高考数学专题复习绝对值函数最值问题

高考数学专题复习绝对值函数最值问题
高考数学专题复习绝对值函数最值问题

题:绝对值函数的最值问题续篇

[]002.()|

|,,1,2()f x ax b a b x f x m x

m =--∈≥例1对任意实数总存在,使成立,求的取值范围.

[]01,4x m ∈变1:例1中,,求的取值范围.

[]00,,1,2a b R x m ?>∈?∈变2:例1中,,求的取值范围.

()()()213()1ln ()|()|,22

1,ln 2.4

a a f x x x a x x x f x

b a b a b =+-+≤≤≤=-≥-例2:,若1,g 的最大值为M ,2证明:M

[]()()2()||0,1f x x ax x a a =-∈例3:在上的最大值是M ,

求M 的最小值.

[]()1,4x a ∈变1:例2中,,求M 的最小值.

[]()2,4x a ∈变2:例2中,,求M 的最小值.

[]()()2()|+3|0,||f x x ax x a a a =+∈例4:在上的最大值是M ,求M 的表达式.

()[]()()[]2200.()||

10,()0,2;120,0,2,().8f x x ax b a b f x x a a x f x a =++=<∈≤

[]()()3()||1,|1,,f x x ax b x a b a b =--∈-例6:在上的最大值是M ,求M 的最小值.

含绝对值函数的最值问题

专题三: 含绝对值函数的最值问题 1. 已知函数2()2||f x x x a =-- (0>a ),若对任意的[0,)x ∈+∞,不等式(1)2()f x f x -≥恒成立,求实数a 的取值范围、 不等式()()12f x f x -≥化为()2 212124x x a x x a ----≥-- 即:()242121x a x a x x ---+≤+-(*)对任意的[)0,x ∈+∞恒成立因为0a >,所以分如下情况讨论: ①当0x a ≤≤时,不等式(*)24120[0,]x x a x a ++-≥?∈对恒成立 ②当1a x a <≤+时,不等式(*)即24160(,1]x x a x a a -++≥?∈+对恒成立 由①知102 a <≤,2()416(,1]h x x x a a a ∴=-+++在上单调递减 2662a a ∴≤--≥-或 11626222 a -<∴-≤≤Q 2、已知函数f (x )=|x -a |,g (x )=x 2+2ax +1(a 为正数),且函数f (x )与g (x )的图象在y 轴上的截距相等.(1)求a 的值;(2)求函数f (x )+g (x )的最值. 【解析】(1)由题意f (0)=g (0),∴|a |=1、又∵a >0,∴a =1、 (2)由题意f (x )+g (x )=|x -1|+x 2+2x +1、 当x ≥1时,f (x )+g (x )=x 2+3x 在[1,+∞)上单调递增, 当x <1时,f (x )+g (x )=x 2+x +2在????? ???-121上单调递增,在(-∞,12-]上单调递减. 因此,函数f (x )+g (x )在(-∞,12-]上单调递减,在????? ???-12+∞上单调递增. 2min ()4120[0,]()(0)120 1 02 g x x x a a g x g a a =++-≥∴==-≥∴<≤Q 在上单调递增只需2min ()(1)420h x h a a a ∴=+=+-≥只需

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

含绝对值函数的综合问题一

含绝对值函数综合问题 一、含绝对值函数的最值 1、含一个绝对值的一次绝对值函数的最值、单调性、对称性 (1)()||f x x =的图像是以原点为顶点的“V ”字形图像;函数在顶点处取得最小值 “(0)0f =”,无最大值;在函数(,0],[0,)x ∈-∞↓+∞↑;对称轴为:0x = (2)()||(0)f x kx b k =+≠图像是以(,0)b k -为顶点的“V ”字形图像;在顶点取得最小值: “()0b f k -=”,无最大值;函数在(,],[,)b b x k k ∈-∞-↓-+∞↑;对称轴为:b x k =- (3)函数()||(0)f x k x b k =+≠: 0k >时,函数是以(,0)b -为顶点的“V ”字形图像;函数在顶点取得最小值: “()0f b -=”,无最大值;函数在(,],[,)x b b ∈-∞-↓-+∞↑;对称轴为:x b =- 0k <时,是以(,0)b -为顶点的倒“V ”字形图像,函数在顶点取得最大值: “()0f b -=”,无最小值;函数在(,],[,)x b b ∈-∞-↑-+∞↓;对称轴为:x b =- 2、含两个绝对值的一次绝对值函数的最值、单调性、对称性 (1)函数()||||()f x x m x n m n =-+-<的图像是以点(,),(,)A m n m B n n m --为折点的 “平底形”图像;在[,]x m n ∈上的每点,函数都取得最小值n m -,无最大值;函数 在(,],[,)x m x n ∈-∞↓∈+∞↑ ,在[,]x m n ∈无单调性;对称轴为2 m n x +=。 (2)函数()||||f x x m x n =---: 当m n >时,()f x 是以点(,),(,)A m n m B n m n --为折点的“Z 字形”函数图像;在 (,]x n ∈-∞上的每点,函数都取得最大值m n -,在[,)x m ∈+∞上的每点,函数都取得最小值n m -;函数在[,]x n m ∈↓,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2 m n +; 当n m >时,()f x 是以点(,),(,)A m m n B n n m --为折点的“反Z 字形”函数图像; 在(,]x m ∈-∞上的每点,函数都取得最小值m n -,在[,)x n ∈+∞上的每点,函数都 取得最大值n m -;函数在[,]x m n ∈↑,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对 称中心为( ,0)2 m n +; (3)()||||()f x a x m b x n m n =-+-<图像是以(,()),(,())A m f m B n f n 为折点的折线。 当0a b +>时,两端向上无限延伸,故最小值,最小值为min{(),()}f m f n ; 当0a b +<时,两端向下无限延伸,故最大值,最大值为{(),()}Max f m f n ; 当0a b +=时,两端无限延伸且平行x 轴,故既有最大值又有最小值,最大值为 {(),()}Max f m f n ;最小值为min{(),()}f m f n 。 3、含多个绝对值的一次函数的最值、单调性 函数1212()||||||(,,,)n i n f x x a x a x a a R i n N a a a *=-+-++-∈∈<<< 设 (1)若21()n k k N *=-∈,则()f x 的图像是以(,())k k a f a 为顶点的“V ”字形图像 (a )当且仅当k x a =时,min 1211221[()]|()()|k k k k f x a a a a a a -++-=+++-+++ (b ) 函数()f x 在(,],[,)k k a a -∞↓+∞↑,若{}i a 为等差数列,则图像关于k x a =对称 (2)若2()n k k N *=∈,则()f x 的图像是以点11(,()),(,())k k k k A a f a B a f a ++为折点的“平 底形”图像 (a )当且仅当1[,]k k x a a +∈,min 12122[()]|()()|k k k k f x a a a a a a ++=+++-+++ (b ) 函数()f x 在1(,],[,)k k a a +-∞↓+∞↑,在1[,]k k x a a +∈无单调性。若{}i a 为等差数列, 则图像关于1 2 k k a a x ++= 对称 这一结论从一次绝对值函数图像上了不难看出,当1x a < 及 n x a >时,图像是分别向左、右两边向上无限伸展的两条射线,中间各段在区间1[,](1,2,1)i i a a i n +=- 上均为线段.它们首尾相连形成折线形,在中间点或中间段处最低,此时函数有最小值. 证明:当21()n k k N * =-∈时,1221()||||||k f x x a x a x a -=-+-++- , 1221k a a a -<<< 设由绝对值不等式性质得: 121121211|||||()()|k k k x a x a x a x a a a ----+-≥---=-,当且仅当121[,]k x a a -∈时取“=” 222222222|||||()()|k k k x a x a x a x a a a ----+-≥---=-, 当且仅当222[,]k x a a -∈时取“=”

绝对值函数最值问题(含答案修改版)

绝对值函数最值问题 一、准备在两个小区所在街道上建一所医院,使得两个小区到医院的距离之和最小,问医院应该建在何处? 先来证明一个引理: 引理:||||||y x y x +≥+……(1),当且仅当0≥xy 时等号成立 要证(1)式成立,只需证xy xy xy y x xy y x ≥++≥++||,2||22 2 2 2 也即是,上式显然成立,故原命题得证。 将上式的y y -换成可得 ||||||y x y x -≥+……(2),当且仅当0≤xy 时等号成立 定理:对于任意123,,a a a ……,n a 如果123a a a ≤≤≤……1n n a a -≤, 当n 为奇数时 ()12 3||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 等于123,,a a a ……n a 的中位 数时取到,即12 n x a +=时有最小值, 即是()123||||||f x x a x a x a =-+-+-+ (112) ||||n n n x a x a f a -+??+-+-≥ ?? ? 当n 为偶数时 ()123||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 属于123,,a a a ……n a 的中间 两个数的范围时取到,即1 22,n n x a a +?? ∈???? 时有最小值。此时 ()123 ||||||f x x a x a x a =-+-+-+ (11) 22||||n n n n x a x a f a o r f a -+?? ??+-+-≥ ? ??? ?? 该定理的证明,只需最小的与最大的结合,在中位数时同时取到最小值。 二、求下列函数的最小值: 1、()|2||1|-+-=x x x f

汇总高考数学函数专题习题及详细答案.doc

函数专题练习 1.函数1 ()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1 (0,)3 (C )11[,)73 (D )1[,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠, 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2 ()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()lg .f x x =设 63(),(),52a f b f ==5(),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C . 11(,)33- D . 1(,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ D 7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

2015高考数学专题复习:函数零点

2015高考数学专题复习:函数零点 函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图像与x 轴交点的横坐标. ()x g x f y -=)(的零点(个数)?函数()x g x f y -=)(的图像与x 轴的交点横坐标(个数) ?方程()()0=-x g x f 即()x g x f =)(的实数根(个数) ?函数)(x f y =与)(x g y =图像的交点横坐标(个数) 1.求下列函数的零点 1.232-+=x x y 2.x y 2log = 3.62 -+=x x y 4.1ln -=x y 5.2 1sin + =x y 2.函数22()(2)(32)f x x x x =--+的零点个数为 3.函数()x f =???>-≤-+) 0(2ln ) 0(322x x x x x 的零点个数为 4.函数() () ???>+-≤-=13.41.44)(2x x x x x x f 的图像和函数()ln g x x =的图像的交点个数是 ( ) .A 1 .B 2 .C 3 .D 4 5.函数5 ()3f x x x =+-的零点所在区间为 ( ) A .[0,1] B .[1,2] C .[2,3] D .[3,4] 6.函数1()44x f x e x -=+-的零点所在区间为 ( ) A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 7.函数()2ln(2)3f x x x =--的零点所在区间为 ( ) A. (2,3) B. (3,4) C. (4,5) D. (5,6) 8.方程2|2|lg x x -=的实数根的个数是 9.函数()lg ()72f x x g x x ==-与图像交点的横坐标所在区间是 ( ) A .()21, B .()32, C .()43, D .()54, 10.若函数2 ()4f x x x a =--的零点个数为3,则a =______

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

2010高考数学复习专题:函数的最值

函数的最值(值域) ●高考要求 掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法 最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了 ●重难点归纳 (1)求函数的值域 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、导数法 数形结合法(图像法)导数法 数形结合法、判别式法、部分分式、均值不等式、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域 (2)函数的综合性题目 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强 (3)运用函数的值域解决实际问题 此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力 ●知识点归纳 一、相关概念 1、值域:函数A x x f y ∈=,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。 2、最值:求函数最值常用方法和函数值域的方法基本相同。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。 最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最大值。记作()max 0y f x = 最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最小值。记作()min 0y f x = 注意: ①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ; ② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )

含绝对值的函数问题

含绝对值的函数问题专练 1.画出函数y = 31x -的图象,并利用图象回答:k 为何值时,方程 31x -=k 无解?有一个解?有两个解? 【答案】当k =0或k≥1时,方程有一个解;当0x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求实数m 的取值范围. 【答案】(1) 102 x y -+=;(2)答案见解析;(3) [)1,+∞. 4.已知函数()3f x mx =+, ()22g x x x m =++. (1)判断函数()()()F x f x g x =-是否有零点; (2)设函数()()()1G x f x g x =--,若()G x 在[]1,0-上是减函数,求实数m 的取值范围. 【答案】(1)函数()()f x g x -有零点(2)0m ≤或2m ≥ 5.设a 为实数,函数f(x)=x2+|x -a|+1,x ∈R. (1)讨论f(x)的奇偶性; (2)求f(x)的最小值. 【答案】(1)当0a =时, ()f x 偶函数,当0a ≠时, ()f x 为非奇非偶函数;(2)34 a -+. 6.已知函数2()1f x x =-,()|1|g x a x =-. (1)若关于x 的方程|()|()f x g x =只有一个实数解,求实数a 的取值范围;

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编 题型一 作函数的图象 1、分别画出下列函数的图象: (1)y =|lg(x -1)|; (2)y =2x + 1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1 . 解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分). (2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1 的图象,如图②所示. (3)y =x 2-|x |-2=???? ? x 2-x -2,x ≥0,x 2+x -2,x <0, 其图象如图③所示. (4)∵y =2+1x -1,故函数的图象可由y =1 x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所 示. 题型二 函数图象的辨识 1、函数y =x 2ln|x | |x | 的图象大致是( ) 答案 D 解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间????0,1e 上单调递减,在区间??? ?1 e ,+∞上单调递增.由此可知应选D.

2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |) 答案 C 解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=????12x 在同一直角坐标系下的图象大致是( ) 答案 B 解析 因为函数g (x )=????12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=??? ?2 1+e x -1·sin x 的图象的大致形状为( ) 答案 A 解析 ∵f (x )=? ????21+e x -1·sin x ,∴f (-x )=? ????21+e -x -1· sin(-x ) =-? ????2e x 1+e x -1sin x =? ?? ?? 21+e x -1· sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=? ?? ??21+e 2-1· sin 2<0,故排除B , 只有A 符合. 5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )

高考数学:求解含绝对值函数问题的基本策略

纵观近几年的高考试卷,有关含绝对值函数的问题呈现出综合性强、立意新颖、难度大等特点,正日益成为高考的热点. 利用绝对值函数的图象和性质 在解有关含绝对值函数的客观题时,要运用好绝对值函数的图象和性质,根据题意,利用函数y=f(x)图象的翻折和平移得到y=f(x),y=f(x),y=f(x-m)等含绝对值函数的图象,然后利用图象求解. 对于常见的含绝对值的函数的图象和性质,要熟练掌握,才有利于提升解题速度.如:y=ax(a>0,a≠1),y=ax-1,y=logax,y=logax(a>0,a≠1),y=ax2+bx+c,y=,y=x+(a>0),y=ax-b,y=ax2+bx+c等. 例1 函数f(x)=2xlog0.5x-1的零点个数为 . (A)1 (B)2 (C)3 (D)4 解析:由f(x)=2xlog0.5x-1=0可得log0.5x=x,设h(x)=x,g(x)=log0.5x,在同一坐标系中分别画出函数g(x)和h(x)的图象(如图1所示),可以发现两个函数的图象有2个交点,即函数f(x)有2个零点.所以答案选B. 点评:解例1的关键是作出g(x)=log0.5x的图象,然后观察它与函数h(x)=x 的图象的交点个数,交点个数即为函数f(x)零点的个数. 例2 已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=x+b的图象为 . 解析:f(x)=x-4+=(x+1)+-5≥2-5=1,当且仅当x+1=时函数f(x)取到最小值1,即(x+1)2=9. 因为x∈(0,4),故x=2.由题意可知:a=2,b=1,故g(x)=x+1,其图象可由函数y=x的图象先进行翻折变换得到函数y=x的图象,然后再将所得图象向左平移1个单位后得到,所以答案为B.

含绝对值的函数问题处理

含绝对值的函数问题处理 1.(2005年江苏卷)已知a ∈R ,函数f(x)=x 2|x-a|. (I)当a=2时,求使f(x)=x 成立的x 的集合; (II)求函数y=f(x)在区间[1,2]上的最小值. 解析:(I)若a=2,则有:22 2(2),2()2(2),2x x x f x x x x x x ì?- ?=-=í ?--0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递增在区间递减. ②当x 0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递减在区间递增. 由于所求区间为[1,2],故a 按所求区间进行讨论: ①若a ≤1,则 22,33 a £取f 1(x)图象在x>a 部分,因函数f1(x)在区间[1,2]部分单调递增,故当x=1 时取最小值,即m=f 1(1)=1-a; ②若1a 时,f 1(x)从0单调递增;当xa ≥2, 则242,33 a > 函数f 2(x)在区间为先增后减,当x= 23 a 时取最大值,则最小值为 m 1=f 2(1)=-1+a 或m 2=f 2(2)=-8+4a,下面讨论m 1与m 2的大小问题: a. 若2≤a< 73 ,则m 1>m 2,最小值为m 2=-8+4a;b.若 73 ≤a<3,则则m 2>m 1,最小值为m 1=-1+a.

高中一轮复习__含绝对值的函数

学案17 含绝对值的函数 一、课前准备: 【自主梳理】含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,主要有以下3类: 1.形如)(x f y =的函数,由于0 )(0)()()()(<≥???-==x f x f x f x f x f y ,因此研究此类函数往往结合函数图像,可以看成由)(x f y =的图像在x 轴上方部分不变,下方部分关于x 轴对称得到; 2.形如)(x f y =的函数,此类函数是偶函数,因此可以先研究0≥x 的情况,0”之一). (2)函数2ln -=x y 的图像与函数1=y 的图像的所有交点的横坐标之和为________. (3)函数x y 21log =的定义域为],[b a ,值域为[0,2],则b -a 的最小值为_______.

高考数学函数零点专题

欢迎下载学习好资料 2. 函数的零点专题高考解读函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利求方程的根、用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的x掌握零点存在性定理.增强根据实际问题建立数轴的交点的横坐标的等价性;图象与学模型的意识,提高综合分析、解决问题的能力.知识梳理 1.函数的零点与方程的根xffxfxx 的零(),我们把使叫做函数())=0 (1)函数的零点对于函数的实数( 点.函数的零点与方程根的关系(2)xfxgxyfFxxgxf的图象与)=函数((()=(=)-)(的根,)的零点就是方程即函数()xgy )(函数的图象交点的横坐标.= (3)零点存在性定理bbfafyfxa,上的图象是连续不断的一条曲线,且有)<0如果函数(=(([)在区间),·]cbfcyfxabca这个)使得)在区间(=,()内有零点,即存在∈(0, 那么,函数,=)(xf的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条=也就是方程(0) 件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解..在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数2即把方程分拆为一个等式,使两端都转化为我们所熟悉的函形结合是基本的解题方法,xxgfxgxf的形式,这时()),=((),即把方程写成)数的解析式,然后构造两个函数(可以根据图象的变化趋势找到方程中字母方程根的个数就是两个函数图象交点的个数,. 参数所满足的各种关系高频考点突破函数的零点判断考点一 11?x?2x?)ea(?xf(x)?e?2x?有唯一零点,已知函数11课标20173,理】1例、【a= 则111?DBCA.1 ...223 1x fxx-2的零点所在的区间是+( 【变式探究】(1)函数) (=)e211)(,1,(0)(2,3) (1,2) D.A. B.. C222xfxfyxxgxxx=)(,若函数0)≥(3- =)(满足:R∈,)(=已知偶函数(2). 学习好资料欢迎下载 xx,,>0log?2??yfxgx)的零点个数为( )-则=(() 1x,,<0-?x?A.1 B.3 C.2 D.4 【方法技巧】函数零点的求法 fx)=0(1)直接求零点:令,如果能求出解,则有几个解就有几个零点.( ab]上是连续不断的曲线,且,(2)零点存在性定理:利用定理不仅要函数在区间[fafb)<0,还 必须结合函数的图象与性质(如单调性、奇偶性()(才能确定函数有多少)·个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其有几个交点,就有几个不同的零点. fxxxfx)的零点所在的区间为( (=ln +) -2【变式探究】设(,则函数)A.(0,1) B.(1,2) C.(2,3) D.(3,4) 考点二、二次函数的零点 2axxafx∈R. )=+2+2例、已知函数,(2xfxfx的解集;1-[1,2],求不等式 ((1)若不等式)(≥)≤0的解 集为2axxfxg的取值上有两个不同的零点,求实数1)+(2)若函数在区间((1,2))=(+范围.【方法技巧】 解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组. 【变式探究】 22xaafxxa小,求实数大,一个零点比1的一个零点比+(-2)-1)已知1()=+(的取值范围.

相关文档
最新文档