12第十二章动能定理
第十二章---动能定理

∴力 F的元功为 δW = Mzd x
ω
F
o1 Fz Fr
A
Ft
or y
刚 力体F从作角的功1转为到2时,W12
2 1
M
z
(F
)d
⒋力偶的功
M
M=Fr
δW = Fds+F’ ·0 = Fr d
F ds
d r
F'
即力偶M的元功为
当刚体转过角时,
δW = FR'·drc +MC d
•平面运动刚体上力系的功
W12
M d 2
1
C
C2 C1
FR'
drC
结 平面运动刚体上力系的功等于力系向 论 质心简化所得的力和力偶作功之和。
⒍纯滚动刚体上静滑动摩擦力的功 ω
δW = F'·drD =F ·vD dt=0
• drD----接触点的位移; • D为速度瞬心, vD=0 • 静滑动摩擦力F----阻碍滑
力偶M的功为
δW = Md
W12
Md
0
⒌平面运动刚体上力系的功
• 设刚体在力系F1、F2、…Fn作
用下作平面运动,
在dt内,刚体质心位移drc,转角d ,
则Mi的位移 dri = drC +driC
Fi
dric θ
d
Mi
δWi = Fi ·dri = Fi ·drc + Fi ·driC
drc C
W12
2 1
M C d
C2 C1
FR'
drC
§12-2 质点和质点系动能 与动量比较?
动能定理

第十二章动能定理12-1 功和功率2、变力在曲线运动中的功Mvr Fr dsM ′rr ∆rr r r ′为弧的路程上所作的总功在力21M M F r∫=21M M W W δ∫++=21)(M M Zdz Ydy Xdx rd F M M rr ∫⋅=21F W r ⋅δrd F W M M rr ∫⋅=21∫++=21)(M M Zdz Ydy Xdx W ds F W M M ϕcos 21∫=dtv F W M M ∫⋅=21rr影为重力在三坐标轴上的投运动到沿曲线轨迹设质点,21M M M mgG Z Y X −=−===,0δδk F F =成正比。
弹簧变形的大小与在弹性极限内,弹性力r)(212221δ−δ=k W 上式表明,当初始变形大于末变形时,弹性力作功为正。
反之为负。
的无限小增量。
点的距离点相对于为AB A B r d AB τr AB B r d F ⋅=的无限小增量。
点的距离点相对于为AB A B r d AB τr221ii V m T ∑=1、刚体平动的动能221k k V m T ∑=设瞬心在P点2)(21ωk k r m ∑=2221kk r m ∑=ω221ωz J =均质圆柱体作纯滚动时的动能RCCV r r得到两边同乘以,dt V r d r r =2121由动力学基本方程有FdtVd mr r=W r d F δ=⋅r r FdtV m d r r=)(或r d F dt V dtV m d rr r r⋅=⋅)()21()(2)(2mV d V V d m dt V dt V m d =⋅=⋅r r r r W mV d δ=⇒)21(2力的元功。
用于质点上微分等于作质点动能的W mV d δ=)21(2δ二、质点的动能定理的积分形式质点动能在某一路程上的改变量,等于作用于质点上力在同一路程上所作的功。
§12-5 质点系的动能定理)21(2i i V m d ∑∑=)21(2i i V m d *ii W W δδ∑+∑=质点系动能的微分等于作用在该质点系的全部外力和内力的元功的总和。
理论力学 第十二章 动能定理

2009年12月8日第十二章动能定理具体内容:6 普遍定理的综合应用举例一、常力的功••运动路程SF ⋅W2π正功2π负功2πFM 1M 2M Sθ二、变力的功元功:WδrF d⋅变力的功:∫=WWδM M上)⋅d rF (自然形式)(矢量形式)(直角坐标形式)解析表达式三、几种常见力作的功mgF F F z y x −===,0,0质点重力作功可见:开始终了高度差与运动轨迹的形状无关i (z i 1-z i 2)由质心坐标公式,有)(2112C C z z mg W−=∑质点系重力作功可见:与质心运动轨迹的形状无关弹性力δk F =)(0l r k −=弹性极限)(2222112δδ−=k W 21,δδ可见:起始终了变形量与质点的轨迹形状无关r0)(e l r k −−=[例12-1]解:)(21)(C C P z z mg W−=)(22221)(δδ−=k W F 23. 定轴转动刚体上作用力的功元功F 力F 所作的功1ϕ2ϕ∫=21d 12ϕϕϕz M W 力偶z M r F d ⋅4. 平面运动刚体上力系的功无限小位移=i r d C r d iCr d +iF iM CCr d ϕd iC r d θϕd d ⋅=C M r i iC C r d ϕd 元功r F d ⋅r F d ⋅r F d ⋅=⋅iC i r F d θcos ⋅C M F i i ϕd )(⋅=i C F MiF iM CCr d ϕd iCr d r F d ⋅F 力系元功⋅r F d F r F d ⋅′力系作功∫∫+⋅′=2121d d R 12ϕϕϕC C C C M r F W R F ′主矢C M 质心主矩可见:力系向质心简化所得的力和力偶作功之和一、质点的动能221mv •••动量异:同:平方标量一次方矢量二、质点系的动能T质点系内各质点动能的算术和。
m柯尼希定理Cmmv∑+即:质心平移坐标系注意:以质心为基点?三、刚体的动能平移221Cmv =定轴转动221ωz J =平面运动221C mv 221ωC J +221ωP J =[例12-2]质心平移解:(定轴转动盘杆系统T T T +=AωOA?=A ωBl v AAθ平移平面运动解:v v v +=BAv Av [例12-3]系统的动能:221cos )(θθ&lv m v m m A A +++22cos θθ&lv m v m A A ++Bl v AAθBAv Av[思考]√一、质点的动能定理d F v =v d F r d ⋅r d ⋅r d =⋅r tvm d d d v v m ⋅d )d(2v v m ⋅=2d 2v m =)21d(2mv =)21d(2mv Wδ=微分形式21222121mv mv −12W =积分形式(某一瞬时)(某一运动过程)二、质点系的动能定理i ∑=iW δ质点系动能定理的微分形式∑=−iW T T 12质点系动能定理的积分形式i d(T d 即:即:∑=i W T δd ∑=−iW T T 12讨论:质点系的内力,因有些情况下内力作功和不等于零。
第十二章 动能定理

理论力学东北大学理学院力学系张英杰综合运用动量定理、动量矩定理和动能定理分析较复杂的动力学问题。
动量定理动能定理动量矩定理用矢量法研究动力学问题从能量的角度分析质点(系)的动力学问题—4123力的功质点和质点系的动能功率、功率方程、机械效率动能定理5势力场· 势能· 机械能守恒定律6普遍定理的综合应用(代数量)常力在直线运动中的功:变力在曲线运动中的功:元功θsF力在全路程上作的功等于元功之和:θrd sd 一、功—力在一段路程内所积累的效应s F W⋅=W δ⎰=ssF W 0d cos θsF ⋅=θcos sF d cos ⋅=θM 1M 2FM 单位:J (焦耳) 1 J = 1 N·m M'r Fd ⋅=元功作用力F 在质点从M 1到M 2的运动过程中所作的功:kF j F i F F z y x++=kz j y i x rd d d d ++=rF Wd δ⋅=zF y F x F z y x d d d ++=⎰++=21)d d d (M M z y x z F y F x F 一、功—力在一段路程内所积累的效应(代数量)θrd sd M 1M 2FM M'取固结于地面的直角坐标系为质点运动的参考系,为三个坐标轴的单位矢量。
k j i,,⎰=21δ12M M W W 当力始终与质点位移垂直时,该力不作功。
质点系1、重力的功2z gm1z O yxz M 1M 2—质心始末位置高度差二、常见的功mg F F F z y x -===;0z mgz z d 21-⎰=)(21z z mg -=)(2112i i i z z g m W -∑=∑ii C z m mz ∑=)(21C C z z mg -=⎰++=21)d d d (12M M z y x z F y F x F W 重力作功只与运动始末位置有关,与运动轨迹形状无关弹性力2、弹性力的功二、常见的功r e l r k F)(0--=⎰⋅=21d 12A A rF W⎰⋅--=21d )(0A A r re l r kr r r r e rd d ⋅=⋅)(d 21r r r⋅=)(d 212r r =r d =()[]⎰--=21d 0r r rl r k ])()[(21202201l r l r k ---=)(212221δδ-=k 弹簧刚度系数k(N/m)2δF 1δr e 1r 2r r r d δrd OA 0A 2A 1A l 0弹性力的功)(2222112δδ-=k W 弹性力的功只与弹簧始末的变形量δ有关,而与力作用点A 的轨迹形状无关。
理论力学第12章动能定理

合力之功定理
合力所作的元功等于各分力的元功的代数和;合力在质点
任一段路程中所作的功,等于各分力在同一路段中所作的功的 代数和。
W
M2 M1
FR
dr
M2 M1
Fi
dr
Wi
5
四、几种常见力的功
1、重力的功
Fx Fy 0
W12
z2 z1
mgdz
mg(z1
z2 )
Fz mg
W 12 mgh
即: dT Wi 质点系动能定理的微分形式
T2 T1
W 12
质点系动能定理的积分形式
质点系动能的改变量,等于作用于质点系上的所有力在同一运 动过程中所作的功的代数和。——质点系积分形式动能定理
16
关于功的讨论
1.质点系内力的功
W
F drA F'drB
F drA F drB
vi vC vir
于是有:
T
1 2
mvC2
12mivi2r
质点系的动能等于质点系随同质心C的平动的动能与质点系相对于 质心C运动的动能之和。——柯尼希定理。
13
三.刚体的动能
1.平动刚体
T
1 2
mi
vi
2
1M 2
vC 2
2.定轴转动刚体
T
1 2
mi vi 2
1 2
(
miri2 ) 2
V k 2 δ 为质点在位置M时的弹簧的变形量。
2
三. 机械能守恒定律
T1 V1 T2 V2 机械能守恒.T+V称为机械能
质点系在仅有势力作用下运动时,其机械能保持不变。
质点系在非有势力作用下运动,机械能不守恒。在质点系的 运动过程中,机械能和其他形式的能量之和仍保持不变,这 就是能量守恒定律。
第12章动能定理(删——新)

P 刚体的平面运动动能就等于随质心C的平动动能与绕质心 C转动的动能之和。
思考:图示圆轮只滚不滑,此瞬时轮心速度为vO,则园 轮的动能T=?
1 1 2 T M O + J O 2 2 2 1 1 3 2 2 2 = M O + M O = M O 2 4 4
O
vO
思考:图示圆轮边缘B点绞接杆AB,A端放在水平地面 上,轮与地面只滚不滑,此瞬时A端速度为vA,B点位 于轮上最高点,则系统的动能T=? 1 1 1 2 2 T M A + M O + J O 2 2 2 2 1 1 1 11 2 2 2 2 = M A + M A + M A = M A 2 8 16 16 B vB AB杆瞬时平动
ω
3、平面运动刚体的动能
该瞬时瞬心为P,角速度为ω ,
· v· · v m ·· C · ·
i
i
c
1 2 2 T J P J P=J C+Md 2 1 1 2 2 2 T J P = (J C+Md ) 2 2 1 1 2 = J C + Md 2 2 2 2 1 1 2 2 = J C + M C 2 2
aA
P M
练习题:长为l、重为Q的均质杆AB的A端与一半径为 R、重为P 的均 质圆轮的轮心 绞接在一起,轮与地面间只滚不滑,墙与杆间无摩擦, 系统初始静止,θ0=450,而后自由下落,求轮心A在初瞬时的加速 度。 B D 解: T1 0
1 1 1Q 2 2 2 T2 J P P J C C vC 2 2 2 g 3 P 2 1 1 Q 2 vA 2 vA l ( ) 4g 2 12 g l sin vA 1 Q l vA 2 ( ) 2 g 2 l sin 1 2 3 P 1Q 1 v A[ ] 2 2 2 g 3 g sin l W Q (sin 0 sin ) 2
12第十二章动能定理

ri
mi
vi ri
vC d
15
例.摆:杆m1, l,圆盘:m2 , R,杆与圆轮均质。 求:摆的动能。 解: 组合刚体作定轴转动
1 T J O 2 2
JO JO杆 JO盘
1 1 2 m1l m2 R 2 m2 (l R ) 2 3 2
2) D 物速度与 B 轮角速度关系:
v 2 r B v C r B
T TA TB TD
2v C v
22
3、运动分析: 2 1 P r v 2 1 2 ( ) A:TA J O A 2 2g r 2 1 2 1 2 B:TB mvC J C B 2 2
8
5.平面运动刚体上力系的功 平面运动刚体上力系的功,等于刚体上所受各力作功的代数和。 平面运动刚体上力系的功,也等于力系向质心简化所得的力与力
偶作功之和。
A
c1
F
c2
C
A
W12 W12 ( F '.R ) W12 ( M C )
FR 'drC M C d
C1 C2
2
r r0 r
单位矢量
2
M1 r 1 1 F r0 dr dr d (r r ) d (r 2 ) dr. 2r r 2r r2 r2 k W12 k ( r l0 ) dr d ( r l0 ) 2 2 r1 r1 k 令 1 r1 l0 , 2 r2 l0 [( r1 l0 ) 2 ( r2 l0 ) 2 ] 2 k 2 2 即 W12 ( 1 2 ) 弹性力的功只与弹簧的起始变形和终了 2 变形有关,而与质点运动的路径无关。
理论力学课件 第十二章 动能定理

FRO
r1 r2 O
mg
解:取整体为研究对象,受力分析如图所示。 v1
A
v2
B
系统对O点的动量矩为
m1 g
m2 g
LO m1v1r1 m2v2r2 J0 (m1r12 m2r22 JO )
系统所受全部外力对O点的动量矩为
MO (F e ) m1gr1 m2gr2
质点系的动量矩定理为 dLO dt
WFN 0
WF F s fmgs cos 30 8.5 J
WF
1 2
k
(12
2 2
)
100 (0 0.52) 2
12.5 J
W Wi 24.5 0 8.512.5 3.5 J
12.2 质点和质点系的动能
12.2.1 质点的动能
设质量为m的质点,某瞬时的速度为v,则质点质量与其速度平方乘积的
路径无关。若质点下降,重力的功为正;若质点上升,重力的功为负。
对于质点系,重力的功等于各质点的重力功的和,即
上式也可写为
W12 mi g(zi1 zi2) W12 mg(zC1 zC2 )
2.弹力的功
设有一根刚度系数为k,自由长为l0的弹 簧, 一端固定于点O, 另一端与物体相连接,
如图所示。求物体由M1移动到M2过程中,弹 力F所做的功。
W12
M2 M1
(Fx
d
x
Fy
d
y
Fz
d
z)
12.1.3 常见力的功
1.重力的功
z M1 M
mg
设质点M的重力为mg,沿曲线由M1运动到
M2
M2,如图所示。因为重力在三个坐标轴上的
投影分别为Fx=Fy=0,Fz=-mg,故重力的功为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d( 1mv2) δW
F
2
两边积分得:
12mv2212mv12 W12 ——积分形式的质点动能定理
即质点某个运动过程中, 动能的改变量等于作用在质点 上的力所作的功。
2、质点系一质点,据质点动能定理:
d(
1 2
mivi2)
δWi
对每个质点都可列出上面的方程式,将n个方程相加有:
T
1 2
m
iv
2 i
(1 2
m
i ri2
2)
1 2
2
m iri2
T
1 2
J z 2
(3)平面运动刚体的动能
T
1 2
JC2
C'为通过速度瞬心,且与运动平面垂直的轴。
JC JCmd2
T
1 2
(JC
md 2 ) 2
1 2
J C 2
1 2
md
2 2
T12mvC2 12JC2
例 计算物体系统的动能。已知:m, r, P,
W M m 2 g s in s
开始时动能为零,圆柱体中心运动路程为s时,系统动能为
rAB F' B
rA
F ( d r A d r B ) F d ( r A r B ) F d r A B
rB
O
A、B两点之间距离发生改变,则内力功之和不为零。
故质点系内力的功之和一般不为零。
4、理想约束
约束力的元功之和等于零的约束称为理想约束。 (1)光滑固定面 (2)光滑铰链或轴承约束 (3)刚性连接的约束 (4)联结两个刚体的铰 (5)不可伸长的柔索约束
1 2
m
i
v
2 ri
质点系相对质心运动的动能
证明: T12mvC 2 12mivr2i
设质点系质心的速度为vC ,任一质点 Mi 相对于质心运动的速
度为vri,则质点的绝对速度为 vi = vC + vri于是有
v i2 v iv i (v C v r i)(v C v r i)
v C v C v riv ri v C v ri
质点系的运动可以分解为随质心的平动和相对于质心的运动。
质点系的动能等于随质心平动的动能和相对质心运动的 动能之和。 (取质心为平移动系的坐标原点)
T 1 2m ivi21 2m vC 2 1 2m ivr2 i
柯尼西定理
式中: v r i
1 2
m
v
2 C
质点 Mi 相对于质心运动的速度 质点系随同质心平动的动能
对于刚体,也可以将力系向刚体的质心简化,一般简化为 一个力和一个力偶。由力系的等效原理,这个力和力偶所作 的元功等于力系中所有力所作元功的和,有
δ W δ W i F R 'd r C M C d
平面运动刚体
δW F R'drCM C d
当质心由 C1 ~ C2 ,转角由 1 ~ 2 时,力系的功为
§12-2 质点和质点系的动能
动能是一恒为正的标量,它的值取决于各质点质量及速 度的大小,而与速度方向无关。因此计算质点系动能时不 必考虑各质点速度的方向,这给计算带来很大方便。
1、 质点的动能 2、质点系的动能
1 m v2 2
T
1 2
mivi2
通常用字母T 表示质点系动能。
动能的单位:焦耳( J )。
T
1 2
JO2
1 2
Pv2 g
O
T11mr221Pr22
22
2g
1(m2P)r22
4
g
P
例 计算只滚不滑圆轮的动能。已知:m, r,
T12mvC2 12JC2
1 mr22 1 (1 mr2)2
C
2
22
I
3 mr22
4
或
T1 2JI21 2(JCmr2)21 2(1 2mr2mr2)2
3mr22
v r C 是质心相对于质心的速度,其值为零
故有
m iv C v r i v C m v r C 0
于是有
T12mvC 2 12mivr2i
证毕
T12mvA 2 12mivr2i 对吗?
3、刚体的动能
(1)平动刚体的动能
T 1 2m ivi21 2v2 m i1 2m vC 2
(2)定轴转动刚体的动能
(4)摩擦力的功 摩擦力方向与其作用点的运动方向相反,摩擦力作负功; 摩擦力方向与其作用点的运动方向相同,摩擦力作正功。
摩擦力的功与力的作用点运动路径有关。
FT
作用在纯滚动圆轮上的摩擦力的功:
? δWFsdr Fs vdt 0
(5)任意运动刚体上力系的功
刚体在任意运动过程中,力系所作的总功,等于各分力 所作功的代数和。
d(12mivi2) δWi
即: d
(1 2mivi2) δW i
1
2
mivi2
T
——质点系的动能
即有: dT δWi ——微分形式质点系动能定理
两边积分
T2T1 Wi ——积分形式质点系动能定理
质点系由起始位置运动到终了位置,质点系动能的变化等 于作用在质点系上的所有力(主动力、约束力或内力、外力) 在此过程中所作功的代数和。
例 卷扬机鼓轮在常力偶矩作用下将圆柱体沿斜面上拉。已知
鼓轮的半径为R1,质量为m1,质量分布在轮缘上;圆柱体的半 径为R2,质量为m2,质量均匀分布。斜面的倾角为θ,圆柱体 沿斜面只滚不滑。系统从静止开始运动,求圆柱体中心的速度
与其路程之间的关系。
解:取整体研究
做功的主动力有M, m2g。 系统受到的约束是理想约束。
4
例 计算OA杆的动能。已知:m, l,
O
T
1 2
J O 2
1 (1 ml2 )2
23
A
1 ml22
6
§12-3 动能定理
1、质点的动能定理:
m
dv dt
Ft
F
mdv dt
ds
Ft
ds
mvdvFt ds
d( 1mv2) δW ——微分形式的质点动能定理 2
即质点动能的微分等于作用在质点上力的元功。
vC 2vrivCvri
则有
T 1 2 m iv i 2 1 2m iv C 2 1 2m iv r 2 im iv C v r i
T 1 2 m iv i 2 1 2m iv C 2 1 2m iv r 2 im iv C v r i
式中
mivC 2 mvC 2
m i v C v r i v C m i v r i v C m v r C ?
W 12C C 12F'RdrC12M Cd
说明:1.对任何运动的刚体,上述结论都适用; 2.C点不是质心,而是刚体上任意一点时,上述结论也成立 3.计算力系的主矢、主矩时,可以不包含不作功的力。
(6) 质点系内力的功
AF
δ W F d r A F ' d r B F d r A F d r B