医学统计学重点

合集下载

医学统计学考试重点资料

医学统计学考试重点资料

一、名解:1、定量资料:以定量值表达每个观察单位的某项观察指标2、定性资料:以定性方式表达每个观察单位的某项观察指标3、等级资料:以等级方式表达每个观察单位的某项观察指标4、总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。

5、样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。

6、参数:描述某总体特征的指标称为总体参数。

7、统计量:描述某样本特征的指标称为样本统计量。

8、小概率事件:当某事件发生的概率小于或等于0.05时,统计学上称该事件为小概率事件9、小概率原理:其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。

小概率原理是进行统计推断的依据。

(8&9常写在一起)10∙变异,是以具有同质性的观察单位为载体,某项观察指标在其单位之间显示的差别。

11标准化率:用统一的标准对内部构成不同的各组频率进行调整和对比,对比后的率为标准化率。

12参考值范围:又称正常值范围,大多数人正常人某观察指标所在的范围。

由于正常人的形态、功能、生化等各种指标的数据因人而异,而且同一个人的某些指标还会随着时间、机体内外环境的改变而变化,因此需要确定其波动范围,即正常值范围,简称正常值。

13、抽样误差:由抽样引起的样本统计量与总体参数间的差别。

14、中心极限定理:①从均数为U,标准差为。

的总体中独立随机抽样,当样本含量?增加时,样本均数的分布将趋于正态分布,均数为标准差为。

X②从非正态分布的总体中随机抽样,只要样本含量足够大,样本均数趋于正态分布。

15、统计推断:就是根据样本所提供的信息,以一定的概率推断总体的性质。

16、区间估计/参数估计/可信区间:包括点估计和区间估计,由样本信息估计总体参数。

按一定的概率或可信度(La)用一个区间估计总体参数所在范围。

这个范围称作可信度为l-α的可信区间(ConfidenCeinterval,Cl),又称置信区间。

医学统计学重点概要

医学统计学重点概要

第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。

总体包括有限总体和无限总体。

样本:从总体中随机抽取的部分观察单位,其实测值的集合。

获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。

资料的类型计量资料、计数资料和等级资料。

误差包括随机误差、系统误差和非系统误差。

抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。

概率:是描述随机事件发生可能性大小的一个度量。

取值范围0≤P ≤1。

小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。

P ≤0.05或P ≤0.01。

医学统计学的步骤:设计、收集资料、整理资料和分析资料。

统计分析包括:统计描述和统计推断。

统计推断包括:参数估计和假设检验。

第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。

对称分布:集中位置在中间,左右两侧頻数基本对称。

偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。

(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。

计量资料集中趋势包括算术均数、几何均数和中位数。

算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。

中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。

医学统计学重点

医学统计学重点

医学统计学重点第一章绪论1.根本概念:总体:根据研究目确实定的性质相同或相近的研究对象的某个变量值的全体。

样本:从总体中随机抽取局部个体的某个变量值的集合。

总体参数:刻画总体特征的指标,简称参数。

是固定不变的常数,一般未知。

统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。

抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。

频率:假设事件A在n次独立重复试验中发生了m次,那么称m为频数。

称m/n为事件A在n 次试验中出现的频率或相对频率。

概率:频率所稳定的常数称为概率。

统计描述:选用适宜统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。

统计推断:包括参数估计和假设检验。

用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。

用样本差异或样本与总体差异推断总体之间是否可能存在差异,称为假设检验。

2.样本特点:足够的样本含量、可靠性、代表性。

3.资料类型:〔1〕定量资料:又称计量资料、数值变量或尺度资料。

是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。

每个个体都能观察到一个观察指标的数值,有度量衡单位。

〔2〕分类资料:包括无序分类资料〔计数资料〕和有序分类资料〔等级资料〕①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。

包括二分类资料和多分类资料。

二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。

多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。

4.统计工作根本步骤:统计设计、资料收集、资料整理、统计分析。

第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差〔抽样误差、随机测量误差〕、系统误差、过失误差。

3.实验设计的三个根本原那么:对照原那么、随机化分组原那么、重复原那么。

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。

以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。

观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。

2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。

定性数据如性别、血型,定量数据如血压、体重。

3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。

4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。

常见的分布有正态分布、二项分布和泊松分布。

5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。

常见的检验方法有t检验、卡方检验和F检验。

6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。

95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。

7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。

简单线性回归和多元线性回归是常见的回归分析方法。

8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。

Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。

9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。

10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。

样本量计算需要考虑效应大小、显著性水平和检验力。

11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。

12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。

医学统计学重点

医学统计学重点

医学统计学重点说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。

2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。

3、样本:从总体中随机抽取的部分研究对象。

4、随机:总体中每个个体有同等的机会进入样本。

5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。

6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。

7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。

8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响。

10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。

通俗讲一次抽样是不可能发生的事件。

11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。

12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。

最常用的是95%参考值范围。

13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。

14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。

二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。

2024年度-医学统计学重点笔记一复习必备

2024年度-医学统计学重点笔记一复习必备
u分布
即标准正态分布,当样本量足够大时(n>30),t分布近似u分布。
14
总体均数置信区间估计
置信区间的概念
按一定的置信水平(1-α),根据样 本统计量估计总体参数所在的范围。
置信区间的计算
根据样本均数、标准差和样本量计算 置信区间。常用的置信水平为95%和
99%。
置信区间的意义
表示总体参数有100(1-α)%的可能性 落在此区间内。
适用条件
01
R×C列联表资料,即多行多列列联表,用于分析两个多分类变
量之间的关联。
检验统计量
02
卡方值,计算公式为χ2=∑(O-E)2/E,其中O为观察频数,E为
理论频数。
拒绝域
03
根据自由度和显著性水平确定拒绝域,自由度为(R-1)(C-1)。
29
配对设计四格表资料卡方检验
01
适用条件
配对设计四格表资料,即两个相 关样本的二分类变量之间的关联 分析。
26
06
卡方检验
27
四格表资料卡方检验
适用条件
四格表资料,即2×2列联表,用于分析两个二分类变量之间的关联。
检验统计量
卡方值,计算公式为χ2=(ad-bc)2N/(a+b)(c+d)(a+c)(b+d),其 中N为样本总量。
拒绝域
根据自由度和显著性水平确定拒绝域,自由度为1。
28
R×C列联表资料卡方检验
正态分布在医学中的应用 许多医学指标如身高、体重、血压等服从或近似服从正态 分布;在估计医学参考值范围、质量控制等方面有广泛应 用。
正态性检验方法 图形法(直方图、P-P图、Q-Q图)、计算法(偏度系数 和峰度系数检验、Shapiro-Wilk检验、KolmogorovSmirnov检验等)。

(完整版)医学统计学重点总结

(完整版)医学统计学重点总结

1.简述总体和样本的定义,并且举例说明。

总体是研究目的确定的所有同质观察单位的全体。

样品是从研究总体中抽取部分有代表性的观察单位。

2.简述参数和统计量的定义,并且举例说明。

描述总体特征的指标称为参数,描述样本特征的指标称为统计量。

3.变量的类型有哪几种?举例说明各种类型变量有什么特点。

①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。

②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。

③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。

4.请举例说明一种类型的变量如何变换为另一种类型的变量。

定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。

≤6.举例说明什么是配对设计。

配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。

①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。

7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。

8.简述P 25 P 50 P 75的统计学意义。

(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。

9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。

10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。

医学统计学重点

医学统计学重点

1.变异:同质事物之间的差别。

2.频数分布的两个特征:集中位置,离散趋势3.数据分布的类型:对称分布和非对称分布。

非对称分布又称偏态分布,包括正偏态和负偏态。

单峰分布,双峰分布,多峰分布。

4.统计描述:用统计表、统计图和统计指标等方法对资料的数量特征与分布规律进行描述。

5.集中位置的描述,集中位置指标又称平均数指标。

有哪些及适用条件?(1)算数平均数:最适用于单峰对称分布资料的平均水平的描述,特别是正态分布资料(2)几何平均数:适用于①等比资料②对数正态分布资料(3)中位数和百分位数:适用于①偏态分布的资料②开口资料③资料分布不明等6.离散趋势的描述(1)全距亦称极差,适用于单峰小样本资料(2)四分位数间距,适用于单峰小样本资料(3)方差和标准差,适用于对称分布尤其是正态分布资料(4)变异系数,常用于①比较度量衡单位不同的两组或多种资料的变异度②比较均数相差悬殊的两组或多组资料的变异度7.常用相对数(1)率,是二分类指标(2)构成比(3)比8.正确应用相对数应注意几个问题:(1)计算相对数的分母不宜过小(2)分析时不能以构成比代替率(3)对观察单位数不等的几个率,不能直接相加求其总率(4)计算率时要注意资料的同质性,对比分析时应注意资料的可比性(5)也有抽样误差,需要假设检验。

9.率的标准法(1)基本思想:采用统一的标准,以消除病情构成不同对治愈率比较的影响,使算得的标准化治愈率有可比性。

(2)目的:控制混杂因素对研究结果的影响。

10.正态分布(1)概念P16(2)标准正态分布,u变换:u=σμ-X,u是标准正态离差,μ是均数,σ是标准差。

u~N(0,1)(3)正态分布的特征:①是单峰分布,高峰位置在均数X=μ处。

②以均数为中心,左右完全对称。

③取决于两个参数,均数μ和标准差σ。

μ为位置参数,μ越大,则曲线沿横轴向右移动;μ越小,则曲线沿横轴向左移动。

σ为形态参数,表示数据的离散程度,若σ小,则曲线形态“瘦高”;σ大,则曲线形态“矮胖”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医学统计学重点
医学统计学是医学领域中不可或缺的一门学科,它借助数理统计方法研究医学数据和临床试验的结果,为医学决策提供可靠的依据。

以下是医学统计学的几个重点内容。

一、描述统计学
描述统计学是医学统计学的基础,主要研究如何分类、整理和描述医学数据。

其主要方法包括测量尺度、频率分布表、中心趋势测量和变异程度测量。

1. 测量尺度
在医学统计学中,常见的测量尺度包括名目尺度、有序尺度和数值尺度。

名目尺度适用于无序分类的变量,有序尺度适用于有序分类的变量,而数值尺度适用于具有度量意义的变量。

2. 频率分布表
频率分布表用来展示变量的分布情况,主要包括类别、频数和频率等内容。

通过频率分布表,可以直观地了解变量的分布状况。

3. 中心趋势测量
中心趋势测量主要包括平均数、中位数和众数。

平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排列后的中间值,众数是出现次数最多的观测值。

4. 变异程度测量
变异程度测量用来描述数据的分散程度,主要包括极差、方差和标准差。

极差是最大观测值与最小观测值之间的差异,方差是观测值与均值之间的差异的平方的平均数,标准差是方差的平方根。

二、推断统计学
推断统计学是医学统计学的核心内容,主要研究如何通过样本数据推断总体参数,并对假设进行检验。

其中包括参数估计、假设检验和置信区间等方法。

1. 参数估计
参数估计是利用样本数据估计总体参数,常用的方法有点估计和区间估计。

点估计是通过样本数据得到一个单一的数值作为总体参数的估计值,区间估计是通过样本数据得到一个范围作为总体参数的估计区间。

2. 假设检验
假设检验是用来检验某个陈述是否与观察数据相符的方法。

在医学研究中,研究者常常根据实验数据对研究假设进行检验,以确定是否有统计显著性。

3. 置信区间
置信区间是对总体参数的一个范围估计。

置信区间的计算方法与区间估计相似,通过对样本数据进行分析计算得到。

三、生存分析
生存分析是医学统计学中的一个重要分支,主要研究疾病患者的生存时间和生存率等问题。

生存分析的主要方法是生存曲线和生存率的估计。

1. 生存曲线
生存曲线是描述患者生存时间的曲线图,可以根据不同组别的生存曲线比较不同因素对生存时间的影响。

2. 生存率估计
生存率估计用来估计患者在特定时间内存活下来的概率,主要方法有卡普兰-梅尔法、考斯法和韦伯法等。

四、回归分析
回归分析是医学统计学中应用广泛的一种统计方法,主要研究因变量与一个或多个自变量之间的关系。

回归分析可以用来预测和解释观测变量之间的关系。

1. 线性回归
线性回归是常用的回归分析方法,通过建立一个线性模型来描述因变量与自变量之间的关系。

线性回归模型可以利用最小二乘法进行参数估计。

2. 逻辑回归
逻辑回归是一种广义线性模型,主要用于预测二分类或多分类的情况。

逻辑回归模型将自变量与一个或多个概率进行建模。

综上所述,医学统计学是医学研究不可或缺的工具,它基于数理统
计方法从数据中提取有用信息,并为医学决策提供支持。

描述统计学、推断统计学、生存分析和回归分析是医学统计学的重点内容,它们的
应用广泛且具有重要的意义。

医学从业者应该掌握这些统计学知识,
以提高研究质量和临床决策的准确性。

相关文档
最新文档