定积分在几何中的应用

合集下载

微积分定积分在几何中应用

微积分定积分在几何中应用

(二)定积分在几何中的应用定积分在几何中的应用 (1)求平面图形的面积求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。

由此可知通过求函数的定积分就可求出曲边梯形的面积。

例如:求曲线2f x =和直线x=l ,x=2及x 轴所围成的图形的面积。

轴所围成的图形的面积。

分析:由定积分的定义和几何意义可知,由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。

和直线,及轴所围成的图形的面积。

所以该曲边梯形的面积为所以该曲边梯形的面积为2233222112173333x f x dx ===-=ò (2)求旋转体的体积求旋转体的体积(I)由连续曲线y=f(x)与直线x=a 、x=b(a<b) 及x 轴围成的平面图形绕x 轴旋转一周而成的旋转体的体积为2()()b aV f x d x p=ò。

(Ⅱ)由连续曲线y=g(y)与直线y=c 、y=d(c<d)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()dcV g y d y p =ò。

(III)由连续曲线y=f(x)( ()0f x ³)与直线x=a 、x=b(0a £ <b)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()baV xf x d x p =ò。

例如:例如:求椭圆求椭圆22221x y a b +=所围成的图形分别绕x 轴和y 轴旋转一周而成的旋转体的体积。

转体的体积。

分析:椭圆绕x 轴旋转时,旋转体可以看作是上半椭圆22()b y a x a x a a=--££,与x 轴所围成的图形绕轴旋转一周而成的,轴所围成的图形绕轴旋转一周而成的,因此椭圆因此椭圆22221x y a b+=所围成的图形绕x 轴旋转一周而成的旋转体的体积为轴旋转一周而成的旋转体的体积为 222222222322()()14()33aay aaaa b b v a x dx a x dxaa ba x x aba pp p p ---=-=-=-=òò椭圆绕y 轴旋转时,旋转体可以看作是右半椭圆22,()a x b y b y b b=--££,与y轴所围成的图形绕y 轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕y 轴旋转一周而成的旋转体的体积为一周而成的旋转体的体积为222222222322()()14()33bby b bb b a a v b y dy b y dy b b a b y y a bb p p p p ---=-=-=-=òò(3)求平面曲线的弧长求平面曲线的弧长(I)、设曲线弧由参数方程、设曲线弧由参数方程 (){()()x t t y t j a b f =££=给出其中''(),()t t j f 在[,]a b 上连续,则该曲线弧的长度为'2'2[()][()]()s t t d xbaj f =+ò。

定积分在几何学上的应用研究报告

定积分在几何学上的应用研究报告

8 2a 3
2 sin2 udu
0
0
4 3a 3
8 2a 3
1 2
2
6 3a 3
第六章 定积分的应用
16
说明:Vy 也可按柱壳法求出
Vy
2a 2 xydx 2 2 a t sin t
0
0
a2 1 cost 2 dt
8 a3
2 0
t
sint
sin4 t dt 2
16 a3 2u 0
23
例 13 求阿基米德螺线 a a 0相应于0 2 一段的弧长。
解:
弧长元素为
从而,所求弧长
ds 2 2 d
a 2 2 a 2d a 1 2d
s 2 a 1 2d 0
a
2
1 2
1 2
ln
1
2
2 0
a
2
2
1 4 2
ln
2
1
4 2
第六章 定积分的应用
x t y t
给出时,按顺时针方向规定起点和终点的参数值t1 和t2 。
Y
t 1
对应
x
a
Y a
O
bX
O
a
bX
则曲边梯形面积 A
t2
t1
t t dt
t1 对应x b
第六章 定积分的应用
5
例 求由摆线x a t sint ,y a 1 cost a 0 的一拱与x 轴所围
s b 1 y 2dx b 1 f 2 x dx
a
a
第六章 定积分的应用
20
2.曲线弧由参数方程
x y
t t
t
给出
弧长元素(即弧微分)为ds 2 t 2 t dt ,因此

定积分的应用

定积分的应用

定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。

本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。

1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。

通过使用定积分,可以轻松解决这个问题。

以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。

这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。

2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。

例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。

同样地,在力学中,定积分可以用于计算物体所受的力的功。

这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。

3. 经济学中的应用经济学也是定积分的应用领域之一。

在经济学中,我们经常需要计算一段时间内的总收益或总成本。

通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。

这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。

4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。

在概率密度函数中,曲线下的面积表示了该事件发生的概率。

通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。

这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。

综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。

无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。

通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。

定积分在几何和物理中的应用

定积分在几何和物理中的应用

定积分在几何和物理中的应用定积分是高等数学中非常重要的一个概念,它可以用于计算曲线、曲面的面积或体积,还可以应用到物理学、工程学中。

在本文中,我们将着重探讨定积分在几何和物理中的应用。

一、计算面积我们首先来看一个简单的例子,如果我们想要计算一个曲线所围成的面积,我们需要怎么做呢?假设曲线为y=f(x),我们可以将这条曲线分成若干个无限小的小矩形,每个小矩形的宽度为Δx,高度为函数值f(x),则该小矩形的面积为f(x)Δx。

我们将所有小矩形的面积相加,得到所求的曲线面积S:S=∫a^b f(x) dx其中a和b分别是曲线的起点和终点。

这里的∫符号代表积分符号,具体的计算方法不在本文中详细说明。

二、计算体积在物理学中,我们经常需要计算物体的体积,定积分也可以帮助我们实现这一目的。

比如我们需要计算一个旋转曲线所围成的立体体积,我们可以依然使用之前的方法将其分解成无限小的小圆柱体积,每个小圆柱的体积可以表示为:V=π[f(x)]^2dx我们将所有小圆柱的体积相加,得到所求的立体体积V:V=∫a^b π[f(x)]^2dx三、计算重心和质心在物理学中,重心和质心是非常重要的概念。

对于一个平面图形或者一个立体体形,它的重心和质心分别表示为:重心:(∫xdS)/(∫dS)质心:(∫xdm)/(∫dm)这里的dS和dm分别表示面元和质量元,x则表示距离中心的距离。

我们可以通过对图形进行分割并使用定积分来计算重心和质心。

四、积分在物理学中的应用定积分在物理学中的应用非常广泛,比如我们可以使用它来计算弹性势能、动能、功、功率等物理量。

举一个简单的例子,假设质量为m的物体从高度为h处自由落下,当它下落到高度为y 时,它的速度为v,我们可以使用动能和势能的转化关系求出v,设重力加速度为g,则它下落过程中失去的重力势能为mgh-mgy,同时增加的动能为(1/2)mv^2,因此:mgh-mgy=(1/2)mv^2v=sqrt(2g(h-y))我们可以使用定积分来求解物体在过程中的运动状态,以及计算其他物理量的值。

高中数学-定积分在几何中的应用-课件

高中数学-定积分在几何中的应用-课件

求由一条曲线 y=f(x)和直线 x=a,x=b(a<b)及 y=0 所围成平面图形的面积 S.
①如图 1 所示,f(x)>0, bf(x)dx>0. a
∴S= bf(x)dx. a
②如图 2 所示,f(x)<0, bf(x)dx<0, a
∴S=| bf(x)dx|=- bf(x)dx.
a
a
2×23x32
|
2 0
=136,
8
S2=2 [4-x-(- 2x)]dx
=4x-12x2+2
3
2x32|
8 2
=338,
于是 S=136+338=18.
方法二:选y作为积分变量,
将曲线方程写为x=y22及x=4-y.
则S=2-44-y-y22dy
=4y-y22-y63|
2 -4
=18.
变式训练 1:由曲线 y= x,直线 y=x-2 及 y 轴所围成
解.
由方程组
y2=2x y=4-x
解出抛物线和直线的交
点为(2,2)及(8,-4).
方法一:选 x 作为积分变量,由图可看出 S=S1+S2,
由于抛物线在 x 轴上方的方程为 y= 2x,
在 x 轴下方的方程为 y=- 2x,
2
所以 S1=0 [ 2x-(- 2x)]dx
=2
2 1
20x2 dx=2
❖1.7 定积分的简单应用
❖1.7.1 定积分在几何中的应用
自主学习 新知突破
❖ 1.理解定积分的几何意义.
❖ 2.会通过定积分求由两条或多条曲线 围成的平面图形的面积.
复习回顾
[问题 1]定积分的几何意义.
由三条直线 x=a,x=b(a<b),x 轴及 一条曲线 y=f(x)(f(x)≥0)围成的曲边 梯形的面积 S=________.

定积分的几何应用例题

定积分的几何应用例题

定积分的几何应用例题定积分,又称定积分法,是一种求取特定函数积分的方法,它是集概率论、统计学和运筹学于一体,是微分几何学中的重要内容。

它在微分几何中一般用来求取曲面积、表面积、空间积分、距离长度等。

下面将介绍几个典型的定积分的几何应用例题,以便读者更好的理解定积分的几何应用。

例题一:求抛物线y=x2的截面积,其中抛物线两端上的y值分别为a和b。

答:这里的抛物线的截面积S=∫a b x2dx。

因此,将原积分变形可得S=(1/3)∫a b (x3+a3-b3)dx,于是,将积分变量替换,此时,S=(1/3)[(b3-a3)/2]。

例题二:求圆柱体的体积,其中圆柱体的底面半径为a,高度为h。

答:首先,将圆柱体拆成无穷多个小圆柱体,那么,圆柱体的体积V=∫0 hπa2dh。

将原积分变形可得V=πa2∫0 hdh=(πa2h2)/2,可见,圆柱体的体积大小取决于高度h和底面半径a的平方乘积。

例题三:求圆锥的表面积,其中圆锥的底面半径为a,高度为h,底面圆心角为2α。

答:此时,圆锥的表面积S=∫0 hΠa2sindαdh,将原积分变形可得S=Πa2∫0 hsindαdh=(2Πahcosα)/2,可以得出,圆锥的表面积大小取决于高度h、底面半径a以及底面圆心角2α因此,定积分在几何学中具有重要意义,可以求出各类几何体的表面积、体积等,解决实际问题。

上面提供了典型的定积分的几何应用例题,可以让读者对定积分的几何应用有一个深入的理解。

定积分的计算方法广泛,不仅可以采用数值积分法,还可以采用把积分分解为若干小段然后求和的方法。

同时,它还可以利用积分变量的变换,把定积分变为求解较为容易的积分,可以较好地解决实际问题。

总之,定积分是一门极其重要的数学科学,在几何学和实际问题中都有重要的应用,使用正确的计算方法,可以较好地解决实际问题。

定积分在几何中的应用 课件

定积分在几何中的应用  课件

y=x2-3围成平面图形的面积是
S [3 2x (x2 3)]dx 3 (3 2x x2 )dx
1
1
(3x
x2
1 3
x3
31
(3 3 32 1 33) [1 3 (1)2 1 (1)3]
3
3
9 2 1 32 . 33
【拓展提升】求函数图象围成平面图形面积的方法 (1)画出两个函数的图象,先将两个函数方程联立方程组求 解,得到函数图象的交点的横坐标a,b(a<b),确定积分区间 [a,b]. (2)在公共的积分区间上,由上界函数减去下界函数作为被积 函数,定积分的值就等于两个函数图象围成平面图形的面
积,即 S a[b f1(x) (f其2 (中x)]fd1x(x)>f2(x)).
类型 二 计算复杂平面图形的面积 【典型例题】 1.由两条曲线y=x2, y 1 x2与直线y=1围成平面区域的面积
4
是_______.
2.求曲线 y x 与直线y=2-x,y 1 x 围成图形的面积.
3
【解题探究】1.题1中怎样确定积分变量的区间? 2.如何将图形的面积转化为定积分计算? 探究提示: 1.由直线y=1分别与曲线y=x2y, 1 x联2 立,求出交点坐标,
(2x
1 2
x2
1 6
x2)
13
=2 3
1 6
(2x
1 3
x2
)
13
=5 6 1 9 21 1 1=2 1 .
63
36
【互动探究】若将题2中条件变为如图由直线y=x-2,曲线 y2=x所围成图形,试求其面积S.
【解析】由
y2
x得, x=1或x=4,
y x 2,
故A(1,-1),B(4,2),如图所示:

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.7.1 定积分在几何中的应用
主讲:XXXX 卞志业
教学目标:
1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;
2、 让学生深刻理解定积分的几何意义以及微积分的基本定理;
3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法;
教学重难点: 重点 曲边梯形面积的求法
难点 定积分求体积以及在物理中应用 教学过程:
一、复习回顾
1.微积分基本定理是什么?
学生回答:若函数f(x)在区间[a,b]上连续,
,这就是微积分基本定理,又叫牛顿—莱布尼茨公式。

2.定积分的几何意义是什么?
学生回答: x=a 、x=b 与 x 轴所围成的曲边梯形的面积。

需要注意的是:当f(x)≤0时,由y=f (x)、x=a 、x=b 与 x 轴所围成的曲边梯形位于 x 轴的下方。

,那么并且)()(x f x F ='⎰
-=b
a
a F
b F dx x f )()()( 当f (x )≥0时,积分dx x f b
a
)(⎰在几何上表示由y =f (x )、 a b y f (x) ()b a S f x dx
=⎰即:O x y x
y O a b y f (x)
()b
a
S f x dx
=-⎰即:
二、例题讲解
例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.
【分析】从图像中可以看出:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

解:2
01y x x x y x
⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为
(0,0)、(1,1),
面积S=S曲边梯形OABC-S曲边梯形OABD
1
1
2
xdx x dx =-⎰

【点评】
求两曲线围成的平面图形面积的一般步骤: (1)画草图,求出曲线的交点坐标; (2)将曲边形面积转化为曲边梯形面积; (3)确定被积函数及积分区间; (4)计算定积分,求出面积。

例2计算由直线y 2x =
曲线y x 4,=-以及x 轴所围图形的面积S.
【分析】
1
2
332x = 1
0331x -= = 323
1-31 4
x
y
O
8
4 2
2
B
x
y 2=4
-=x y S 2
S 1 S 2
S 1
4 y O
8
4 2
2 A ⎥


⎢⎣⎡⨯⨯-+=
+=⎰⎰442122844
21dx x dx x s s s A: 4
42
1
28
21⨯⨯-=
-=⎰
dx x s s s B:
解:作出直线4y x =-,曲线2y x =的草图,
所求面积为下图阴影部分的面积.
解方程组2,
4y x y x ⎧=⎪⎨=-⎪⎩
得直线4y x =-与曲线
2y x =的交点的坐标为(8,4) .
直线4y x =-与x 轴的交点为(4,0).





图形的
面积为
S=S 1+S 24
880
4
4
2[2(4)]xdx xdx x dx =
+--⎰
⎰⎰
33
482822044
2222140||(4)|3323
x x x =++-=.
三、巩固练习
求下列曲线所围成的图形的面积。

由学生自己解决,并给出答案。

四、强化训练
求曲线 与直线 所围成平面图形的面积。

解题要点:
启发:结合图形,同学们想一想,是否还有其他方法? 学生回答:根据对称性,发现S 1=S 2。

2
,0π
=
=x x y x 4
=-2=
y x
.
0,,)2(;
32,)1(2
===+==x e y e y x y x y x x
y x y cos ,sin ==2
1S S S +=dx
x dx x S ⎰
⎰-=40401sin cos ππdx x dx x S ⎰
⎰-=24
242cos sin ππππx
y O 1
2πx
y cos =x
y sin =S 1
S 2
五、小结
1.思想方法:数形结合及转化
2.求解步骤
3.定积分只能用于求曲边梯形的面积,对于非规则曲边梯形,一般要将其分割或补形为规则曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.
六、课后作业
1.课本第67页习题1.7A组第1题;
2.思考题:B组第1题。

相关文档
最新文档