第十二章—动能定理

合集下载

第十二章---动能定理

第十二章---动能定理
又 Mz(F) = Mz(Ft) = Ft R = Mz
∴力 F的元功为 δW = Mzd x
ω
F
o1 Fz Fr
A
Ft
or y
刚 力体F从作角的功1转为到2时,W12
2 1
M
z
(F
)d
⒋力偶的功
M
M=Fr
δW = Fds+F’ ·0 = Fr d
F ds
d r
F'
即力偶M的元功为
当刚体转过角时,
δW = FR'·drc +MC d
•平面运动刚体上力系的功
W12
M d 2
1
C
C2 C1
FR'
drC
结 平面运动刚体上力系的功等于力系向 论 质心简化所得的力和力偶作功之和。
⒍纯滚动刚体上静滑动摩擦力的功 ω
δW = F'·drD =F ·vD dt=0
• drD----接触点的位移; • D为速度瞬心, vD=0 • 静滑动摩擦力F----阻碍滑
力偶M的功为
δW = Md
W12
Md
0
⒌平面运动刚体上力系的功
• 设刚体在力系F1、F2、…Fn作
用下作平面运动,
在dt内,刚体质心位移drc,转角d ,
则Mi的位移 dri = drC +driC
Fi
dric θ
d
Mi
δWi = Fi ·dri = Fi ·drc + Fi ·driC
drc C
W12
2 1
M C d
C2 C1
FR'
drC
§12-2 质点和质点系动能 与动量比较?

动能定理

动能定理

第十二章动能定理12-1 功和功率2、变力在曲线运动中的功Mvr Fr dsM ′rr ∆rr r r ′为弧的路程上所作的总功在力21M M F r∫=21M M W W δ∫++=21)(M M Zdz Ydy Xdx rd F M M rr ∫⋅=21F W r ⋅δrd F W M M rr ∫⋅=21∫++=21)(M M Zdz Ydy Xdx W ds F W M M ϕcos 21∫=dtv F W M M ∫⋅=21rr影为重力在三坐标轴上的投运动到沿曲线轨迹设质点,21M M M mgG Z Y X −=−===,0δδk F F =成正比。

弹簧变形的大小与在弹性极限内,弹性力r)(212221δ−δ=k W 上式表明,当初始变形大于末变形时,弹性力作功为正。

反之为负。

的无限小增量。

点的距离点相对于为AB A B r d AB τr AB B r d F ⋅=的无限小增量。

点的距离点相对于为AB A B r d AB τr221ii V m T ∑=1、刚体平动的动能221k k V m T ∑=设瞬心在P点2)(21ωk k r m ∑=2221kk r m ∑=ω221ωz J =均质圆柱体作纯滚动时的动能RCCV r r得到两边同乘以,dt V r d r r =2121由动力学基本方程有FdtVd mr r=W r d F δ=⋅r r FdtV m d r r=)(或r d F dt V dtV m d rr r r⋅=⋅)()21()(2)(2mV d V V d m dt V dt V m d =⋅=⋅r r r r W mV d δ=⇒)21(2力的元功。

用于质点上微分等于作质点动能的W mV d δ=)21(2δ二、质点的动能定理的积分形式质点动能在某一路程上的改变量,等于作用于质点上力在同一路程上所作的功。

§12-5 质点系的动能定理)21(2i i V m d ∑∑=)21(2i i V m d *ii W W δδ∑+∑=质点系动能的微分等于作用在该质点系的全部外力和内力的元功的总和。

理论力学 第十二章 动能定理

理论力学 第十二章  动能定理

2009年12月8日第十二章动能定理具体内容:6 普遍定理的综合应用举例一、常力的功••运动路程SF ⋅W2π正功2π负功2πFM 1M 2M Sθ二、变力的功元功:WδrF d⋅变力的功:∫=WWδM M上)⋅d rF (自然形式)(矢量形式)(直角坐标形式)解析表达式三、几种常见力作的功mgF F F z y x −===,0,0质点重力作功可见:开始终了高度差与运动轨迹的形状无关i (z i 1-z i 2)由质心坐标公式,有)(2112C C z z mg W−=∑质点系重力作功可见:与质心运动轨迹的形状无关弹性力δk F =)(0l r k −=弹性极限)(2222112δδ−=k W 21,δδ可见:起始终了变形量与质点的轨迹形状无关r0)(e l r k −−=[例12-1]解:)(21)(C C P z z mg W−=)(22221)(δδ−=k W F 23. 定轴转动刚体上作用力的功元功F 力F 所作的功1ϕ2ϕ∫=21d 12ϕϕϕz M W 力偶z M r F d ⋅4. 平面运动刚体上力系的功无限小位移=i r d C r d iCr d +iF iM CCr d ϕd iC r d θϕd d ⋅=C M r i iC C r d ϕd 元功r F d ⋅r F d ⋅r F d ⋅=⋅iC i r F d θcos ⋅C M F i i ϕd )(⋅=i C F MiF iM CCr d ϕd iCr d r F d ⋅F 力系元功⋅r F d F r F d ⋅′力系作功∫∫+⋅′=2121d d R 12ϕϕϕC C C C M r F W R F ′主矢C M 质心主矩可见:力系向质心简化所得的力和力偶作功之和一、质点的动能221mv •••动量异:同:平方标量一次方矢量二、质点系的动能T质点系内各质点动能的算术和。

m柯尼希定理Cmmv∑+即:质心平移坐标系注意:以质心为基点?三、刚体的动能平移221Cmv =定轴转动221ωz J =平面运动221C mv 221ωC J +221ωP J =[例12-2]质心平移解:(定轴转动盘杆系统T T T +=AωOA?=A ωBl v AAθ平移平面运动解:v v v +=BAv Av [例12-3]系统的动能:221cos )(θθ&lv m v m m A A +++22cos θθ&lv m v m A A ++Bl v AAθBAv Av[思考]√一、质点的动能定理d F v =v d F r d ⋅r d ⋅r d =⋅r tvm d d d v v m ⋅d )d(2v v m ⋅=2d 2v m =)21d(2mv =)21d(2mv Wδ=微分形式21222121mv mv −12W =积分形式(某一瞬时)(某一运动过程)二、质点系的动能定理i ∑=iW δ质点系动能定理的微分形式∑=−iW T T 12质点系动能定理的积分形式i d(T d 即:即:∑=i W T δd ∑=−iW T T 12讨论:质点系的内力,因有些情况下内力作功和不等于零。

第十二章 动能定理

第十二章 动能定理

理论力学东北大学理学院力学系张英杰综合运用动量定理、动量矩定理和动能定理分析较复杂的动力学问题。

动量定理动能定理动量矩定理用矢量法研究动力学问题从能量的角度分析质点(系)的动力学问题—4123力的功质点和质点系的动能功率、功率方程、机械效率动能定理5势力场· 势能· 机械能守恒定律6普遍定理的综合应用(代数量)常力在直线运动中的功:变力在曲线运动中的功:元功θsF力在全路程上作的功等于元功之和:θrd sd 一、功—力在一段路程内所积累的效应s F W⋅=W δ⎰=ssF W 0d cos θsF ⋅=θcos sF d cos ⋅=θM 1M 2FM 单位:J (焦耳) 1 J = 1 N·m M'r Fd ⋅=元功作用力F 在质点从M 1到M 2的运动过程中所作的功:kF j F i F F z y x++=kz j y i x rd d d d ++=rF Wd δ⋅=zF y F x F z y x d d d ++=⎰++=21)d d d (M M z y x z F y F x F 一、功—力在一段路程内所积累的效应(代数量)θrd sd M 1M 2FM M'取固结于地面的直角坐标系为质点运动的参考系,为三个坐标轴的单位矢量。

k j i,,⎰=21δ12M M W W 当力始终与质点位移垂直时,该力不作功。

质点系1、重力的功2z gm1z O yxz M 1M 2—质心始末位置高度差二、常见的功mg F F F z y x -===;0z mgz z d 21-⎰=)(21z z mg -=)(2112i i i z z g m W -∑=∑ii C z m mz ∑=)(21C C z z mg -=⎰++=21)d d d (12M M z y x z F y F x F W 重力作功只与运动始末位置有关,与运动轨迹形状无关弹性力2、弹性力的功二、常见的功r e l r k F)(0--=⎰⋅=21d 12A A rF W⎰⋅--=21d )(0A A r re l r kr r r r e rd d ⋅=⋅)(d 21r r r⋅=)(d 212r r =r d =()[]⎰--=21d 0r r rl r k ])()[(21202201l r l r k ---=)(212221δδ-=k 弹簧刚度系数k(N/m)2δF 1δr e 1r 2r r r d δrd OA 0A 2A 1A l 0弹性力的功)(2222112δδ-=k W 弹性力的功只与弹簧始末的变形量δ有关,而与力作用点A 的轨迹形状无关。

理论力学第12章动能定理

理论力学第12章动能定理

合力之功定理
合力所作的元功等于各分力的元功的代数和;合力在质点
任一段路程中所作的功,等于各分力在同一路段中所作的功的 代数和。
W
M2 M1
FR
dr
M2 M1
Fi
dr
Wi
5
四、几种常见力的功
1、重力的功
Fx Fy 0
W12
z2 z1
mgdz
mg(z1
z2 )
Fz mg
W 12 mgh
即: dT Wi 质点系动能定理的微分形式
T2 T1
W 12
质点系动能定理的积分形式
质点系动能的改变量,等于作用于质点系上的所有力在同一运 动过程中所作的功的代数和。——质点系积分形式动能定理
16
关于功的讨论
1.质点系内力的功
W
F drA F'drB
F drA F drB
vi vC vir
于是有:
T
1 2
mvC2
12mivi2r
质点系的动能等于质点系随同质心C的平动的动能与质点系相对于 质心C运动的动能之和。——柯尼希定理。
13
三.刚体的动能
1.平动刚体
T
1 2
mi
vi
2
1M 2
vC 2
2.定轴转动刚体
T
1 2
mi vi 2
1 2
(
miri2 ) 2
V k 2 δ 为质点在位置M时的弹簧的变形量。
2
三. 机械能守恒定律
T1 V1 T2 V2 机械能守恒.T+V称为机械能
质点系在仅有势力作用下运动时,其机械能保持不变。
质点系在非有势力作用下运动,机械能不守恒。在质点系的 运动过程中,机械能和其他形式的能量之和仍保持不变,这 就是能量守恒定律。

12第十二章动能定理

12第十二章动能定理
J P J C Md 2
ri
mi
vi ri
vC d
15
例.摆:杆m1, l,圆盘:m2 , R,杆与圆轮均质。 求:摆的动能。 解: 组合刚体作定轴转动
1 T J O 2 2
JO JO杆 JO盘
1 1 2 m1l m2 R 2 m2 (l R ) 2 3 2
2) D 物速度与 B 轮角速度关系:
v 2 r B v C r B
T TA TB TD
2v C v
22
3、运动分析: 2 1 P r v 2 1 2 ( ) A:TA J O A 2 2g r 2 1 2 1 2 B:TB mvC J C B 2 2
8
5.平面运动刚体上力系的功 平面运动刚体上力系的功,等于刚体上所受各力作功的代数和。 平面运动刚体上力系的功,也等于力系向质心简化所得的力与力
偶作功之和。
A
c1
F
c2
C
A
W12 W12 ( F '.R ) W12 ( M C )
FR 'drC M C d
C1 C2
2
r r0 r
单位矢量
2
M1 r 1 1 F r0 dr dr d (r r ) d (r 2 ) dr. 2r r 2r r2 r2 k W12 k ( r l0 ) dr d ( r l0 ) 2 2 r1 r1 k 令 1 r1 l0 , 2 r2 l0 [( r1 l0 ) 2 ( r2 l0 ) 2 ] 2 k 2 2 即 W12 ( 1 2 ) 弹性力的功只与弹簧的起始变形和终了 2 变形有关,而与质点运动的路径无关。

第十二章 第三节 动能定理

第十二章 第三节  动能定理

例(P263例12-4) 绞车,已知力偶M、重物质量m;主动轴I和从 动轴II的转动惯量J1和J2,传动比i12=w1/w2;鼓轮半径R。。绞 车初始时静止,试求当重物上升距离h时的速度v及加速度a。 M 解 (1)整个质点系 I (2)运动分析 Ek1=0
1 1 m 2 2 2 Ek 2 J1w1 J 2w2 v 2 2 2 w1 iw 2 iv / R w2 v / R
将作用力分成外力和内力 注意:内力作功的和一般不等于零。
A rA
O FA BA rB FB
ቤተ መጻሕፍቲ ባይዱ
B
FA的元功FA · A; dr FB的元功FB · B。 dr 元功之和 d'W = FA · A + FB · B dr dr = FA · A - FA · B dr dr = FA · A-rB) d(r = FA · d(BA) = - FA d(BA)
第三节 动能定理
一、质点的动能定理 M1
M
a
F
M2
质点动能定理的微分形式:质点动能的微分,等于作用在质 点上的力的元功。
ma=F mat=Ft mdv/dt=Ft (mdv/dt) ds=Ftds mvdv=Ftds d(mv2/2) = d'W dEk = d'W
dEk = M Ftds
v2 v1
当质点系内质点间的距离发生变化时,内力功的总和一般不等 于零。 可变质点系: BA可变化,内力功之和不等于零 刚 体: BA不可变(刚体上任意两点的距离保持不变) 内力功之和等于零
内力作功举例: (1)汽车发动机的气缸内气体压力 (膨胀气体对活塞、气缸的作用力) ——内力功使汽车的动能增加 (2)机器中轴与轴承间的摩擦力,它们作负功,总和为负。 (3)人体活动 三、理想约束 理想约束:约束反力作功等于零的约束。 光滑接触面、光滑铰支座、固定端、一端固定的绳索、光滑铰 链、二力杆、不可伸长的细绳等 滑动摩擦力:摩擦力作负功,不是理想约束,但可将摩擦力作 为主动力,仍能应用动能定理 纯滚动:接触点为瞬心,滑动摩擦力作用点位移为零,滑动摩 擦力不作功。 ——纯滚动的接触点是理想约束。 在理想约束条件下应用动能定理求解速度、加速度非常方便。

理论力学课件 第十二章 动能定理

理论力学课件 第十二章 动能定理

FRO
r1 r2 O
mg
解:取整体为研究对象,受力分析如图所示。 v1
A
v2
B
系统对O点的动量矩为
m1 g
m2 g
LO m1v1r1 m2v2r2 J0 (m1r12 m2r22 JO )
系统所受全部外力对O点的动量矩为
MO (F e ) m1gr1 m2gr2
质点系的动量矩定理为 dLO dt
WFN 0
WF F s fmgs cos 30 8.5 J
WF
1 2
k
(12
2 2
)
100 (0 0.52) 2
12.5 J
W Wi 24.5 0 8.512.5 3.5 J
12.2 质点和质点系的动能
12.2.1 质点的动能
设质量为m的质点,某瞬时的速度为v,则质点质量与其速度平方乘积的
路径无关。若质点下降,重力的功为正;若质点上升,重力的功为负。
对于质点系,重力的功等于各质点的重力功的和,即
上式也可写为
W12 mi g(zi1 zi2) W12 mg(zC1 zC2 )
2.弹力的功
设有一根刚度系数为k,自由长为l0的弹 簧, 一端固定于点O, 另一端与物体相连接,
如图所示。求物体由M1移动到M2过程中,弹 力F所做的功。
W12
M2 M1
(Fx
d
x
Fy
d
y
Fz
d
z)
12.1.3 常见力的功
1.重力的功
z M1 M
mg
设质点M的重力为mg,沿曲线由M1运动到
M2
M2,如图所示。因为重力在三个坐标轴上的
投影分别为Fx=Fy=0,Fz=-mg,故重力的功为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 质点系的动能
质点系内各质点动能的算术和称为质点系的动 能,即
T
Hale Waihona Puke 1 2mivi2
12.2 质点和质点系的动能
刚体是工程实际中常见的质点系,当刚体的运动 形式不同时,其动能的表达式也不同。
(1) 平移刚体的动能
T


1 2
mi
vi2

1 2
vC2
mi

1 2
mv
2 C
(2) 定轴转动刚体的动能
第十二章 动能定理
• 力的功 • 质点和质点系的动能 • 动能定理 • 普遍定理的综合应用举例 • 功率·功率方程·机械效率
引言
前两章是以动量和冲量为基础,建立了质点或质 点系运动量的变化与外力及外力作用时间之间的关系。 本章以功和动能为基础,建立质点或质点系动能的改 变和力的功之间的关系,即动能定理。不同于动量定 理和动量矩定理,动能定理是从能量的角度来分析质 点和质点系的动力学问题,有时是更为方便和有效的。 同时,它还可以建立机械运动与其它形式运动之间的 联系。
WF

1 2
k
(d12

d
2 2
)

1 0.5(52 2
252 )

150 N cm
因此所有力的功为
W WT WF 200 150 50 N cm
12.2 质点和质点系的动能
1. 质点的动能 设质点的质量为m,速度为v,则质点的动能为
T 1 mv2 2
动能是标量,在国际单位制中动能的单位是焦耳(J)。
dy

Fz
dz)
上式称为直角坐标法表示的功的计算公式,也称为功
的解析表达式。
12.1力的功
常见力的功
1重力的功
设质点的质量为m,在重力 作用下从M1运动到M2。建立如图 坐标,则
z M1
z1 O
Fx 0, Fy 0, Fz mg x
代入功的解析表达式得
M mg M2 y
z2
W12
12.1力的功
3 定轴转动刚体上作用力的功
z
设作用在定轴转动刚体上A点的力为F,
F
将该力分解为Ft、Fn和Fb,
Ft F cos
当刚体转动时,转角j与弧长s的关系为
ds Rdj
R为力作用点A到轴的垂距。力F的元 功为
Fb
O1
Ft
Fn A
r
δW F dr = Ft d s Ft Rdj M zdj
解:滑块在任一瞬时受力如图。由于 P与N始终垂直于滑块位移,因此,它们 所作的功为零。所以只需计算T 与F的功。 先计算T 的功:
在运动过程中,T 的大小不变,但 方向在变,因此T 的元功为
δWT T cosa d x
cosa (20 x) (20 x)2 152
因此T在整个过程中所作的功为
上两式可写成矢量点乘积形式
δW F dr
W M2 F dr M1
称为矢径法表示的功的计算公式。
在直角坐标系中
F Fx i Fy j Fz k , dr dxi dy j dzk
δW Fxdx Fydy Fzdz
W
M2 M1
(
Fxdx

Fy
12.1力的功
变力的功
设质点M在变力F的作用下沿曲线运动,如图。 力F在微小弧段上所作的功称为力的元功, 记为dW, 于是有
δW F cos d s
力在全路程上作 的功等于元功之和
s
W 0 F cos ds
M
ds
dr M'
M2
F M1
上式称为自然法表示的功的计算公式。
12.1力的功
)r0

dr
d
F A0
A dr
r
r0
r2 A2
O
12.1力的功
因为
r0
dr

r r
dr

1 2r
d(r
r)

1 2r
dr 2

dr
于是
W12
r2 r1
k(r

l0 )dr

1 2
k
(r1

l0 )2

(r2

l0 )2


W12

1 2
k
(d
2 1

d
2 2
)
弹性力作的功只与弹簧在初始和末了位置的变形量有 关,与力的作用点A的轨迹形状无关。
T


1 2
mi vi2


1 2
miri2 2

1 2
2
miri2

1 2
J z2
12.2 质点和质点系的动能
(3) 平面运动刚体的动能
T

1 2
J P 2
因为JP=JC + md 2
C
P
所以
T

1 2
(JC

md 2 ) 2

1 2
JC 2

1 2
m(d
)2
因为d·=vC ,于是得
z2 z1
(mg)dz

mg(z1

z2
)
12.1力的功
对于质点系,其重力所作的功为
W12 mi g (zi1 zi2 ) ( mi zi1 mi zi2 )g (MzC1 MzC2 )g Mg(zC1 zC2 )
由此可见,重力的功仅与重心的始末位置有关,而与 重心走过的路径无关。
O
力F在刚体从角j1转到j2所作的功为
W12
j2 j1
M
zdj
Mz可视为作用在刚体上的力偶
例1 如图所示滑块重P=9.8 N,弹 簧刚度系数k=0.5 N/cm,滑块在A 位置时弹簧对滑块的拉力为2.5 N, 滑块在20 N的绳子拉力作用下沿光 滑水平槽从位置A运动到位置B,求 作用于滑块上所有力的功的和。
T
A
15 cm
B
20 cm
PT
F
a
N
20
20
WT 0 T cosa d x 0 20
20 x d x 200 N cm
(20 x)2 152
再计算F的功:
由题意:
d1

2.5 0.5

5cm
T
A
15 cm
B
20 cm
d2 5 20 25cm
因此F在整个过程中所作的功为
T

1 2
mvC2

1 2
JC 2
平面运动刚体的动能等于随质心平移的动能与绕
质心转动的动能的和。
12.1力的功
2 弹力的功
物体受到弹性力
的作用, 作用点的轨 A1
迹 为 图 示 曲 线 A1A2,
在弹簧的弹性极限内,
r1
弹性力的大小与其变
形量d 成正比。设弹
l0
簧原长为l0 , 则弹性 力为
F k(r l0 )r0
W12
A2 F dr =
A1
A2 A1
k
(r

l0
在介绍动能定理之前,先介绍有关的物理量:功 与动能。
12.1力的功
常力的功
设物体在常力F作用下沿直线走过路程s,如图, 则力所作的功W定义为
W F cos s F s
功是代数量。它表示力在一段路程上的累积作用效应, 因此功为累积量。在国际单位制中,功的单位为:J (焦耳), 1J=1 N·m。
相关文档
最新文档