小细胞肺癌中,Hedgehog信号通路与多种信号通路交叉作用,一方面可以增强肿瘤细胞的增殖、紊乱上皮-间质转化及侵袭能力,另一方面也与免疫逃逸、肿瘤干细胞、血管生成和药物耐药等密切相关。
例如,现有研究表明Hedgehog信号通路可以通过调节非小细胞肺癌中光谱辅助扫描亚型的广泛性,而影响恶性程度和肿瘤细胞对靶向治疗的敏感性。
同时肺癌患者中Hedgehog信号通路高表达与较短的无进展生存期和总生存期密切相关。
目前,Hedgehog信号通路在非小细胞肺癌的临床应用主要集中在肺癌治疗的辅助作用上,例如针对Smoothened抑制剂基于诱导肿瘤细胞凋亡、抑制细胞增殖、减少干细胞和增强放疗的敏感性等方面的研究正在进行中。
但是由于Hedgehog信号通路复杂的作用机制和多样性,研究结果还需要进一步验证。
总的来说,Hedgehog信号通路在肺癌中的作用机制愈加清晰,前沿研究也为临床治疗提供了有希望的研究路径。
但是我们还需要通过更深入的研究,探究Hedgehog信号通路在肺癌发生发展中的内在机制,旨在更有效地将其运用于肺癌的临床治疗中,以降低肺癌的发病率和死亡率。
hedgehog信号通路

hedgehog信号通路简介命名由来:Nusslein-Volhard等人在筛选影响果蝇幼虫发育基因时,发现hedgehog基因突变会导致幼虫长满刚毛,因此称为hedgehog。
【1】主要功能参与发育过程中的细胞分化。
1.作为体节极性基因,在果蝇幼虫体节形成过程中发挥作用。
Wg和en受pair-rule基因调控激活。
en在even-skipped(Eve)或Fushi tarazu(Ftz)蛋白含量较高的细胞中表达,同时受到Odd-skipped, Runt,或Sloppy-paired的抑制。
Wg 在两者(Eve & Ftz)均不表达(表达sloppy-paired基因)的细胞中表达。
Wg蛋白表达后扩散到周围细胞,在表达en的细胞中,Wg和Ftz/Lrp6结合,经Wg信号通路激活en的表达。
en蛋白激活en自身及hh基因的表达,hh扩散到周围细胞,和Patch 受体结合,增强Wg基因的表达。
[正反馈]hh/wg浓度梯度确定了denticle表达的边界(hh浓度高不长毛,wg浓度高,长毛)。
若Wg/Hh通路受影响,毛会布满整个体节。
Hedgehog,Porcupine,Armadillo因此得名。
2.果蝇翅成虫盘的发育过程中参与AP方向的形态建成。
果蝇胚胎发生期到一龄幼虫初期,翅成虫盘完成AP区域分隔。
具体过程如下:engrailed在翅膀dorsal part表达,促进hedgehog的表达,同时也抑制hedgehog在dorsal part的功能(?ptc只在anterior表达)。
Hedgehog诱导下游dpp表达,然而作为短程信号蛋白,决定dpp的表达范围仅限于AP界线靠近anterior的位置。
Dpp作为长程信号蛋白,沿AP方向扩散,形成浓度梯度,组织翅膀发育。
3.脊椎动物手的发育(六指性状)在脊椎动物手的发育过程中,肢芽后端的ZPA(zone of polarizing activity)区分泌SHH,形成一个扩散的梯度。
Hedgehog信号通路与癌症|MedChemExpress癌症medptc

Hedgehog信号通路与癌症|MedChemExpress癌症medptcHh 信号通路分子包括 Hedgehog 配体 (SHH、DHH 和 IHH)、Ptch 受体 (Ptch-1 和 Ptch-2,跨膜蛋白)、Smoothened (SMO)、驱动蛋白 Kif7、蛋白激酶 A (PKA)、3 种 Gli 转录因子 Gli1/2/3 (Gli1 仅具转录激活因子作用,Gli2 和 Gli3 同时具有激活因子和抑制因子作用) 以及 Sufu (融合抑制因子,Hh 信号传导的负调节因子)。
根据Hh 信号通路激活后是否依赖 Gli 蛋白发挥生物学效应,Hh 通路激活可以分为两种不同的途径:经典以及非典型信号途径。
经典信号通路激活在没有Hh 配体的情况下,Hh 受体如Ptch-1,定位于初级纤毛,可以阻止 SMO 积累且抑制 SMO 活性。
蛋白激酶,如 PKA、GSK3β 和CK1α,磷酸化 GLI2 和 GLI3,导致蛋白体介导全长 Gli 裂解为截短形式 Gli2R、Gli3R,并作为 Hh 靶基因表达的阻遏物。
此外,Sufu 通过与细胞质和细胞核中的 Gli 结合,充当该途径的另一个负调节因子,防止 Hh 靶基因的激活。
在存在 Hh 配体 (如Shh) 的情况下,Hh 配体会与 Ptch-1结合后,Ptch-1 被内化 (Endocytosis),解除对 Smo 的抑制,允许 SMO 的积累和激活,Hh 信号通过由 Kif7、Sufu 和全长 Gli 组成的细胞质蛋白复合物向 Smo 下游传递。
Smo 移动到初级纤毛的顶端并向 Sufu 发出信号以释放 Gli 激活剂 (GliA)。
然后 GliA 迁移到细胞核并激活靶基因的表达。
图 1. 经典信号通路激活[8]左:有 Hh 配体的通路激活 (ON-state);右:无配体的情况 (OFF-state)非典型信号通路激活非经典的 Hh 信号转导是指对 Hh 信号通路的一个或多个组成部分的信号反应,而不是上述 Hh-Ptch-Smo-Gli 经典通路。
Hedgehog信号通路在肺癌中的研究进展

Hedgehog信号通路在肺癌中的研究进展Hedgehog信号通路是指在细胞内参与信号传导和细胞命运决定的一条通路。
该通路最初被发现在拟胸膜科动物蛴螬中,后来又在果蝇和哺乳动物中发现。
它通过传递细胞外的一个蛋白质信号——Sonic Hedgehog(SHH),激活信号转导通路,最终影响细胞的增殖和分化等生理过程。
目前Hedgehog信号通路已在多种癌症中得到广泛研究,如肺癌、胰腺癌、结直肠癌等。
Hedgehog信号通路在肺癌中的研究表明,通路的活化与肺癌的发生、恶化和耐药性等多个方面有关。
研究表明,肺癌组织中Hedgehog信号通路的成分——Gli1、Smo和Shh等的表达量明显增加,而通路抑制剂的应用降低肺癌细胞增殖和侵袭能力,提示Hedgehog信号通路在肺癌的发生和发展中起着重要的调控作用。
此外,Hedgehog信号通路在肺癌耐药性的形成中也发挥着重要作用。
研究表明,在长期的化疗过程中,某些肺癌细胞会发生基因突变,导致细胞对药物的敏感性下降。
这种情况下,肺癌细胞常常依靠Hedgehog信号通路的活化来维持其生存和增殖,从而抵抗化疗药物的攻击,形成药物耐药性。
基于对Hedgehog信号通路在肺癌中的重要作用,当前关注的重点主要集中在两个方面:一是发掘Hedgehog信号通路的潜在作用机制和调控因素;二是探索利用Hedgehog信号通路抑制剂作为肺癌治疗药物的可行性与安全性。
研究表明,Hedgehog信号通路的活化受到多种因素的调控,如肿瘤微环境、癌症干细胞等。
肿瘤微环境中的多种生长因子可通过激活Hedgehog信号通路来促进肿瘤生长和血管生成。
癌症干细胞则可以通过激活Hedgehog信号通路来维持自身的增殖和分化能力。
此外,针对Hedgehog信号通路的药物治疗也成为当前肺癌研究的热点之一。
近年来,Hedgehog信号通路抑制剂在肺癌治疗方面的研究也取得了一定进展。
国外的一项多中心随机研究发现,将Hedgehog信号通路抑制剂Vismodegib与化疗联合应用,相比单一用药,可显著提高肺癌患者的生存期和治疗效果。
Hedgehog信号通路

Hedgehog信号通路Hedgehog信号通路在哺乳动物生殖系统中的作用1. Hedgehog信号通路Nusslein-V olhard和Wieschaus在对果蝇进行影响幼虫表皮层图式形成的突变体筛选时发现了hedgehog 基因(hh),果蝇和其他动物一样身体分成多个节段,幼虫的每个节段内一部分有毛、一部分无毛,hh 基因突变使无毛部分变成有毛部分,所以被戏称为“刺猬”基因,随后Hedgehog 信号通路的组成成分和具体途径在果蝇中被确定。
果蝇Hedgehog 信号通路中的组成成分(主要包括hh、ptch 和Gli 家族转录因子ci)及其功能被高度保守和复杂化的存在于哺乳动物中。
果蝇只有一个hh 基因,哺乳动物中发现其同源基因有3 个,分别为Sonic hedgehog(Shh)、Indian hedgehog (Ihh)和Desert hedgehog (Dhh),研究较多的是Shh,因其在哺乳动物中作用最为广泛[2]。
经典的哺乳动物Hedgehog 信号通路是由Hh 配体、跨膜蛋白质受体Patched(Ptch1 和Ptch2)和Smoothened(Smo)组成的受体复合物、下游转录因子Gli 蛋白(Gli-1、Gli-2、Gli-3)组成以及最近被克隆和阐述的丝氨酸/苏氨酸蛋白激酶Fuesd(Fu) 和Fu 抑制剂(SuFu)的脊椎动物同源物。
Hh蛋白家族成员是一类具有自我剪切功能的分泌性信号蛋白,均由氨基端(Hh-N)和羧基端(Hh-C)两个结构域组成,其中Hh-N具有Hh蛋白的信号活性,而Hh-C则具有自身蛋白水解酶活性和胆固醇转移酶功能。
Shh、Ihh和Dhh的共同点是由这三种基因编码而成的信号都激动同样一条信号级联放大通路。
Hh编码的前体蛋白合成后并无生物学活性,只有前体蛋白C末端的一部分氨基酸自身磷酸化切除了C末端后,剩下的N末端片段再经双重脂质修饰后才有活性,这可能与Hh蛋白在细胞内的极性分布有关,并可能影响到它与受体的结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Controlled cell proliferation is a predominant theme in normal embryonic and post-embryonic development, and, in many instances, cell-type specification and cell proliferation are intimately coupled. Several secreted intercellular signaling proteins that behave as morphogens during pattern formation are also implicated in the regulation of the cell cycle. Hedgehogs (Hhs) are one such class of morphogens that regulate an enormous variety of developmental events in the fly and vertebrate embryo and plays a central role in several cancers.The vertebrate Hh family is represented by at least three members: Dhh (Desert Hh), Ihh (Indian Hh) and Shh (Sonic Hh), two Patched homologs, Ptc1 (Patched-1) and Ptc2 (Patched-2); and three homologs of Ci (Cubitus interruptus, a 155 kDa cytoplasmic zinc finger protein), Gli1, Gli2 and Gli3 (Ref.1). Shh is the most extensively characterized vertebrate homolog, and is involved in morphogenesis of several organs including the eye, hair and lungs. It acts as both a short-range, contact-dependent factor and as along-range, diffusible morphogen. Shh genes are highly conserved and have been identified within a variety of species, including human, mouse, frog, fish, and chicken. In the human embryo, Shh is expressed in the notochord, the floorplate of the neural tube, the gut, and in the developing limbs. Dhh and Ihh play more restricted roles: Dhh acts in the regulation of spermatogenesis and organization of the perineurium, which ensheaths peripheral nerves, and Ihh in coordinating proliferation and maturation of chondrocytes during development of the endochondral skeleton. Hh signals act as morphogens to induce distinct cell fates at specific concentration thresholds. In Drosophila, Hh patterns the segment, wing, leg, eye, and regions of the fly brain either directly, or through the recruitment of other signaling factors such as Dpp (Decapentaplegic) and Wg (Wingless) (Ref.2).The Hh-signaling pathway comprises three main components: the Hh ligand; a transmembrane receptor circuit composed of the negative regulator Ptc plus an activator, Smo (Smoothened) a GPCR (G-Protein Coupled Receptor); and finally a cytoplasmic complex that regulates the Ci or Gli family of transcriptional effectors. Additional pathway components are thought to modulate the activity or subcellular distribution of these molecules. There is positive and negative feedback at the transcriptional level as the Gli1 and Ptc1 genes are direct transcriptional targets of activation of the pathway (Ref.3). Ptc, a twelve-pass membrane protein binds Hh ligand, and in the absence of ligand, Ptc interacts with and inhibits Smo, a seven-pass membrane protein. This repression culminates in a transcription factor, Ci (Ci75) in Drosophila and Gli in vertebrates acting as a transcriptional repressor. When Hh binds Ptc, its interactions with Smo are altered such that Smo is no longer inhibited. This leads to Ci/Gli protein entering the nucleus and acting as a transcriptional activator for the same genes it represses when Ptc is free to interact with and inhibit Smo. The determination of diverse cell fates by Shh signaling occurs by regulating the combination of Gli genes expressed in a cell. The transcriptional effects of Hh signaling are directed to particular target genes by the specificity of the Ci zinc fingers in DNA sequence recognition (Ref.4). The processing and nuclear import of Ci is regulated via a complex of Ci with the cytoplasmic members of the Hh signaling pathway, Cos2 (Costal-2; Cos-FlyBase), Fused (Fu) and SUFU (Suppressor of Fused). Cos2 tethers the Ci-containing complex to the microtubules. On Hh signaling, the complex is released from microtubules and full-length Ci enters the nucleus (Ref.5). Kinases including GSK3Beta (Glycogen Synthase Kinase-3Beta), Slimb and PKA (Protein Kinase-A) oppose activation of the Shh pathway by regulating the stability of intermediate signaling transcription factors of Hh pathway. SUFU interacts directly with Ci proteins, repressing Hh signaling. In the absence of Hh signal, Cos2 and SUFU binding to Ci prevent Ci activation and retain it in the cytoplasm. Most of Ci is available for cleavage in a process which is dependent upon its phosphorylation by the PKA and which involves Cos2and Slimb. Uncleaved, full-length Ci is actively exported from the nucleus. Upon Hh reception, Fu is activated and acts on Cos2 and SUFU, alleviating their negative effect on Ci. As a result, Ci cleavage is reduced, Ci155 nuclear import overcomes its export and Ci is activated. Ci activation requires Cos2 and Fu to antagonize SUFU negative effect. Activated nuclear Ci interacts with the CBP (CREB Binding Protein) to fully activate the transcription of Hh target genes (Ref.6).Since their isolation, members of the Hh family of intercellular signaling proteins have been recognized as key mediators of many fundamental processes in embryonic development. Their activities are central to the growth, patterning, and morphogenesis of many different regions within the body plans of vertebrates and insects, and most likely other invertebrates (Ref.7). Inactivation of Shh or components in its signal transduction pathway, such as Gli2 and Gli3, gives rise to various degrees of lung and foregut malformations, with fusion of lung lobes, hypoplasia and esophageal atresia or stenosis (Ref.1). Further, misregulation of Hh signaling in humans is associated with congenital malformations of the CNS (Central Nervous System, spina bifida, holoprosencephaly type 3, hpe3), head (cleft palate), and limb (syn- and polydactyly) and with a predisposition for developing a variety of tumors of the skin (basal cell carcinoma) and CNS (medulloblastoma, glioblastoma) (Ref.8). Hh signal transduction has been the focus of intense research over the past decade due to the central role it plays in development and its emerging biomedical relevance in areas ranging from regenerative medicine to oncology (Ref.3).。