北京市西城区2011届高三上学期期末考试数学试题(理)

合集下载

北京市西城区2011 — 2012学年度高三第一学期期末试卷(数学理)

北京市西城区2011 — 2012学年度高三第一学期期末试卷(数学理)

北京市西城区2011 — 2012学年度第一学期期末试卷高三数学(理科) 2012.1第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数i1i =+( ) (A )1i22+(B )1i 22-(C )1i 22-+(D )1i 22--2.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为( ) (A )2cos ρθ= (B )2sin ρθ= (C )2cos ρθ=-(D )2sin ρθ=-3.已知向量=a ,(0,2)=-b .若实数k 与向量c 满足2k +=a b c ,则c 可以是( ) (A)1)-(B)(1,-(C)(1)-(D)(1,-4.执行如图所示的程序框图,输出的S 值为( ) (A )3 (B )6- (C )10 (D )15-5.已知点(,)P x y 的坐标满足条件1,2,220,x y x y ≤⎧⎪≤⎨⎪+-≥⎩那么22x y +的取值范围是( )(A )[1,4] (B )[1,5] (C )4[,4]5(D )4[,5]56.已知,a b ∈R .下列四个条件中,使a b >成立的必要而不充分的条件是( ) (A )1a b >- (B )1a b >+ (C )||||a b >(D )22a b >7.某几何体的三视图如图所示,该几何体的体积是( ) (A )8 (B )83(C )4 (D )438.已知点(1,1)A --.若曲线G 上存在两点,B C ,使A B C △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:① 3(03)y x x =-+≤≤; ② (0)y x =≤≤;③ 1(0)y x x=->.其中,Γ型曲线的个数是( ) (A )0 (B )1 (C )2 (D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9. 函数21()log f x x=的定义域是______.10.若双曲线221x ky -=的一个焦点是(3,0),则实数k =______.11.如图,P A 是圆O 的切线,A 为切点,PBC 是圆O的割线.若2P A B C=P B B C=______.12. 已知{}n a 是公比为2的等比数列,若316a a -=,则1a = ;22212111naaa+++= ______.13. 在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c.若b =4B π∠=,sin 5C =c = ;a = .14. 有限集合P 中元素的个数记作card()P .已知c a rd ()10M =,A M ⊆,B M ⊆,A B =∅ ,且card()2A =,card()3B =.若集合X 满足A X M ⊆⊆,则集合X 的个数是_____;若集合Y 满足Y M ⊆,且A Y ⊄,B Y ⊄,则集合Y 的个数是_____. (用数字作答)三、解答题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()sin cos f x x x x =+,π[,π]2x ∈.(Ⅰ)求()f x 的零点;(Ⅱ)求()f x 的最大值和最小值.16.(本小题满分13分)盒中装有7个零件,其中2个是使用过的,另外5个未经使用.(Ⅰ)从盒中每次随机抽取1个零件,每次观察后都将零件放回盒中,求3次抽取中恰有1次抽到使用过的零件的概率;(Ⅱ)从盒中随机抽取2个零件,使用后...放回盒中,记此时盒中使用过的零件个数为X ,求X 的分布列和数学期望.17.(本小题满分14分)如图,在直三棱柱111C B A ABC -中,12AB BC AA ==,90ABC ︒∠=,D 是BC 的中点.(Ⅰ)求证:1A B ∥平面1A D C ; (Ⅱ)求二面角1C AD C --的余弦值;(Ⅲ)试问线段11A B 上是否存在点E ,使AE 与1D C 成60︒角?若存在,确定E 点位置,若不存在,说明理由.18.(本小题满分13分)已知椭圆:C 22221(0)x y a b ab+=>>的一个焦点是(1,0)F ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设经过点F 的直线交椭圆C 于,M N 两点,线段M N 的垂直平分线交y 轴于点0(0,)P y ,求0y 的取值范围.19.(本小题满分14分)已知函数)1ln(21)(2x axx x f +--=,其中a ∈R .(Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.20.(本小题满分13分)已知数列12:,,,n n A a a a .如果数列12:,,,n n B b b b 满足1n b a =,11k k k k b a a b --=+-, 其中2,3,,k n = ,则称n B 为n A 的“衍生数列”.(Ⅰ)若数列41234:,,,A a a a a 的“衍生数列”是4:5,2,7,2B -,求4A ;(Ⅱ)若n 为偶数,且n A 的“衍生数列”是n B ,证明:n B 的“衍生数列”是n A ; (Ⅲ)若n 为奇数,且n A 的“衍生数列”是n B ,n B 的“衍生数列”是n C ,….依次将数列n A ,n B ,n C ,…的第(1,2,,)i i n = 项取出,构成数列:,,,i i i i a b c Ω .证明:i Ω是等差数列.北京市西城区2011 — 2012学年度第一学期期末高三数学(理科)参考答案及评分标准2012.1一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2. B ;3. D ;4. C ;5. D ;6. A ;7. D ;8. C .二、填空题:本大题共6小题,每小题5分,共30分. 9.{|01x x <<,或1}x >; 10.18; 11.12;12.2,1(14)3n--; 13.6; 14.256,672.注:12、13、14题第一问2分,第二问3分;9题结论正确但表示形式非集合,扣1分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解法一:(Ⅰ)解:令()0f x =,得 sin cos )0x x x ⋅+=, ………………1分所以sin 0x =,或tan 3x =-………………3分由 sin 0x =,π[,π]2x ∈,得πx =; ………………4分由 tan 3x =-π[,π]2x ∈,得5π6x =. ………………5分综上,函数)(x f 的零点为5π6或π.(Ⅱ)解:1π()1cos2sin 2sin(2)2232f x x x x =-+=-+)………………8分因为π[,π]2x ∈,所以π2π5π2[]333x -∈,. ………………9分当π2π233x -=,即π2x =时,)(x f ; ………………11分当π3π232x -=,即11π12x =时,)(x f 的最小值为12-+.………………13分解法二:(Ⅰ)解:1π()1cos2sin 2sin(2)2232f x x x x =-+=-+)………………3分 令()0f x =,得πsin(2)32x -=-. ………………4分因为π[,π]2x ∈,所以π2π5π2[]333x -∈,. ………………5分所以,当π4π233x -=,或π5π233x -=时,()0f x =. ………………7分即 5π6x =或πx =时,()0f x =.综上,函数)(x f 的零点为5π6或π. ………………9分(Ⅱ)解:由(Ⅰ)可知,当π2π233x -=,即π2x =时,)(x f; ………………11分当π3π232x -=,即11π12x =时,)(x f的最小值为12-+. ………………13分16.(本小题满分13分)(Ⅰ)解:记“从盒中随机抽取1个零件,抽到的是使用过的零件”为事件A ,则2()7P A =. ………………2分所以3次抽取中恰有1次抽到使用过的零件的概率12325150C ()()77343P ==. ……5分(Ⅱ)解:随机变量X 的所有取值为2,3,4. ………………7分2227C 1(2)C21P X ===; 115227C C 10(3)C21P X ===;2527C 10(4)C 21P X ===. ………………10分所以,随机变量X 的分布列为:………………11分11010242342121217E X =⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:连结1A C ,交1AC 于点O ,连结O D .由 111C B A ABC -是直三棱柱,得 四边形11AC C A 为矩形,O 为1A C 的中点. 又D 为BC 中点,所以O D 为1A BC △中位线, 所以 1A B ∥O D , ………………2分 因为 O D ⊂平面1A D C ,1A B ⊄平面1A D C , 所以 1A B ∥平面1A D C . ………………4分(Ⅱ)解:由111C B A ABC -是直三棱柱,且90ABC ︒∠=,故1,,BB BC BA 两两垂直.如图建立空间直角坐标系xyz B -. ………………5分 设2=BA ,则)0,0,1(),1,0,2(),0,2,0(),0,0,2(),0,0,0(1D C A C B . 所以 (1,2,0)A D =-,1(2,2,1)AC =-设平面1ADC 的法向量为=()x,y,z n ,则有10,0.n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩所以 20,220.x y x y z -=⎧⎨-+=⎩ 取1=y ,得)2,1,2(-=n . ………………7分易知平面A D C 的法向量为(0,0,1)=v . ………………8分 由二面角1C AD C --是锐角,得 ||2cos ,3⋅〈〉==n v n v n v. ………………9分所以二面角1C AD C --的余弦值为23.(Ⅲ)解:假设存在满足条件的点E .因为E 在线段11B A 上,)1,2,0(1A ,)1,0,0(1B ,故可设)1,,0(λE ,其中02λ≤≤. 所以 (0,2,1)A E λ=-,1(1,0,1)DC = . ………………11分因为AE 与1D C 成60︒角,所以1112A E D C A E D C ⋅=. ………………12分即12=,解得1λ=,舍去3λ=. ………………13分所以当点E 为线段11B A 中点时,AE 与1D C 成60︒角. ………………14分18.(本小题满分13分)(Ⅰ)解:设椭圆C 的半焦距是c .依题意,得 1c =. ………………1分 因为椭圆C 的离心率为12,所以22a c ==,2223b a c =-=. ………………3分故椭圆C 的方程为22143xy+=. ………………4分(Ⅱ)解:当M N x ⊥轴时,显然00y =. ………………5分当M N 与x 轴不垂直时,可设直线M N 的方程为(1)(0)y k x k =-≠. 由 22(1),3412,y k x x y =-⎧⎨+=⎩消去y 整理得 0)3(48)43(2222=-+-+k x k x k . ………………7分 设1122(,),(,)M x y N x y ,线段M N 的中点为33(,)Q x y ,则 2122834kx x k+=+. ………………8分所以 212324234x x kx k+==+,3323(1)34k y k x k-=-=+.线段M N 的垂直平分线方程为)434(1433222kkx kk k y +--=++.在上述方程中令0=x ,得kk kky 4314320+=+=. ………………10分当0k <时,34k k+≤-;当0k >时,34k k+≥.所以0012y -≤<,或0012y <≤. ………………12分综上,0y 的取值范围是[1212-. ………………13分19.(本小题满分14分) (Ⅰ)解:(1)(),(1,)1x a ax f x x x --'=∈-+∞+. ………………2分依题意,令(2)0f '=,解得 13a =. ………………3分经检验,13a =时,符合题意. ………………4分(Ⅱ)解:① 当0=a 时,()1x f x x '=+.故)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-. ………………5分 ② 当0a >时,令()0f x '=,得10x =,或211x a=-.当10<<a 时,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是1(0,1)a-;单调减区间是)0,1(-和1(1,)a-+∞. …6分当1=a 时,)(x f 的单调减区间是),1(+∞-. ………………7分 当1a >时,210x -<<,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是1(1,0)a-;单调减区间是1(1,1)a--和(0,)+∞. …8分③ 当0<a 时,)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-. ……9分 综上,当0a ≤时,)(x f 的增区间是(0,)+∞,减区间是)0,1(-; 当10<<a 时,()f x 的增区间是1(0,1)a-,减区间是)0,1(-和1(1,)a-+∞;当1=a 时,)(x f 的减区间是),1(+∞-; 当1a >时,()f x 的增区间是1(1,0)a-;减区间是1(1,1)a--和(0,)+∞.………………10分(Ⅲ)由(Ⅱ)知 0a ≤时,)(x f 在(0,)+∞上单调递增,由0)0(=f ,知不合题意. ………………11分当10<<a 时,)(x f 在(0,)+∞的最大值是1(1)f a -,由1(1)(0)0f f a->=,知不合题意. ………………12分当1≥a 时,)(x f 在(0,)+∞单调递减,可得)(x f 在[0,)+∞上的最大值是0)0(=f ,符合题意.所以,)(x f 在[0,)+∞上的最大值是0时,a 的取值范围是[1,)+∞. …………14分20.(本小题满分13分)(Ⅰ)解:4:2,1,4,5A . ………………3分 (Ⅱ)证法一:证明:由已知,111()n b a a a =--,212121()n b a a b a a a =+-=+-.因此,猜想1(1)()ii i n b a a a =+--. ………………4分① 当1i =时,111()n b a a a =--,猜想成立;② 假设*()i k k =∈N 时,1(1)()kk k n b a a a =+--.当1i k =+时,11k k k k b a a b ++=+-11[(1)()]kk k k n a a a a a +=+-+-- 11(1)()k k k k n a a a a a +=+---- 111(1)()k k n a a a ++=+--故当1i k =+时猜想也成立.由 ①、② 可知,对于任意正整数i ,有1(1)()ii i n b a a a =+--. ………………7分设数列n B 的“衍生数列”为n C ,则由以上结论可知111(1)()(1)()(1)()iiii i n i n n c b b b a a a b b =+--=+--+--,其中1,2,3,,i n = .由于n 为偶数,所以11(1)()nn n n b a a a a =+--=,所以 11(1)()(1)()i i i i n n i c a a a a a a =+--+--=,其中1,2,3,,i n = .因此,数列n C 即是数列n A . ………………9分 证法二: 因为 1n b a =,1212b b a a +=+, 2323b b a a +=+,……11n n n n b b a a --+=+,由于n 为偶数,将上述n 个等式中的第2,4,6,,n 这2n 个式子都乘以1-,相加得11223112231()()()()()()n n n n n b b b b b b b a a a a a a a ---+++--+=-+++--+即1n b a -=-,1n b a =. ………………7分由于1n a b =,11(2,3,,)i i i i a b b a i n --=+-= ,根据“衍生数列”的定义知,数列n A 是n B 的“衍生数列”. ………………9分(Ⅲ)证法一:证明:设数列n X ,n Y ,n Z 中后者是前者的“衍生数列”.欲证i Ω成等差数列,只需证明,,i i ix y z 成等差数列,即只要证明2(1,2,3,,)i i i y x z i n =+= 即可. ……10分由(Ⅱ)中结论可知 1(1)()ii i n y x x x =+--,1(1)()ii i n z y y y =+--11(1)()(1)()iii n n x x x y y =+--+--11(1)()(1)[(1)()]i i ni n n n n x x x x x x x =+--+----- 11(1)()(1)()iii n n x x x x x =+--+-- 12(1)()i i n x x x =+--,所以,122(1)()2ii i i n i x z x x x y +=+--=,即,,i i i x y z 成等差数列,所以i Ω是等差数列. ………………13分证法二:因为 11(2,3,4,,)i i i i b a a b i n --=+-= , 所以 11()(2,3,4,,)i i i i b a b a i n ---=--= .所以欲证i Ω成等差数列,只需证明1Ω成等差数列即可. ………………10分 对于数列n A 及其“衍生数列”n B , 因为 1n b a =,1212b b a a +=+, 2323b b a a +=+,……11n n n n b b a a --+=+,由于n 为奇数,将上述n 个等式中的第2,4,6,,1n - 这12n -个式子都乘以1-,相加得11223112231()()()()()()n n n n n b b b b b b b a a a a a a a ---+++-++=-+++-++即112n n n n b a a a a a =-+=-.设数列n B 的“衍生数列”为n C , 因为 1n b a =,112n n c b a a ==-,所以 1112b a c =+, 即111,,a b c 成等差数列. 同理可证,111111,,;,,,b c d c d e 也成等差数列. 即 1Ω是等差数列.所以 i Ω成等差数列. ………………13分。

2011年北京西城高三期末数学理

2011年北京西城高三期末数学理

西城区2010 — 2011学年度第一学期期末试卷高三数学(理科) 2011.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B = (A ){13}x x -≤< (B ){13}x x -<< (C ){1}x x <-(D ){3}x x >2. 已知点(1,1)A -,点(2,)B y ,向量=(1,2)a ,若//ABa ,则实数y 的值为(A )5 (B )6(C )7(D )83.已知A B C ∆中,1,a b ==45B =,则角A 等于(A )150(B )90 (C )60 (D )304.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是 (A )cos ρθ=(B )sin ρθ=(C )cos 1ρθ=(D )sin 1ρθ=5. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是 (A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞6.设等比数列{}n a 的前n 项和为n S ,若0852=+a a ,则下列式子中数值不能确定的是 (A )35a a (B )35S S (C )nn a a 1+ (D )nn S S 1+7.如图,四边形A B C D 中,1A B A D C D ===,BD =BD C D ⊥.将四边形A B C D 沿对角线B D 折成四面体A BC D '-,使平面A BD '⊥平面BC D ,则下列结论正确的是(A )A C B D '⊥(B )90BA C '∠=(C )C A '与平面A B D '所成的角为30 (D )四面体A BC D '-的体积为138.对于函数①1()45f x x x =+-,②21()log ()2x f x x =-,③()cos(2)cos f x x x =+-, 判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是(A )① (B )②(C )①③(D )①②第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.i 为虚数单位,则22(1i)=+______.10.在5(2)x +的展开式中,2x 的系数为_____.11. 若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为_____.12.如图所示,过圆C 外一点P 做一条直线与圆C 交于A B ,两点,2B A A P =,P T 与圆C 相切于T 点.已知圆C 的半径为2,30CAB ∠=,则P T =_____.13.双曲线22:1C x y -=的渐近线方程为_____;若双曲线C 的右顶点为A ,过A 的直线l 与双曲线C 的两条渐近线交于,P Q 两点,且2PA AQ =,则直线l 的斜率为_____.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 则坐标原点O与直线20x y +-=上一点的“折线距离”的最小值是____; 圆221x y +=上一点与直线20x y +-=上一点的“折线距离”的最小值是____.AB CD三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P 在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11AC C A 均为正方形,∠=90BAC ,点D 是棱11B C 的中点.(Ⅰ)求证:1A D ⊥平面11BB C C ; (Ⅱ)求证:1//A B 平面1A D C ; (Ⅲ)求二面角1D A C A --的余弦值.17.(本小题满分13分)一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率;(Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列.BC 1B 1A 1D18.(本小题满分13分)已知椭圆12222=+by ax (0>>b a )的右焦点为2(3,0)F ,离心率为e .(Ⅰ)若2e =,求椭圆的方程;(Ⅱ)设直线y kx =与椭圆相交于A ,B 两点,,M N 分别为线段22,AF BF 的中点. 若坐标原点O 在以M N 为直径的圆上,且2322≤<e ,求k 的取值范围.19.(本小题满分14分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R .(Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.20.(本小题满分14分)已知数列}{n a ,{}n b 满足n n n a a b -=+1,其中1,2,3,n = . (Ⅰ)若11,n a b n ==,求数列}{n a 的通项公式; (Ⅱ)若11(2)n n n b b b n +-=≥,且121,2b b ==.(ⅰ)记)1(16≥=-n a c n n ,求证:数列}{n c 为等差数列; (ⅱ)若数列}{na n 中任意一项的值均未在该数列中重复出现无数次. 求首项1a 应满足的条件.西城区2010 — 2011学年度第一学期期末高三数学参考答案及评分标准(理科) 2011.1一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9.i - 10. 80 11. 412.3 13. 0x y ±=,3± 14.,2注:13、14题第一问2分,第二问3分. 三、解答题:(本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.)15.(本小题满分13分)解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin 2α=-,1cos 2α=, ………………2分所以22()22sin cos 2sin f αααααα=-=- ………………4分21(2(3222=-⨯-⨯-=-. ………………5分(Ⅱ)2()22sin f x x x =-2cos 21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分16.(本小题满分13分)(Ⅰ)证明:因为侧面11ABB A ,11AC C A 均为正方形,所以11,AA AC AA AB ⊥⊥,所以1A A ⊥平面ABC ,三棱柱111ABC A B C -是直三棱柱. ………………1分 因为1A D ⊂平面111A B C ,所以11C C A D ⊥, ………………2分 又因为1111A B A C =,D 为11B C 中点,所以111A D B C ⊥. ……………3分 因为1111C C B C C = ,所以1A D ⊥平面11BB C C . ……………4分 (Ⅱ)证明:连结1AC ,交1A C 于点O ,连结O D ,因为11AC C A 为正方形,所以O 为1AC 中点, 又D 为11B C 中点,所以O D 为11A B C ∆中位线, 所以1//A B O D , ………………6分 因为O D ⊂平面1A D C ,1AB ⊄平面1A D C , 所以1//A B 平面1A D C . ………………8分(Ⅲ)解: 因为侧面11ABB A ,11AC C A 均为正方形, 90BAC ∠= ,所以1,,AB AC AA 两两互相垂直,如图所示建立直角坐标系A xyz -.设1AB =,则111(0,10),(1,0,0),(0,0,1),(,,1)22C B AD ,.1111(,,0),(0,11)22A D A C ==- ,, ………………9分设平面1A D C 的法向量为=()x,y,z n ,则有 1100A D A C ⋅=⎧⎨⋅=⎩n n ,00x y y z +=⎧⎨-=⎩, x y z =-=-, 取1x =,得(1,1,1)=--n . ………………10分又因为AB ⊥平面11AC C A ,所以平面11AC C A 的法向量为(1,00)A B =,,………11分cos ,3A B A B A B⋅〈〉===n n n , ………………12分因为二面角1D A C A --是钝角,所以,二面角1D A C A --的余弦值为3-. ………………13分17.(本小题满分13分)解:(Ⅰ)设先后两次从袋中取出球的编号为,m n ,则两次取球的编号的一切可能结果),(n m 有6636⨯=种, ………………2分其中和为6的结果有(1,5),(5,1),(2,4),(4,2),(3,3),共5种, 则所求概率为536. ………………4分(Ⅱ)每次从袋中随机抽取2个球,抽到编号为6的球的概率152613C p C==.………………6分所以,3次抽取中,恰有2次抽到6号球的概率为2223122(1)3()()339C p p -=⨯=. ………………8分(Ⅲ)随机变量X 所有可能的取值为3,4,5,6. ………………9分33361(3)20C P X C===,23363(4)20C P X C ===,243663(5)2010C P X C ====,2536101(6)202C P X C ====. ………………12分所以,随机变量X………………13分18、(本小题满分13分)解:(Ⅰ)由题意得32c c a=⎧⎪⎨=⎪⎩a =………………2分结合222a b c =+,解得212a =,23b =. ………………3分所以,椭圆的方程为131222=+yx. ………………4分(Ⅱ)由22221,,x ya b y kx ⎧+=⎪⎨⎪=⎩得222222()0b a k x a b +-=.设1122(,),(,)A x y B x y .所以2212122220,a bx x x x b a k-+==+, ………………6分依题意,O M O N ⊥,易知,四边形2O M F N 为平行四边形,所以22AF BF ⊥, ………………7分 因为211(3,)F A x y =- ,222(3,)F B x y =-,所以222121212(3)(3)(1)90F A F B x x y y k x x ⋅=--+=++=. ………………8分即222222(9)(1)90(9)a a k a k a --++=+-, ………………9分将其整理为 42224242188********a a k a aa a-+==---+-. ………………10分因为2322≤<e,所以a ≤<21218a ≤<. ………………11分所以218k ≥,即(,],]44k ∈-∞-+∞ . ………………13分19.(本小题满分14分) 解:2()(21)f x ax a x'=-++(0)x >. ………………2分(Ⅰ)(1)(3)f f ''=,解得23a =. ………………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………………5分①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………………6分②当102a <<时,12a>,在区间(0,2)和1(,)a+∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a+∞,单调递减区间是1(2,)a. …………7分③当12a =时,2(2)()2x f x x-'=, 故()f x 的单调递增区间是(0,)+∞. ………8分④当12a >时,102a<<,在区间1(0,)a和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………9分(Ⅲ)由已知,在(0,2]上有m ax m ax ()()f x g x <. ………………10分 由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增,故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤. ……………11分②当12a >时,()f x 在1(0,]a上单调递增,在1[,2]a上单调递减,故m ax 11()()22ln 2f x f a aa==---. 由12a >可知11ln lnln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,m ax ()0f x <, ………………13分 综上所述,ln 21a >-. ………………14分20.(本小题满分14分) 解:(Ⅰ)当2≥n 时,有121321()()()n n n a a a a a a a a -=+-+-++- 1121n a b b b -=++++ …………2分2(1)11222n nnn -⨯=+=-+. ………………3分又因为11=a 也满足上式,所以数列}{n a 的通项为2122n nn a =-+.………………4分(Ⅱ)(ⅰ)因为对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====, ………………5分所以 1656161661626364n n n n n n n n n n c c a a b b b b b b ++--++++-=-=+++++111221722=+++++=(1)n ≥,所以数列}{n c 为等差数列. ………………7分 (ⅱ)设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1666661626364657(0)n n n i n i n i n i n i n i n i n i c c a a b b b b b b n +++++++++++++++-=-=+++++=≥所以数列}{6i n a +均为以7为公差的等差数列. ………………9分设6777(6)7766666666i i k i i k iii k a a a a kf k i i k i k i k+++--+====+++++,(其中i k n +=6)0(≥k ,i 为}6,5,4,3,2,1{中的一个常数),当76i i a =时,对任意的i k n +=6有na n 76=; ………………10分当76i i a ≠时,17771166()()6(1)666(1)6i i k k iiia a i f f a k i k i k i k i+---=-=--++++++ 76()()6[6(1)](6)i i a k i k i -=-+++………………11分①若76i i a >,则对任意的k ∈N 有k k f f <+1,所以数列}6{6ik a i k ++为单调减数列; ②若76i i a <,则对任意的k ∈N 有k k f f >+1,所以数列}6{6ik a ik ++为单调增数列;………………12分综上:设集合741111{}{}{}{}{}{}632362B =-- 74111{,,,,}63236=--,当B a ∈1时,数列}{n an 中必有某数重复出现无数次.当B a ∉1时,}6{6ik ai k ++ )6,5,4,3,2,1(=i 均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列}{nan 中任意一项的值均未在该数列中重复出现无数次. ………14分仅供参考angeikong。

北京市西城区-第一学期期末考试高三数学理及答案

北京市西城区-第一学期期末考试高三数学理及答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP ,则实数m 的取值范围是( )(A )(4,8) (B )(4,) (C )(0,4)(D )(8,)侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)2 x3ya321258zE FCB A已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p,16q ,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则CAB AB AB ,且A ,B 独立.由上表可知, 1()2P A ,()P B p .所以()()()()P C P AB P AB P AB ……………… 5分111(1)222p pp1122p . ……………… 6分 因为114()225P C p , 所以35p. ……………… 7分 又因为113p q ,0q ≥,所以23p ≤.所以3253p ≤. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >, 所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分) (Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分 因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k )8)(8(32)(102212121--++-=x x k x x k x kx 0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k , 所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增.故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。

北京市西城区2011届高三上学期期末考试语文试题(WORD精校版)

北京市西城区2011届高三上学期期末考试语文试题(WORD精校版)

北京市西城区2011届高三第一学期期末考试试题语文试题注意事项:1.本试卷分第一部分和第二部分。

共150分,考试时间为150分钟。

2.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上指定的位置。

3.作答时,将答案写在答题纸上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题纸一并交回。

第一部分(27分)一、本大题共5小题,每小题3分,共15分。

1.下列词语中,字形和加点的字的读音全都正确....的一项是()A.煞风景英雄倍出挟.(xiā)制命运多舛.(chuǎn)B.舶来品貌和神离纰.(pī)漏不着.(zháo)边际C.协奏曲鞭辟入里混.(hùn)淆西学东渐.(jiān)D.度难关铤而走险慰藉.(jí)铩.(shā)羽而归2.下列句子中,加点的成语使用恰当的一项是()A.近年很多名牌大学毕业生,除了书本知识外便身无长物....,被认为缺乏一技之长而在现代职场中难以立足。

B.中华民族园中风姿绰约....的民族歌舞表演,令来自世界各地的游客们如醉如痴,给大家留下了美好的印象。

C.国际社会纷纷要求中国运用对朝鲜的影响力促使这个国家冷静下来,以避免其与韩国在冲突中两败俱伤....。

D.上海世博会会徽,形似汉字“世”,并与数字“2010”一拍即合....,充分反映了多元文化相融合的办会理念。

3.下列句子中,没有语病的一项是()A.中华民族是文化遗产历史悠久的证明,我们应当秉持对古代文明成果的珍惜。

B.如何在肯定草根文化的同时,不过分鼓吹偶像崇拜,是值得媒体深思的问题。

C.近年来中国已建成世界上最大的高铁网,目前正在加快高铁设备的出口规模。

D.第16届亚运会在广州隆重举行,各大报纸都关于亚运会开幕式作了详细报道。

4.下列有关文学常识的表述,有错误...的一项是()A.先秦诸子散文长于论说,如《孟子》《庄子》《荀子》等;先秦历史散文则长于叙事,如《左传》《国语》《战国策》等。

北京市西城区2011年高三一模试卷 (理数)

北京市西城区2011年高三一模试卷 (理数)

北京市西城区2011年高三一模试卷数 学(理科) 2011. 4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合{5}A x x =∈<Z ,{20}B x x =-≥,则A B 等于 (A )(2,5)(B )[2,5)(C ){2,3,4}(D ){3,4,5}2.下列给出的函数中,既不是奇函数也不是偶函数的是 (A )2xy =(B )2y x x =-(C )2y x = (D )3y x =3. 设3log 2=a ,3log 4=b ,5.0=c ,则 (A )a b c <<(B )b c a <<(C )c a b <<(D )b a c <<4.设向量(1,sin )θ=a ,(3sin ,1)θ=b ,且//a b ,则cos 2θ等于 (A )31-(B )32-(C )32 (D )31 5. 阅读右侧程序框图,为使输出的数据为31, 则①处应填的数字为 (A )4 (B )5 (C )6 (D )76.已知函数①x x y cos sin +=,②x x y cos sin 22=,则下列结论正确的是(A )两个函数的图象均关于点(,0)4π-成中心对称 (B )两个函数的图象均关于直线4x π=-成中心对称(C )两个函数在区间(,)44ππ-上都是单调递增函数(D )两个函数的最小正周期相同7.已知曲线1:(0)C y x x=>及两点11(,0)A x 和22(,0)A x ,其中210x x >>.过1A ,2A 分别作x 轴的垂线,交曲线C 于1B ,2B 两点,直线12B B 与x 轴交于点33(,0)A x ,那么 (A )312,,2x x x 成等差数列 (B )312,,2x x x 成等比数列 (C )132,,x x x 成等差数列 (D )132,,x x x 成等比数列8.如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是 (A )①②(B )②③(C )③(D )③④第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 在复平面内,复数2i1i-对应的点到原点的距离为_____. 10.如图,从圆O 外一点P 引圆O 的切线PA 和割线PBC ,已知PA =4PC =,圆心O 到BC圆O 的半径为_____. 11.已知椭圆:C cos ,()2sin x y θθθ=⎧∈⎨=⎩R 经过点1(,)2m ,则m =______,离心率e =______.12.一个棱锥的三视图如图所示,则这个棱锥的体积为_____.OABDC正(主)视图俯视图侧(左)视图13.某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种.14.已知数列{}n a 的各项均为正整数,对于⋅⋅⋅=,3,2,1n ,有1135,2n n n nn n kk a a a a a a +++⎧⎪=⎨⎪⎩为奇数为偶数.其中为使为奇数的正整数,, 当111a =时,100a =______;若存在*m ∈N ,当n m >且n a 为奇数时,n a 恒为常数p ,则p 的值为______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)设ABC ∆中的内角A ,B ,C 所对的边长分别为a ,b ,c ,且54cos =B ,2=b . (Ⅰ)当35=a 时,求角A 的度数; (Ⅱ)求ABC ∆面积的最大值.16.(本小题满分13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为11,,23p .且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为14. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求p 的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X ,求X 的分布列和数学期望EX .17.(本小题满分13分)如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为060.(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求二面角D BE F --的余弦值;(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.A BCD F E18. (本小题满分14分)已知函数2(1)()a x f x x-=,其中0a >. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若直线10x y --=是曲线()y f x =的切线,求实数a 的值; (Ⅲ)设2()ln ()g x x x x f x =-,求()g x 在区间[1,e ]上的最大值.(其中e 为自然对数的底数)19. (本小题满分14分)已知抛物线22(0)y px p =>的焦点为F ,过F 的直线交y 轴正半轴于点P ,交抛物线于,A B 两点,其中点A 在第一象限.(Ⅰ)求证:以线段FA 为直径的圆与y 轴相切;(Ⅱ)若1FA AP λ= ,2BF FA λ= ,1211[,]42λλ∈,求2λ的取值范围.20.(本小题满分13分)定义=),,,(21n a a a τ12231||||||n n a a a a a a --+-++- 为有限项数列{}n a 的波动强度.(Ⅰ)当(1)n n a =-时,求12100(,,,)a a a τ ;(Ⅱ)若数列,,,a b c d 满足()()0a b b c -->,求证:(,,,)(,,,)a b c d a c b d ττ≤; (Ⅲ)设{}n a 各项均不相等,且交换数列{}n a 中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列{}n a 一定是递增数列或递减数列.北京市西城区2011年高三一模试卷参考答案及评分标准数学(理科) 2011.4一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9. 2 10. 2 11. 415±12. 12 13. 60,48 14.62;1或5 注:11题,13题,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分) 解:(Ⅰ)因为54cos =B ,所以53sin =B . ……………………2分 因为35=a ,2=b ,由正弦定理B b A a sin sin =可得21sin =A . …………………4分因为b a <,所以A 是锐角,所以o30=A . ……………………6分(Ⅱ)因为ABC ∆的面积ac B ac S 103sin 21==, ……………………7分 所以当ac 最大时,ABC ∆的面积最大.因为B ac c a b cos 2222-+=,所以ac c a 58422-+=. ……………………9分 因为222a c ac +≥,所以8245ac ac -≤, ……………………11分所以10≤ac ,(当a c == ……………………12分 所以ABC ∆面积的最大值为3. ……………………13分16.(本小题满分13分)解:记“甲、乙、丙三人各自破译出密码”分别为事件321,,A A A ,依题意有12311(),(),(),23P A P A P A p ===且321,,A A A 相互独立.(Ⅰ)甲、乙二人中至少有一人破译出密码的概率为121()P A A -⋅1221233=-⨯=(Ⅱ)设“三人中只有甲破译出密码”为事件B ,则有()P B =123()P A A A ⋅⋅=121(1)233p p -⨯⨯-=,分 所以1134p -=,14p =. ……………………7分 (Ⅲ)X 的所有可能取值为3,2,1,0. ……………………8分所以1(0)4P X ==, (1)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅111312111423423424=+⨯⨯+⨯⨯=, (2)P X ==P 123()A A A ⋅⋅+P 123()A A A ⋅⋅+P 123()A A A ⋅⋅11312111112342342344=⨯⨯+⨯⨯+⨯⨯=, (3)P X ==P 123()A A A ⋅⋅=111123424⨯⨯= . ……………………11分X ……………………12分所以,1111113()012342442412E X =⨯+⨯+⨯+⨯=. ……………………13分17.(本小题满分13分)(Ⅰ)证明: 因为DE ⊥平面ABCD ,所以AC DE ⊥. ……………………2分 因为ABCD 是正方形, 所以BD AC ⊥,从而AC ⊥平面BDE . ……………………4分 (Ⅱ)解:因为DE DC DA ,,两两垂直,所以建立空间直角坐标系xyz D -如图所示.因为BE 与平面ABCD 所成角为060,即60DBE ∠=所以3=DBED. 由3=AD可知DE =AF ………………6分 则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C ,所以(0,BF =-,(3,0,EF =-, ………………7分设平面BEF 的法向量为=n (,,)x y z ,则00BF EF ⎧⋅=⎪⎨⋅=⎪⎩n n,即3030y x ⎧-=⎪⎨-=⎪⎩,令z ==n . …………………8分因为AC ⊥平面BDE ,所以CA 为平面BDE 的法向量,(3,3,0)CA =-,所以cos ,CA CA CA ⋅〈〉===n n n . …………………9分 因为二面角为锐角,所以二面角D BE F --的余弦值为1313. ………………10分 (Ⅲ)解:点M 是线段BD 上一个动点,设(,,0)M t t .则(3,,0)AM t t =-,因为//AM 平面BEF ,所以AM ⋅n 0=, …………………11分即4(3)20t t -+=,解得2=t . …………………12分 此时,点M 坐标为(2,2,0),13BM BD =,符合题意. …………………13分18. (本小题满分14分) 解:(Ⅰ)3(2)()a x f x x-'=,(0x ≠), ……………3分 在区间(,0)-∞和(2,)+∞上,()0f x '<;在区间(0,2)上,()0f x '>.所以,()f x 的单调递减区间是(,0)-∞和(2,)+∞,单调递增区间是(0,2). ………4分(Ⅱ)设切点坐标为00(,)x y ,则002000030(1)10(2)1a x y x x y a x x -⎧=⎪⎪⎪--=⎨⎪-⎪=⎪⎩……………7分(1个方程1分)解得01x =,1a =. ……………8分(Ⅲ)()g x =ln (1)x x a x --,则()ln 1g x x a '=+-, …………………9分 解()0g x '=,得1ea x -=,所以,在区间1(0,e )a -上,()g x 为递减函数,在区间1(e ,)a -+∞上,()g x 为递增函数. ……………10分 当1e1a -≤,即01a <≤时,在区间[1,e]上,()g x 为递增函数,所以()g x 最大值为(e)e e g a a =+-. ………………11分当1ee a -≥,即2a ≥时,在区间[1,e]上,()g x 为递减函数,所以()g x 最大值为(1)0g =. ………………12分当11<e <e a -,即12a <<时,()g x 的最大值为(e)g 和(1)g 中较大者;(e)(1)e e 0g g a a -=+->,解得ee 1a <-,所以,e1e 1a <<-时,()g x 最大值为(e)e e g a a =+-, …………………13分e2e 1a ≤<-时,()g x 最大值为(1)0g =. …………………14分 综上所述,当e 0e 1a <<-时,()g x 最大值为(e)e e g a a =+-,当ee 1a ≥-时,()g x 的最大值为(1)0g =.19. (本小题满分14分) 解:(Ⅰ)由已知(,0)2pF ,设11(,)A x y ,则2112y px =, 圆心坐标为112(,)42x p y +,圆心到y 轴的距离为124x p+, …………………2分 圆的半径为1121()2224FAx p px +=⨯--=, …………………4分 所以,以线段FA 为直径的圆与y 轴相切. …………………5分(Ⅱ)解法一:设022(0,),(,)P y B x y ,由1FA AP λ= ,2BF FA λ=,得111101(,)(,)2p x y x y y λ-=--,22211(,)(,)22p px y x y λ--=-, …………………6分所以1111101,()2px x y y y λλ-=-=-,221221(),22p px x y y λλ-=-=-, …………………8分 由221y y λ=-,得222221y y λ=.又2112y px =,2222y px =,所以 2221x x λ=. …………………10分代入221()22p p x x λ-=-,得22121()22p p x x λλ-=-,2122(1)(1)2px λλλ+=+, 整理得122p x λ=, …………………12分代入1112p x x λ-=-,得122222p p pλλλ-=-, 所以12211λλλ=-, …………………13分 因为1211[,]42λλ∈,所以2λ的取值范围是4[,2]3. …………………14分解法二:设),(),,(2211y x B y x A ,:2pAB x my =+, 将2px my =+代入22y px =,得2220y pmy p --=, 所以212y y p =-(*), …………………6分由1FA AP λ= ,2BF FA λ=,得111101(,)(,)2p x y x y y λ-=--,22211(,)(,)22p px y x y λ--=-, …………………7分 所以,1111101,()2px x y y y λλ-=-=-,221221(),22p px x y y λλ-=-=-, …………………8分 将122y y λ-=代入(*)式,得2212p y λ=, …………………10分所以2122p px λ=,122p x λ=. …………………12分代入1112p x x λ-=-,得12211λλλ=-. …………………13分 因为1211[,]42λλ∈,所以2λ的取值范围是4[,2]3. …………………14分20.(本小题满分13分)(Ⅰ)解:12100122399100(,,,)||||||a a a a a a a a a τ=-+-++- ………………1分222299198=+++=⨯= . ………………3分(Ⅱ)证明:因为(,,,)||||||a b c d a b b c c d τ=-+-+-,(,,,)||||||a c b d a c c b b d τ=-+-+-,所以(,,,)(,,,)||||||||a b c d a c b d a b c d a c b d ττ-=-+-----. ……………4分 因为()()0a b b c -->,所以a b c >>,或a b c <<. 若a b c >>,则(,,,)(,,,)||||a b c d a c b d a b c d a c b d ττ-=-+--+--||||c b c d b d =-+---当b c d >>时,上式()2()0c b c d b d c b =-+---=-<, 当b d c ≥≥时,上式()2()0c b d c b d d b =-+---=-≤, 当d b c >>时,上式()0c b d c d b =-+---=,即当a b c >>时,(,,,)(,,,)0a b c d a c b d ττ-≤. ……………………6分若a b c <<,则(,,,)(,,,)||||a b c d a c b d b a c d c a b d ττ-=-+--+--,||||0b c c d b d =-+---≤.(同前)所以,当()()0a b b c -->时,(,,,)(,,,)a b c d a c b d ττ≤成立. …………………7分(Ⅲ)证明:由(Ⅱ)易知对于四个数的数列,若第三项的值介于前两项的值之间,则交换第二项与第三项的位置将使数列波动强度减小或不变.(将此作为引理)下面来证明当12a a >时,{}n a 为递减数列.(ⅰ)证明23a a >.若231a a a >>,则由引理知交换32,a a 的位置将使波动强度减小或不变,与已知矛盾.若2a a a >>31,则1212212121(,,)||||||||(,,)a a a a a a a a a a a a a a ττ=-+->-+-=3333,与已知矛盾.所以,321a a a >>. ………………………9分(ⅱ)设12(32)i a a a i n >>>≤≤- ,证明1i i a a +>.若i i i a a a >>+-11,则由引理知交换1,+i i a a 的位置将使波动强度减小或不变,与已知矛盾. 若i i i a a a >>-+11,则211211(,,,)(,,,)i i i i i i i i a a a a a a a a ττ--+--+=,与已知矛盾.所以,1+>i i a a . …………………11分 (ⅲ)设121n a a a ->>> ,证明1n n a a ->. 若1n n a a ->,考查数列121,,,,n n a a a a - ,则由前面推理可得122n n n a a a a -->>>> ,与121n a a a ->>> 矛盾.所以,1n n a a ->. …………………12分 综上,得证.同理可证:当12a a <时,有{}n a 为递增数列. ……………………13分。

2023-2024学年北京市西城区高三(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高三(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目 1.已知集合A ={x |﹣1<x <3},B ={x |x 2≥4},则A ∪B =( ) A .(﹣1,+∞)B .(﹣1,2]C .(﹣∞,﹣2]∪(﹣1,+∞)D .(﹣∞,﹣2]∪(﹣1,3)2.在复平面内,复数z =i−2i的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,b ∈R ,且a >b ,则( ) A .1a <1bB .tan a >tan bC .3﹣a <2﹣bD .a |a |>b |b |4.已知双曲线C 的一个焦点是F 1(0,2),渐近线为y =±√3x ,则C 的方程是( ) A .x 2−y 23=1B .x 23−y 2=1C .y 2−x 23=1D .y 23−x 2=15.已知点O (0,0),点P 满足|PO |=1.若点A (t ,4),其中t ∈R ,则|P A |的最小值为( ) A .5B .4C .3D .26.在△ABC 中,∠B =60°,b =√7,a ﹣c =2,则△ABC 的面积为( ) A .3√32B .3√34 C .32D .347.已知函数f(x)=ln1+x1−x,则( ) A .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称轴B .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称中心C .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称轴D .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称中心 8.设a →,b →是非零向量,则“|a →|<|b →|”是“|a →•b →|<|b →|2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.设{a n }是首项为正数,公比为q 的无穷等比数列,其前n 项和为S n .若存在无穷多个正整数k ,使S k ≤0,则q 的取值范围是( ) A .(﹣∞,0)B .(﹣∞,﹣1]C .[﹣1,0)D .(0,1)10.如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以固定一块平板式太阳能电池板A 1B 1C 1D 1E 1F 1.若其中三根柱子AA 1,BB 1,CC 1的高度依次为12m ,9m ,10m ,则另外三根柱子的高度之和为( )A .47mB .48mC .49mD .50m二、填空题共5小题,每小题5分,共25分。

北京西城区2011届高三第一学期期末考试数学(理)试题及答案

北京市西城区2010—2011学年度高三第一学期期末考试数学(理)试题第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B =( )A .{13}x x -≤<B .{13}x x -<<C .{1}x x <-D .{3}x x >2.已知点(1,1)A -,点(2,)B y ,向量=(1,2)a ,若//ABa ,则实数y 的值为 ( )A .5B .6C .7D .8 3.已知ABC ∆中,1,a b =45B =,则角A 等于 ( )A .150B .90C .60D .304.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( )A .cos ρθ=B .sin ρθ=C .cos 1ρθ=D .sin 1ρθ=5.阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是( ) A .(,2]-∞-B .[2,1]--C .[1,2]-D .[2,)+∞6.设等比数列{}n a 的前n 项和为n S ,若0852=+a a ,则下列式子中数值不能确定的是( )A .35a a B .35S S C .nn a a 1+ D .nn S S 1+ 7.如图,四边形ABCD 中,1AB AD CD ===,BD =BD CD ⊥.将四边形ABCD 沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则下列结论正确的是( ) A .A C BD '⊥B .90BA C'∠=C .CA '与平面A BD '所成的角为30D .四面体A BCD '-的体积为138.对于函数①1()45f x x x =+-,②21()log ()2xf x x =-,③()cos(2)cos f x x x =+-, 判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是A .①B .②C .①③D .①②第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.i 为虚数单位,则22(1i)=+______.10.在5(2)x +的展开式中,2x 的系数为_____.AB CD11.若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为_____.12.如图所示,过圆C 外一点P 做一条直线与圆C 交于A B ,两点,2BA AP =,PT 与圆C 相切于T 点.已知圆C 的半径为2,30CAB ∠= ,则PT =_____.13.双曲线22:1C x y -=的渐近线方程为_____;若双曲线C 的右顶点为A ,过A 的直线l 与双曲线C 的两条渐近线交于,P Q 两点,且2PA AQ =,则直线l 的斜率为_____.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”.则坐标原点O与直线20x y +-=上一点的“折线距离”的最小值是____;圆221x y +=上一点与直线20x y +-上一点的“折线距离”的最小值是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P 在角α的终边上,求()f α的值;(Ⅱ)若[,]63x ππ∈-,求()f x 的值域.16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11ACC A 均为正方形,∠=90BAC,点D 是棱11B C 的中点. (Ⅰ)求证:1A D ⊥平面11BB C C ;(Ⅱ)求证:1//AB 平面1A DC ; (Ⅲ)求二面角1D AC A --的余弦值.17.(本小题满分13分) 一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率;(Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列. 18.(本小题满分13分)已知椭圆12222=+by a x (0>>b a )的右焦点为2(3,0)F ,离心率为e .A BC C 1B 1A 1D(Ⅰ)若2e =,求椭圆的方程;(Ⅱ)设直线y kx =与椭圆相交于A ,B 两点,,M N 分别为线段22,AF BF 的中点.若坐标原点O 在以MN 为直径的圆上,且2322≤<e ,求k 的取值范围.19.(本小题满分14分) 已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.20.(本小题满分14分) 已知数列}{n a ,{}n b 满足n n n a a b -=+1,其中1,2,3,n = . (Ⅰ)若11,n a b n ==,求数列}{n a 的通项公式;(Ⅱ)若11(2)n n n b b b n +-=≥,且121,2b b ==.(ⅰ)记)1(16≥=-n a c n n ,求证:数列}{n c 为等差数列; (ⅱ)若数列}{na n中任意一项的值均未在该数列中重复出现无数次.求首项1a 应满足的条件.参考答案(理科) 2011.1一、选择题:本大题共8小题,每小题5分,共40分.题号1 2 3 4 5 6 7 8 答案A C D CB D B D二、填空题:本大题共6小题,每小题5分,共30分. 9.i - 10.80 11.412.3 13.0x y ±=,3± 142注:13、14题第一问2分,第二问3分. 三、解答题:(本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.) 15.(本小题满分13分)解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin 2α=-,1cos 2α=, ………………2分所以22()22sin cos 2sin f αααααα=-=- ………………4分21(2(3222=-⨯-⨯-=-. ………………5分(Ⅱ)2()22sin f x x x =-cos21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分16.(本小题满分13分)(Ⅰ)证明:因为侧面11ABB A ,11ACC A 均为正方形, 所以11,AA AC AA AB ⊥⊥,所以1AA ⊥平面ABC ,三棱柱111ABC A B C -是直三棱柱. ………………1分 因为1A D ⊂平面111A B C ,所以11CC A D ⊥, ………………2分又因为1111A B AC =,D 为11B C 中点, 所以111A D B C ⊥. ……………3分 因为1111CC B C C = ,所以1A D ⊥平面11BB C C . ……………4分 (Ⅱ)证明:连结1AC ,交1AC 于点O ,连结OD , 因为11ACC A 为正方形,所以O 为1AC 中点,又D 为11B C 中点,所以OD 为11ABC ∆中位线, 所以1//AB OD , ………………6分 因为OD ⊂平面1A DC ,1AB ⊄平面1A DC , 所以1//AB 平面1A DC . ………………8分(Ⅲ)解: 因为侧面11ABB A ,11ACC A 均为正方形, 90BAC ∠=, 所以1,,AB AC AA 两两互相垂直,如图所示建立直角坐标系A xyz -.设1AB =,则111(0,10),(1,0,0),(0,0,1),(,,1)22C B AD ,.1111(,,0),(0,11)22A D AC ==- ,, ………………9分 设平面1A DC 的法向量为=()x,y,z n ,则有1100A D A C ⋅=⎧⎨⋅=⎩n n ,00x y y z +=⎧⎨-=⎩, x y z =-=-, 取1x =,得(1,1,1)=--n . ………………10分 又因为AB ⊥平面11ACC A ,所以平面11ACC A 的法向量为(1,00)AB =,,………11分cos ,AB AB AB⋅〈〉===n n n , ………………12分 因为二面角1D AC A --是钝角, 所以,二面角1D AC A --的余弦值为 ………………13分 17.(本小题满分13分) 解:(Ⅰ)设先后两次从袋中取出球的编号为,m n ,则两次取球的编号的一切可能结果),(n m 有6636⨯=种, ………………2分其中和为6的结果有(1,5),(5,1),(2,4),(4,2),(3,3),共5种, 则所求概率为536. ………………4分 (Ⅱ)每次从袋中随机抽取2个球,抽到编号为6的球的概率152613C p C ==.………………6分所以,3次抽取中,恰有2次抽到6号球的概率为2223122(1)3()()339C p p -=⨯=. ………………8分(Ⅲ)随机变量X 所有可能的取值为3,4,5,6. (9)分33361(3)20C P X C ===, 23363(4)20C P X C ===,243663(5)2010C P X C ====,2536101(6)202C P X C ====. ………………12分所以,随机变量X 的分布列为:X 3 45 6P120 320 310 12………………13分18、(本小题满分13分)解:(Ⅰ)由题意得3c c a=⎧⎪⎨=⎪⎩a = (2)分结合222a b c =+,解得212a =,23b =. ………………3分所以,椭圆的方程为131222=+y x . ………………4分 (Ⅱ)由22221,,x y a b y kx ⎧+=⎪⎨⎪=⎩得222222()0b a k x a b +-=.设1122(,),(,)A x y B x y .所以2212122220,a b x x x x b a k -+==+, ………………6分依题意,OM ON ⊥,易知,四边形2OMF N 为平行四边形,所以22AF BF ⊥, ………………7分因为211(3,)F A x y =- ,222(3,)F B x y =-,所以222121212(3)(3)(1)90F A F B x x y y k x x ⋅=--+=++=. ………………8分 即 222222(9)(1)90(9)a a k a k a --++=+-, ………………9分将其整理为 4222424218818111818a a k a a a a -+==---+-. ………………10分因为2322≤<e ,所以a ≤<21218a ≤<. ………………11分所以218k ≥,即(,](]44k ∈-∞-+∞ . ………………13分 19.(本小题满分14分)解:2()(21)f x ax a x'=-++(0)x >. ………………2分(Ⅰ)(1)(3)f f ''=,解得23a =. ………………3分 (Ⅱ)(1)(2)()ax x f x x--'=(0)x >. (5)分①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………………6分②当102a <<时,12a >, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a.…………7分③当12a =时,2(2)()2x f x x-'=, 故()f x 的单调递增区间是(0,)+∞.………8分④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a. ………9分(Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………………10分 由已知,max ()0g x =,由(Ⅱ)可知,①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……………11分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, ………………13分 综上所述,ln 21a >-. ………………14分20.(本小题满分14分)解:(Ⅰ)当2≥n 时,有121321()()()n n n a a a a a a a a -=+-+-++- 1121n a b b b -=++++ …………2分2(1)11222n n n n -⨯=+=-+. ………………3分又因为11=a 也满足上式,所以数列}{n a 的通项为2122n n na =-+.………………4分(Ⅱ)(ⅰ)因为对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====,………………5分所以 1656161661626364n n n n n n n n n n c c a a b b b b b b ++--++++-=-=+++++111221722=+++++=(1)n ≥, 所以数列}{n c 为等差数列. ………………7分 (ⅱ)设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1666661626364657(0)n n n i n i n i n i n i n i n i n i c c a a b b b b b b n +++++++++++++++-=-=+++++=≥所以数列}{6i n a +均为以7为公差的等差数列. ………………9分设6777(6)7766666666i i k i i k i i i k a a a a k f k i i k i k i k+++--+====+++++, (其中i k n +=6)0(≥k ,i 为}6,5,4,3,2,1{中的一个常数),当76i i a =时,对任意的i k n +=6有n a n 76=; ………………10分 当76i ia ≠时, 17771166()()6(1)666(1)6i i k k ii ia a i f f a k i k i k i k i+---=-=--++++++ 76()()6[6(1)](6)i i a k i k i -=-+++………………11分①若76i ia >,则对任意的k ∈N 有k k f f <+1,所以数列}6{6i k a i k ++为单调减数列; ②若76i ia <,则对任意的k ∈N 有k k f f >+1,所以数列}6{6ik a i k ++为单调增数列; ………………12分综上:设集合741111{}{}{}{}{}{}632362B =-- 74111{,,,,}63236=--,当B a ∈1时,数列}{na n中必有某数重复出现无数次. 当B a ∉1时,}6{6ik a ik ++ )6,5,4,3,2,1(=i 均为单调数列,任意一个数在这6个数列中最 多出现一次,所以数列}{na n中任意一项的值均未在该数列中重复出现无数次……14分。

北京市西城区届高三数学上学期期末试卷理(含解析)

2015-2016学年北京市西城区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={x|x>1},集合B={a+2},若A∩B=∅,则实数a的取值范围是()A.(﹣∞,﹣1] B.(﹣∞,1] C.[﹣1,+∞)D.[1,+∞)2.下列函数中,值域为R的偶函数是()A.y=x2+1 B.y=e x﹣e﹣x C.y=lg|x| D.3.设命题p:“若,则”,命题q:“若a>b,则”,则()A.“p∧q”为真命题 B.“p∨q”为假命题C.“¬q”为假命题D.以上都不对4.“”是“数列{a n}为等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.一个几何体的三视图如图所示,那么这个几何体的表面积是()A.B.C.D.6.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B. C.D.7.某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填()A.B.C.D.8.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且DE=2AE,CF=2BF.如果对于常数λ,在正方形ABCD的四条边上,有且只有6个不同的点P使得成立,那么λ的取值范围是()A.(0,7)B.(4,7)C.(0,4)D.(﹣5,16)二、填空题:本大题共6小题,每小题5分,共30分.9.已知复数z满足z(1+i)=2﹣4i,那么z= .10.在△ABC中,角A,B,C所对的边分别为a,b,c.若A=B,a=3,c=2,则cosC= .11.双曲线C:的渐近线方程为;设F1,F2为双曲线C的左、右焦点,P为C上一点,且|PF1|=4,则|PF2|= .12.如图,在△ABC中,∠ABC=90°,AB=3,BC=4,点O为BC的中点,以BC为直径的半圆与AC,AO分别相交于点M,N,则AN= ;= .13.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有种.(用数字作答)14.某食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系且该食品在4℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:①该食品在6℃的保鲜时间是8小时;②当x∈[﹣6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;③到了此日13时,甲所购买的食品还在保鲜时间内;④到了此日14时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论的序号是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.已知函数,x∈R.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)设α>0,若函数g(x)=f(x+α)为奇函数,求α的最小值.16.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果x=y=7,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)17.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.18.已知函数f(x)=x2﹣1,函数g(x)=2tlnx,其中t≤1.(Ⅰ)如果函数f(x)与g(x)在x=1处的切线均为l,求切线l的方程及t的值;(Ⅱ)如果曲线y=f(x)与y=g(x)有且仅有一个公共点,求t的取值范围.19.已知椭圆C:的离心率为,点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与l相交两点P1,P2(两点均不在坐标轴上),且使得直线OP1,OP2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.在数字1,2,…,n(n≥2)的任意一个排列A:a1,a2,…,a n中,如果对于i,j∈N*,i<j,有a i>a j,那么就称(a i,a j)为一个逆序对.记排列A中逆序对的个数为S(A).如n=4时,在排列B:3,2,4,1中,逆序对有(3,2),(3,1),(2,1),(4,1),则S (B)=4.(Ⅰ)设排列 C:3,5,6,4,1,2,写出S(C)的值;(Ⅱ)对于数字1,2,…,n的一切排列A,求所有S(A)的算术平均值;(Ⅲ)如果把排列A:a1,a2,…,a n中两个数字a i,a j(i<j)交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A':b1,b2,…,b n,求证:S(A)+S(A')为奇数.2015-2016学年北京市西城区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={x|x>1},集合B={a+2},若A∩B=∅,则实数a的取值范围是()A.(﹣∞,﹣1] B.(﹣∞,1] C.[﹣1,+∞)D.[1,+∞)【考点】交集及其运算.【专题】计算题;集合思想;集合.【分析】由A与B,以及两集合的交集为空集,确定出a的范围即可.【解答】解:∵A={x|x>1},集合B={a+2},若A∩B=∅,∴a+2≤1,即a≤﹣1,则实数a的范围为(﹣∞,﹣1],故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.下列函数中,值域为R的偶函数是()A.y=x2+1 B.y=e x﹣e﹣x C.y=lg|x| D.【考点】函数奇偶性的判断.【专题】计算题;规律型;转化思想;函数的性质及应用.【分析】判断函数的奇偶性然后求解值域,推出结果即可.【解答】解:y=x2+1是偶函数,值域为:[1,+∞).y=e x﹣e﹣x是奇函数.y=lg|x|是偶函数,值域为:R.的值域:[0,+∞).故选:C【点评】本题考查函数的奇偶性的判断以及函数的值域,是基础题.3.设命题p:“若,则”,命题q:“若a>b,则”,则()A.“p∧q”为真命题 B.“p∨q”为假命题C.“¬q”为假命题D.以上都不对【考点】复合命题的真假.【专题】对应思想;综合法;简易逻辑.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:命题p:“若,则”是假命题,命题q:“若a>b,则”如:a=1,b=﹣1,故命题q是假命题,故p∨q是假命题,故选:B.【点评】本题考察了复合命题的判断,是一道基础题.4.“”是“数列{a n}为等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】等差数列与等比数列.【分析】根据等比数列的性质,对于数列{a n},“数列{a n}为等比数列”可以推出““”,对于反面,我们可以利用特殊值法进行判断;【解答】解:若数列{a n}是等比数列,根据等比数列的性质得:,反之,若“”,当a n=0,此式也成立,但数列{a n}不是等比数列,∴“”是“数列{a n}为等比数列”的必要不充分条件,故选B.【点评】此题主要考查等比数列的性质及必要条件、充分条件和充要条件的定义,是一道基础题.5.一个几何体的三视图如图所示,那么这个几何体的表面积是()A.B.C.D.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离;立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,结合柱体表面积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,其底面面积为:×(1+2)×2=3,底面周长为:2+2+1+=5+,高为:2,故四棱柱的表面积S=2×3+(5+)×2=,故选:B【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.6.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B. C.D.【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式的解法及应用.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为7求得实数m 的值.【解答】解:由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(m﹣1,m),化z=x+3y,得.由图可知,当直线过A时,z有最大值为7,当直线过B时,z有最大值为4m﹣1,由题意,7﹣(4m﹣1)=7,解得:m=.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填()A.B.C.D.【考点】程序框图;分段函数的应用;函数模型的选择与应用.【专题】应用题;函数的性质及应用;算法和程序框图.【分析】根据已知中的收费标准,求当x>4时,所收费用y的表达式,化简可得答案.【解答】解:由已知中,超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.可得:当x>4时,所收费用y=12+[x﹣4+]×2+1=,故选:D【点评】本题考查的知识点是分段函数的应用,函数模型的选择与应用,难度中档.8.如图,正方形ABCD的边长为6,点E,F分别在边AD,BC上,且DE=2AE,CF=2BF.如果对于常数λ,在正方形ABCD的四条边上,有且只有6个不同的点P使得成立,那么λ的取值范围是()A.(0,7)B.(4,7)C.(0,4)D.(﹣5,16)【考点】平面向量数量积的运算.【专题】函数思想;数形结合法;平面向量及应用.【分析】建立坐标系,逐段分析的取值范围及对应的解,【解答】解:以DC为x轴,以DA为y轴建立平面直角坐标系,如图,则E(0,4),F(6,4).(1)若P在CD上,设P(x,0),0≤x≤6.∴=(﹣x,4),=(6﹣x,4).∴=x2﹣6x+16,∵x∈[0,6],∴7≤≤16.∴当λ=7时有一解,当7<λ≤16时有两解.(2)若P在AD上,设P(0,y),0≤y≤6.∴=(0,4﹣y),=(6,4﹣y).∴=(4﹣y)2=y2﹣8y+16,∵0≤y≤6,∴0≤≤16.∴当λ=0或4<λ≤16,有一解,当0<λ≤4时有两解.(3)若P在AB上,设P(x,6),0≤x≤6.=(﹣x,﹣2),=(6﹣x,﹣2).∴=x2﹣6x+4,∵0≤x≤6.∴﹣7≤≤4.∴当λ=﹣7时有一解,当﹣7<λ≤2时有两解.(4)若P在BC上,设P(6,y),0≤y≤6,∴=(﹣6,4﹣y),=(0,4﹣y).∴=(4﹣y)2=y2﹣8y+16,∵0≤y≤6,∴0≤≤16.∴当λ=0或4<λ≤16,有一解,当0<λ≤4时有两解.综上,∴0<λ<4.故选:C.【点评】本题考查了平面向量的数量积计算,二次函数的根的个数判断.属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.已知复数z满足z(1+i)=2﹣4i,那么z= ﹣1﹣3i .【考点】复数代数形式的乘除运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由z(1+i)=2﹣4i,得.故答案为:﹣1﹣3i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.10.在△ABC中,角A,B,C所对的边分别为a,b,c.若A=B,a=3,c=2,则cosC= .【考点】余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由已知可求b的值,利用余弦定理即可求值得解.【解答】解:∵A=B,a=3,c=2,可得:b=3,∴cosC===.故答案为:.【点评】本题主要考查了等腰三角形的性质,考查了余弦定理的应用,属于基础题.11.双曲线C:的渐近线方程为;设F1,F2为双曲线C的左、右焦点,P为C上一点,且|PF1|=4,则|PF2|= 12 .【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】双曲线C:中a=4,b=2,可得渐近线方程为,由题意P在双曲线的左支上,则|PF2|﹣|PF1|=2a=8,即可得出结论.【解答】解:双曲线C:中a=4,b=2,则渐近线方程为,由题意P在双曲线的左支上,则|PF2|﹣|PF1|=2a=8,∴|PF2|=12故答案为:,12.【点评】本题考查双曲线的方程与性质,考查双曲线的定义,比较基础.12.如图,在△ABC中,∠ABC=90°,AB=3,BC=4,点O为BC的中点,以BC为直径的半圆与AC,AO分别相交于点M,N,则AN= ;= .【考点】与圆有关的比例线段.【专题】选作题;方程思想;综合法;推理和证明.【分析】利用勾股定理、切割线定理,即可得出结论.【解答】解:由题意,AO==,由切割线定理可得9=AN•(+2),∴AN=.AC==5,由切割线定理可得9=AM•5,∴AM=,∴MC=,∴=.故答案为:,.【点评】本题考查勾股定理、切割线定理,考查学生的计算能力,属于中档题.13.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有54 种.(用数字作答)【考点】排列、组合的实际应用.【专题】计算题;整体思想;数学模型法;排列组合.【分析】第一类,把甲乙看做一个复合元素,和另外的3人分配到3个小组中,第二类,先把另外的3人分配到3个小组,再把甲乙分配到其中2个小组,根据分类计数原理可得【解答】解:第一类,把甲乙看做一个复合元素,和另外的3人分配到3个小组中(2,1,1),C42A33=36种,第二类,先把另外的3人分配到3个小组,再把甲乙分配到其中2个小组,A33C32=18种,根据分类计数原理可得,共有36+18=54种,故答案为:54.【点评】本题考查了分类计数原理,关键是分类,特殊元素特殊处理,属于中档题.14.某食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系且该食品在4℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:①该食品在6℃的保鲜时间是8小时;②当x∈[﹣6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;③到了此日13时,甲所购买的食品还在保鲜时间内;④到了此日14时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论的序号是①④.【考点】命题的真假判断与应用.【专题】数形结合;数形结合法;函数的性质及应用;简易逻辑.【分析】根据食品在4℃的保鲜时间是16小时.求出k值,进而逐一分析四个结论的真假,可得答案.【解答】解:∵食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系且该食品在4℃的保鲜时间是16小时.∴24k+6=16,即4k+6=4,解得:k=﹣,∴,当x=6时,t=8,故①该食品在6℃的保鲜时间是8小时,正确;②当x∈[﹣6,0]时,保鲜时间恒为64小时,当x∈(0,6]时,该食品的保鲜时间t随看x增大而逐渐减少,故错误;③到了此日10时,温度超过8度,此时保鲜时间不超过4小时,故到13时,甲所购买的食品不在保鲜时间内,故错误;④到了此日14时,甲所购买的食品已然过了保鲜时间,故正确,故正确的结论的序号为:①④,故答案为:①④.【点评】本题以命题的真假判断为载体,考查了函数在实际生活中的应用,难度中档.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.已知函数,x∈R.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)设α>0,若函数g(x)=f(x+α)为奇函数,求α的最小值.【考点】三角函数的周期性及其求法;正弦函数的单调性.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(Ⅰ)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性求得函数f(x)的单调递增区间.(Ⅱ)由题意可得g(0)=0,即,由此求得α的最小正值.【解答】(Ⅰ)解:===,所以函数f(x)的最小正周期.由,k∈Z,得,所以函数f(x)的单调递增区间为,k∈Z.(Ⅱ)解:由题意,得,因为函数g(x)为奇函数,且x∈R,所以g(0)=0,即,所以,k∈Z,解得,k∈Z,验证知其符合题意.又因为α>0,所以α的最小值为.【点评】本题主要考查三角恒等变换,正弦函数的单调性,正弦函数的奇偶性,属于基础题.16.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果x=y=7,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题;转化思想;综合法;概率与统计.【分析】(Ⅰ)从甲的4局比赛中,随机选取2局,基本事件总数n=,这2局的得分恰好相等基本数件个数m=2,由此能求出从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率.(Ⅱ)X的所有可能取值为13,15,16,18,分别求出相应的概率,由此能求出X的分布列和数学期望.(Ⅲ)由已知条件能写出x的可能取值为6,7,8.【解答】(本小题满分13分)(Ⅰ)解:记“从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A,…由题意,得,所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为.…(Ⅱ)解:由题意,X的所有可能取值为13,15,16,18,…且,,,,……所以.…(Ⅲ)解:x的可能取值为6,7,8.…【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.17.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证:ME∥平面PAB;(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.【考点】直线与平面所成的角;直线与平面平行的判定;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)证明AB⊥AC.EF⊥AC.推出PA⊥底面ABCD,即可说明PA⊥EF,然后证明EF⊥平面PAC.(Ⅱ)证明MF∥PA,然后证明MF∥平面PAB,EF∥平面PAB.即可阿门平面MEF∥平面PAB,从而证明ME∥平面PAB.(Ⅲ)以AB,AC,AP分别为x轴、y轴和z轴,如上图建立空间直角坐标系,求出相关点的坐标,平面ABCD的法向量,平面PBC的法向量,利用直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,列出方程求解即可【解答】(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD中,因为AB=AC,∠BCD=135°,∠ABC=45°.所以AB⊥AC.由E,F分别为BC,AD的中点,得EF∥AB,所以EF⊥AC.…因为侧面PAB⊥底面ABCD,且∠BAP=90°,所以PA⊥底面ABCD.…又因为EF⊂底面ABCD,所以PA⊥EF.…又因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以EF⊥平面PAC.…(Ⅱ)证明:因为M为PD的中点,F分别为AD的中点,所以MF∥PA,又因为MF⊄平面PAB,PA⊂平面PAB,所以MF∥平面PAB.…同理,得EF∥平面PAB.又因为MF∩EF=F,MF⊂平面MEF,EF⊂平面MEF,所以平面MEF∥平面PAB.…又因为ME⊂平面MEF,所以ME∥平面PAB.…(Ⅲ)解:因为PA⊥底面ABCD,AB⊥AC,所以AP,AB,AC两两垂直,故以AB,AC,AP分别为x轴、y轴和z轴,如上图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0),所以,,,…设,则,所以M(﹣2λ,2λ,2﹣2λ),,易得平面ABCD的法向量=(0,0,1).…设平面PBC的法向量为=(x,y,z),由,,得令x=1,得=(1,1,1).…因为直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,所以,即,…所以,解得,或(舍).…【点评】本题考查直线与平面所成角的求法,直线与平面平行的判定定理以及性质定理的应用,平面与平面平行的判定定理的应用,考查转化思想以及空间想象能力逻辑推理能力的应用.18.已知函数f(x)=x2﹣1,函数g(x)=2tlnx,其中t≤1.(Ⅰ)如果函数f(x)与g(x)在x=1处的切线均为l,求切线l的方程及t的值;(Ⅱ)如果曲线y=f(x)与y=g(x)有且仅有一个公共点,求t的取值范围.【考点】利用导数研究曲线上某点切线方程.【专题】综合题;分类讨论;分析法;导数的概念及应用.【分析】(Ⅰ)分别求得f(x),g(x)的导数,求得切线的斜率,解方程可得t=1,即可得到切线的斜率和切点坐标,可得切线的方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),“曲线y=f(x)与y=g(x)有且仅有一个公共点”等价于“函数y=h(x)有且仅有一个零点”.对h(x)求导,讨论①当t≤0时,②当t=1时,③当0<t<1时,求出单调区间,即可得到零点和所求范围.【解答】解:(Ⅰ)求导,得f′(x)=2x,,(x>0).由题意,得切线l的斜率k=f′(1)=g′(1),即k=2t=2,解得t=1.又切点坐标为(1,0),所以切线l的方程为2x﹣y﹣2=0;(Ⅱ)设函数h(x)=f(x)﹣g(x)=x2﹣1﹣2tlnx,x∈(0,+∞).“曲线y=f(x)与y=g(x)有且仅有一个公共点”等价于“函数y=h(x)有且仅有一个零点”.求导,得.①当t≤0时,由x∈(0,+∞),得h'(x)>0,所以h(x)在(0,+∞)单调递增.又因为h(1)=0,所以y=h(x)有且仅有一个零点1,符合题意.所以h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以当x=1时,h(x)min=h(1)=0,故y=h(x)有且仅有一个零点1,符合题意.③当0<t<1时,令h'(x)=0,解得.↘↗所以h(x)在上单调递减,在上单调递增,所以当时,.因为h(1)=0,,且h(x)在上单调递增,所以.又因为存在,,所以存在x0∈(0,1)使得h(x0)=0,所以函数y=h(x)存在两个零点x0,1,与题意不符.综上,曲线y=f(x)与y=g(x)有且仅有一个公共点时,t的范围是{t|t≤0,或t=1}.【点评】本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查函数的零点问题的解法,注意运用构造法,通过导数求得单调性,同时考查分类讨论的思想方法,属于中档题.19.已知椭圆C:的离心率为,点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与l相交两点P1,P2(两点均不在坐标轴上),且使得直线OP1,OP2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.【考点】圆锥曲线的定值问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(Ⅰ)利用离心率列出方程,通过点在椭圆上列出方程,求出a,b然后求出椭圆的方程.(Ⅱ)当直线l的斜率不存在时,验证直线OP1,OP2的斜率之积.当直线l的斜率存在时,设l的方程为y=kx+m与椭圆联立,利用直线l与椭圆C有且只有一个公共点,推出m2=4k2+1,通过直线与圆的方程的方程组,设P1(x1,y1),P2(x2,y2),结合韦达定理,求解直线的斜率乘积,推出k1•k2为定值即可.【解答】(本小题满分14分)(Ⅰ)解:由题意,得,a2=b2+c2,…又因为点在椭圆C上,所以,…解得a=2,b=1,,所以椭圆C的方程为.…(Ⅱ)结论:存在符合条件的圆,且此圆的方程为x2+y2=5.…证明如下:假设存在符合条件的圆,并设此圆的方程为x2+y2=r2(r>0).当直线l的斜率存在时,设l的方程为y=kx+m.…由方程组得(4k2+1)x2+8kmx+4m2﹣4=0,…因为直线l与椭圆C有且仅有一个公共点,所以,即m2=4k2+1.…由方程组得(k2+1)x2+2kmx+m2﹣r2=0,…则.设P1(x1,y1),P2(x2,y2),则,,…设直线OP1,OP2的斜率分别为k1,k2,所以=,…将m2=4k2+1代入上式,得.要使得k1k2为定值,则,即r2=5,验证符合题意.所以当圆的方程为x2+y2=5时,圆与l的交点P1,P2满足k1k2为定值.…当直线l的斜率不存在时,由题意知l的方程为x=±2,此时,圆x2+y2=5与l的交点P1,P2也满足.综上,当圆的方程为x2+y2=5时,圆与l的交点P1,P2满足斜率之积k1k2为定值.…【点评】本题考查椭圆的标准方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.20.在数字1,2,…,n(n≥2)的任意一个排列A:a1,a2,…,a n中,如果对于i,j∈N*,i<j,有a i>a j,那么就称(a i,a j)为一个逆序对.记排列A中逆序对的个数为S(A).如n=4时,在排列B:3,2,4,1中,逆序对有(3,2),(3,1),(2,1),(4,1),则S (B)=4.(Ⅰ)设排列 C:3,5,6,4,1,2,写出S(C)的值;(Ⅱ)对于数字1,2,…,n的一切排列A,求所有S(A)的算术平均值;(Ⅲ)如果把排列A:a1,a2,…,a n中两个数字a i,a j(i<j)交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A':b1,b2,…,b n,求证:S(A)+S(A')为奇数.【考点】数列与函数的综合.【专题】新定义;分类讨论;分析法;排列组合.【分析】(Ⅰ)由逆序对的定义,列举即可得到所求值为10;(Ⅱ)考察排列D:d1,d2,…,d n﹣1,d n,运用组合数可得排列D中数对(d i,d j)共有个,即可得到所有S(A)的算术平均值;(Ⅲ)讨论(1)当j=i+1,即a i,a j相邻时,(2)当j≠i+1,即a i,a j不相邻时,由新定义,运用调整法,可得S(A)+S(A')为奇数.【解答】解:(Ⅰ)逆序对有(3,1),(3,2),(5,4),(5,1),(5,2),(4,1),(4,2),(6,4),(6,1),(6,2)则S(C)=10;(Ⅱ)考察排列D:d1,d2,…,d n﹣1,d n与排列D1:d n,d n﹣1,…,d2,d1,因为数对(d i,d j)与(d j,d i)中必有一个为逆序对(其中1≤i<j≤n),且排列D中数对(d i,d j)共有个,所以.所以排列D与D1的逆序对的个数的算术平均值为.而对于数字1,2,…,n的任意一个排列A:a1,a2,…,a n,都可以构造排列A1:a n,a n﹣1,…,a2,a1,且这两个排列的逆序对的个数的算术平均值为.所以所有S(A )的算术平均值为.(Ⅲ)证明:(1)当j=i+1,即a i,a j相邻时,不妨设a i<a i+1,则排列A'为a1,a2,…,a i﹣1,a i+1,a i,a i+2,…,a n,此时排列A'与排列A:a1,a2,…,a n相比,仅多了一个逆序对(a i+1,a i),所以S(A')=S(A)+1,所以S(A)+S(A')=2S(A)+1为奇数.(2)当j≠i+1,即a i,a j不相邻时,假设a i,a j之间有m个数字,记排列A:a1,a2,…,a i,k1,k2,…k m,a j,…,a n,先将a i向右移动一个位置,得到排列A1:a1,a2,…,a i﹣1,k1,a i,k2,…,k m,a j,…,a n,由(1)知S(A1)与S(A)的奇偶性不同,再将a i向右移动一个位置,得到排列A2:a1,a2,…,a i﹣1,k1,k2,a i,k3,…,k m,a j,…,a n,由(1)知S(A2)与S(A1)的奇偶性不同,以此类推,a i共向右移动m次,得到排列A m:a1,a2,…,k1,k2,…,k m,a i,a j,…,a n,再将a j向左移动一个位置,得到排列A m+1:a1,a2,…,a i﹣1,k1,…,k m,a j,a i,…,a n,以此类推,a j共向左移动m+1次,得到排列A2m+1:a1,a2,…,a j,k1,…,k m,a i,…,a n,即为排列A',由(1)可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化,而排列A经过2m+1次的前后两数交换位置,可以得到排列A',所以排列A与排列A'的逆序数的奇偶性不同,所以S(A)+S(A')为奇数.综上,得S(A)+S(A')为奇数.【点评】本题考查新定义的理解和运用,考查列举法和排列组合的运用,运用分类讨论的思想方法是解题的关键.21。

北京西城区2013届高三上学期期末考试数学(理科)试题

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B = ( ) (A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞(D )(,1)(0,)-∞-+∞2.在复平面内,复数5i 2i-的对应点位于( )(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ(B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____.10.如图,R t △A B C 中,90ACB ︒∠=,3A C =,4B C =.以A C 为直径的圆交AB 于点D ,则 BD = ;C D =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______. 12.已知椭圆22142xy+=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12P F F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2B C =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面P A D ⊥平面A B C D ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()x f x x b=+,其中b ∈R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线A F ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线M N 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()nniji j l A r A cA ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6;12 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解法一21cos 2B B =-, 所以 2cos 2sin B B B =.……………3分因为 0B <<π, 所以 sin 0B >, 从而 tan B =5分所以 π3B =. ………………6分解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.…………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B =,根据正弦定理得sin sin A C B C BA=, ………7分所以 sin sin B C B A C A⋅==. ………………8分因为 512C A B π=π--=, ………………9分所以 5sin sin sin()12464C πππ+==+=, ………………11分所以 △ABC 的面积13sin 22S AC BC C +=⋅=.………………13分解法二:因为 4A π=,π3B =,根据正弦定理得 sin sin A C B C B A=, ………………7分所以 sin sin B C B A C A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分 化简为 2220AB AB --=,解得 1AB =+………………11分所以 △ABC 的面积1sin 22S AB BC B =⋅=………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. …………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥, 所以⊥CD 平面PAD . ……7分所以平面PAD ⊥平面ABCD . ………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线D z AD ⊥.因为平面PAD ⊥平面ABCD ,所以D z ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分 设4A B =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . ………………11分易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 |||cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD . 由,,MP MA MN 两两垂直,建立如图所示的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.E A A C ⎧⋅=⎪⎨⋅=⎪⎩ n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. ………………11分易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以|||cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. ………………1分 元件B 为正品的概率约为4029631004++=. ………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=;411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:………………8分3311904530(15)66520520E X =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =.………11分设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=. ………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. (1)分② 当0b >时,222()()b xf x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b xf x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈.……9分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤.所以,b 的取值范围是1(0,]4. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-.………………5分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分设直线A M 的方程为1x ny =+,将其代入24y x =,消去x ,整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y y k y y y y ++===--+-+. ………………13分由(Ⅰ)得 122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A , ,9()r A ,1()c A ,2()c A , ,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅ .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅ 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅ 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅ ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅ .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅ . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A , ,()n r A ,1()c A ,2()c A , ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n = ,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤ ,其余1ij a =. 所以 12()()()1k r A r A r A ====- ,12()()()1k c A c A c A ====- . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -= .……………13分。

西城高三期末理科数学含答案

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则AB =( )(A )1(0,)2 (B )(1,1)- (C )1(,1)(,)2-∞-+∞ (D )(,1)(0,)-∞-+∞ 2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( )(A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____ 10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上. 若12||||2PF PF -=,则△12PF F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______. 14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB EAC PAD ⊥ABCD B AC E --8282100(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末 高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =. (3)分 因为 0B <<π, 所以 sin 0B >, 从而 tan B =,………………5分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BCB A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分因为512C A Bπ=π--=, ………………9分所以 5sin sinsin()12464C πππ==+=, ………………11分 所以 △ABC 的面积13sin 22S AC BC C =⋅=. ………………13分 解法二:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BC B A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB =+ ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以线PB EAC ⊥PA PDC CD PA ⊥ABCD CD AD ⊥CD ⊥ABCD Dz ⊥ABCD4(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E )1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n ⎩⎨⎧=+-=-.044,03y x z x 1=x (1,1,3)=n ABCD (0,0,1)=v |||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-AD M BC N PM MN ABCDCDMN //⊥MN PAD PD PA =⊥PM AD ,,MP MA MN xyz M -4=AB (2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---)1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n ⎩⎨⎧=+-=-.044,03y x z x 1=x =n )3,1,1(ABCD=v )1,0,0(|||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-4032841005++=4029631004++=X90,45,30,15-433(90)545P X ==⨯=133(45)5420P X ==⨯=411(30)545P X ==⨯=111(15)P X =-=⨯=X1904530(15)66520520EX =⨯+⨯+⨯+-⨯=n 5n -依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分 设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤, 所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤. 下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=.……………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2010 — 2011学年度第一学期期末试卷高三数学(理科) 2011.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B = (A ){13}x x -≤<(B ){13}x x -<<(C ){1}x x <- (D ){3}x x > 2. 已知点(1,1)A -,点(2,)B y ,向量=(1,2)a ,若//ABa ,则实数y 的值为(A )5(B )6(C )7(D )8 3.已知A B C ∆中,1,a b ==45B =,则角A 等于(A )150 (B )90 (C )60 (D )304.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是 (A )cos ρθ=(B )sin ρθ=(C )cos 1ρθ=(D )sin 1ρθ= 5. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是 (A )(,2]-∞-(B )[2,1]-- (C )[1,2]-(D )[2,)+∞6.设等比数列{}n a 的前n 项和为n S ,若0852=+a a ,则下列式子中数值不能确定的是 (A )35a a (B )35S S (C )nn a a 1+(D )nn S S 1+7.如图,四边形A B C D 中,1A B A D C D ===,BD =BD C D ⊥.将四边形A B C D 沿对角线BD 折成四面体A BC D '-,使平面A BD '⊥平面BC D ,则下列结论正确的是(A )A C B D '⊥ (B )90BA C'∠=(C )C A '与平面A B D '所成的角为30(D )四面体A BC D '-的体积为13AB CD8.对于函数①1()45f x x x =+-,②21()log ()2xf x x =-,③()cos(2)cos f x x x =+-,判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是(A )① (B )② (C )①③ (D )①②第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.i 为虚数单位,则22(1i)=+______.10.在5(2)x +的展开式中,2x 的系数为_____.11. 若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为_____.12.如图所示,过圆C 外一点P 做一条直线与圆C 交于A B ,两点,2B A A P =,PT 与圆C 相切于T 点.已知圆C 的半径为2,30CAB ∠=,则P T =_____.13.双曲线22:1C x y -=的渐近线方程为_____;若双曲线C 的右顶点为A ,过A 的直线l 与双曲线C 的两条渐近线交于,P Q 两点,且2PA AQ =,则直线l 的斜率为_____.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”. 则坐标原点O与直线20x y +-=上一点的“折线距离”的最小值是____; 圆221x y +=上一点与直线20x y +-=上一点的“折线距离”的最小值是____. 三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()22sin f x x x =-.[来源:](Ⅰ)若点(1,P 在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11AC C A 均为正方形,∠=90BAC ,点D 是棱11B C 的中点.(Ⅰ)求证:1A D ⊥平面11BB C C ; (Ⅱ)求证:1//A B 平面1A D C ; (Ⅲ)求二面角1D A C A --的余弦值.17.(本小题满分13分)一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率; (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列.18.(本小题满分13分)已知椭圆12222=+by ax (0>>b a )的右焦点为2(3,0)F ,离心率为e .(Ⅰ)若2e =,求椭圆的方程;(Ⅱ)设直线y kx =与椭圆相交于A ,B 两点,,M N 分别为线段22,AF BF 的中点. 若ABCC 11B 1A 1D坐标原点O 在以M N 为直径的圆上,且2322≤<e ,求k 的取值范围.19.(本小题满分14分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R .(Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.[来源:学科网]20.(本小题满分14分)已知数列}{n a ,{}n b 满足n n n a a b -=+1,其中1,2,3,n = . (Ⅰ)若11,n a b n ==,求数列}{n a 的通项公式; (Ⅱ)若11(2)n n n b b b n +-=≥,且121,2b b ==.(ⅰ)记)1(16≥=-n a c n n ,求证:数列}{n c 为等差数列; (ⅱ)若数列}{na n 中任意一项的值均未在该数列中重复出现无数次. 求首项1a 应满足的条件.北京市西城区2010 — 2011学年度第一学期期末高三数学参考答案及评分标准(理科) 2011.1一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.9.i - 10. 80 11. 412.3 13. 0x y ±=,3± 14.2注:13、14题第一问2分,第二问3分. 三、解答题:(本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.)15.(本小题满分13分)解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin 2α=-,1cos 2α=, ………………2分所以22()22sin cos 2sin f αααααα=-=- ………………4分21(2(3222=-⨯-⨯-=-. ………………5分(Ⅱ)2()22sin f x x x =-2cos 21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分16.(本小题满分13分)(Ⅰ)证明:因为侧面11ABB A ,11AC C A 均为正方形,所以11,AA AC AA AB ⊥⊥,所以1A A ⊥平面ABC ,三棱柱111ABC A B C -是直三棱柱. ………………1分 因为1A D ⊂平面111A B C ,所以11C C A D ⊥, ………………2分 又因为1111A B A C =,D 为11B C 中点,所以111A D B C ⊥. ……………3分 因为1111C C B C C = ,所以1A D ⊥平面11BB C C . ……………4分 (Ⅱ)证明:连结1AC ,交1A C 于点O ,连结O D ,因为11AC C A 为正方形,所以O 为1AC 中点, 又D 为11B C 中点,所以O D 为11A B C ∆中位线, 所以1//A B O D , ………………6分 因为O D ⊂平面1A D C ,1AB ⊄平面1A D C , 所以1//A B 平面1A D C . ………………8分(Ⅲ)解: 因为侧面11ABB A ,11AC C A 均为正方形, 90BAC ∠= ,所以1,,AB AC AA 两两互相垂直,如图所示建立直角坐标系A xyz -.设1AB =,则111(0,10),(1,0,0),(0,0,1),(,,1)22C B AD ,.1111(,,0),(0,11)22A D A C ==- ,, ………………9分设平面1A D C 的法向量为=()x,y,z n ,则有 1100A D A C ⋅=⎧⎨⋅=⎩n n ,00x y y z +=⎧⎨-=⎩, x y z =-=-, 取1x =,得(1,1,1)=--n . ………………10分又因为AB ⊥平面11AC C A ,所以平面11AC C A 的法向量为(1,00)A B =,,………11分cos ,3A B A B A B⋅〈〉===n n n , ………………12分因为二面角1D A C A --是钝角,所以,二面角1D A C A --的余弦值为3-. ………………13分17.(本小题满分13分)解:(Ⅰ)设先后两次从袋中取出球的编号为,m n ,则两次取球的编号的一切可能结果),(n m 有6636⨯=种, ………………2分其中和为6的结果有(1,5),(5,1),(2,4),(4,2),(3,3),共5种, 则所求概率为536. ………………4分(Ⅱ)每次从袋中随机抽取2个球,抽到编号为6的球的概率152613C p C ==.………………6分所以,3次抽取中,恰有2次抽到6号球的概率为2223122(1)3()()339C p p -=⨯=. ………………8分(Ⅲ)随机变量X 所有可能的取值为3,4,5,6. ………………9分33361(3)20C P X C===,23363(4)20C P X C ===,243663(5)2010C P X C ====,2536101(6)202C P X C ====. ………………12分所以,随机变量X 的分布列为:………………13分18、(本小题满分13分)解:(Ⅰ)由题意得32c c a=⎧⎪⎨=⎪⎩a =………………2分结合222a b c =+,解得212a =,23b =. ………………3分[来源:Z&xx&]所以,椭圆的方程为131222=+yx. ………………4分(Ⅱ)由22221,,x ya b y kx ⎧+=⎪⎨⎪=⎩得222222()0b a k x a b +-=.设1122(,),(,)A x y B x y .所以2212122220,a bx x x x b a k-+==+, ………………6分依题意,O M O N ⊥,易知,四边形2O M F N 为平行四边形,所以22AF BF ⊥, ………………7分 因为211(3,)F A x y =- ,222(3,)F B x y =-,所以222121212(3)(3)(1)90F A F B x x y y k x x ⋅=--+=++=. ………………8分[来源:学+科+网Z+X+X+K]即222222(9)(1)90(9)a a k a k a --++=+-, ………………9分将其整理为 42224242188********a a k a aa a-+==---+-. ………………10分因为2322≤<e,所以a ≤<21218a ≤<. ………………11分所以218k ≥,即(,],]44k ∈-∞-+∞ . ………………13分19.(本小题满分14分)解:2()(21)f x ax a x'=-++(0)x >. ………………2分(Ⅰ)(1)(3)f f ''=,解得23a =. ………………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………………5分①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………………6分 ②当102a <<时,12a>,在区间(0,2)和1(,)a+∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a+∞,单调递减区间是1(2,)a. …………7分③当12a =时,2(2)()2x f x x-'=, 故()f x 的单调递增区间是(0,)+∞. ………8分④当12a >时,102a<<,在区间1(0,)a和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………9分 (Ⅲ)由已知,在(0,2]上有m ax m ax ()()f x g x <. ………………10分 由已知,max ()0g x =,由(Ⅱ)可知,[来源:学科网] ①当12a ≤时,()f x 在(0,2]上单调递增,故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤. ……………11分②当12a >时,()f x 在1(0,]a上单调递增,在1[,2]a上单调递减,故m ax 11()()22ln 2f x f a aa==---.由12a >可知11ln lnln12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,m ax ()0f x <, ………………13分 综上所述,ln 21a >-. ………………14分20.(本小题满分14分) 解:(Ⅰ)当2≥n 时,有121321()()()n n n a a a a a a a a -=+-+-++- 1121n a b b b -=++++ …………2分2(1)11222n nnn -⨯=+=-+. ………………3分又因为11=a 也满足上式,所以数列}{n a 的通项为2122n nn a =-+.………………4分(Ⅱ)(ⅰ)因为对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====, ………………5分所以 1656161661626364n n n n n n n n n n c c a a b b b b b b ++--++++-=-=+++++111221722=+++++=(1)n ≥,所以数列}{n c 为等差数列. ………………7分 (ⅱ)设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1666661626364657(0)n n n i n i n i n i n i n i n i n i c c a a b b b b b b n +++++++++++++++-=-=+++++=≥所以数列}{6i n a +均为以7为公差的等差数列. ………………9分设6777(6)7766666666i i k i i k iii k a a a a kf k i i k i k i k+++--+====+++++,(其中i k n +=6)0(≥k ,i 为}6,5,4,3,2,1{中的一个常数),当76i i a =时,对任意的i k n +=6有na n 76=; ………………10分当76i i a ≠时,17771166()()6(1)666(1)6i i k k iiia a i f f a k i k i k i k i+---=-=--++++++ 76()()6[6(1)](6)i i a k i k i -=-+++………………11分①若76i i a >,则对任意的k ∈N 有k k f f <+1,所以数列}6{6ik a i k ++为单调减数列; ②若76i i a <,则对任意的k ∈N 有k k f f >+1,所以数列}6{6ik a ik ++为单调增数列;………………12分综上:设集合741111{}{}{}{}{}{}632362B =-- 74111{,,,,}63236=--, 当B a ∈1时,数列}{n a n 中必有某数重复出现无数次. 当B a ∉1时,}6{6ik a ik ++ )6,5,4,3,2,1(=i 均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列}{na n 中任意一项的值均未在该数列中重复出现无数次. ………14分。

相关文档
最新文档