高中数学第二章平面向量2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理目标导引新人教A版必修4
数学必修四2.3.1平面基本定理

若a≠0,b≠0,且|a|=|b|=|a-b|,求a与a+b的夹角.
由向量运算的几何意义知a+b,a-b是以a,b为邻边的平行四边形
两条对角线. 如图,∵|a|=|b|=|a-b|,∴∠BOA=60°.
→ 又∵OC=a+b,且在菱形 OACB 中,
对角线OC平分∠BOA,
∴a与a+b的夹角是30°.
跟踪训练 3
如图所示,在▱ABCD 中,E,F 分别是
→ → BC,DC 边上的中点,若AB=a,AD=b,试以 a,b → → 为基底表示DE,BF.
解
∵四边形ABCD是平行四边形,E,F分别是BC,DC边上的中点,
→ → → → → → ∴AD=BC=2BE,BA=CD=2CF,
1→ 1 → 1→ 1 → 1→ ∴BE=2AD=2b,CF=2BA=-2AB=-2a.
反思与感悟
解析答案
跟踪训练1
设e1,e2是不共线的两个向量,给出下列四组向量:①e1与
e1 + e2 ;②e1 - 2e2 与 e2 - 2e1 ;③e1 - 2e2 与 4e2 - 2e1 ;④e1 + e2 与 e1 - e2. 其 ①②④ 中能作为平面内所有向量的一组基底的序号是 __________.( 写出所有满 足条件的序号) 解析 对于③,4e2-2e1=-2e1+4e2
2-λ 1 4 ∴ 2 =5,∴λ=5. 3
反思与感悟
解析答案
反思与感悟
1.若题目中已给出了基底,求解此类问题时,常利用向量加法三角形法
则或平行四边形法则,结合数乘运算找到所求向量与基底的关系.
2.若题目中没有给出基底,常结合已知条件先寻找一组从同一点出发的 两个不共线向量作为基底,而后用上述方法求解.
人教A版高中必修4数学2.3《平面向量的基本定理及坐标表示》同步练习课件(共3课时)

新知探究
题型探究
感悟提升
解
(1)∵△ABC为等边三角形,
∴∠ABC=60° . 如图,延长AB至点D,使AB=BD, → → 则AB=BD, → → ∴∠DBC为向量AB与BC的夹角. ∵∠DBC=120° , → → ∴向量AB与BC的夹角为120° .
(2)∵E为BC的中点, ∴AE⊥BC, → → ∴AE与EC的夹角为90° .
新知探究 题型探究 感悟提升
1 → → → → → 1→ BC=FD=AD-AF=AD-2AB=a-2b, → → → → → → 1→ EF=DF-DE=-FD-DE=-BC-2DC
1 1 1 1 =-a-2b-2×2b=4b-a.
新知探究
题型探究
感悟提升
类型二 向量的夹角问题
→ → → → 提示 不相同,它们互补.AC与AB的夹角为∠CAB,而CA与AB 的夹角为π-∠CAB.
新知探究 题型探究 感悟提升
类型一
用基底表示向量
【例1】 如图,四边形OADB是以 → → OA=a,OB=b为边的平行四边形, 1 1 又BM=3BC,CN=3CD,试用a、b → → → 表示OM、ON、MN.
【例2】 已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹
角是多少?a-b与a的夹角又是多少? [思路探索] 以a,b为邻边作平行四边形,则a+b,a-b分别表示 对角线向量,利用平行四边形的知识求解.
新知探究
题型探究
感悟提升
解
→ → 如图所示,作 OA =a, OB =b,且∠
AOB=60° . → → 以 OA , OB 为邻边作平行四边形OACB,则 → → OC=a+b,BA=a-b. 因为|a|=|b|=2,所以平行四边形OACB是菱形,又∠AOB= → → → → 60° ,所以OC与OA的夹角为30° ,BA与OA的夹角为60° . 即a+b与a的夹角是30° ,a-b与a的夹角是60° .
高一数学人教A版必修4课件:2.3.1 平面向量基本定理

跟踪训练 2 如图,已知△ABC 中,D 为 BC 的 中点,E,F 为 BC 的三等分点,若A→B=a,A→C
=b,用 a、b 表示A→D、A→E、A→F 解 A→D=A→B+B→D=A→B+12B→C =a+12(b-a)=12a+12b; A→E=A→B+B→E=A→B+13B→C
明目标、知重点
2.准确理解平面向量基本定理 (1)平面向量基本定理的实质是向量的分解,即平面内任一向量 都可以沿两个不共线的方向分解成两个向量和的形式,且分解 是唯一的. (2)平面向量基本定理体现了转化与化归的数学思想,用向量解 决几何问题时,我们可以选择适当的基底,将问题中涉及的向 量向基底化归,使问题得以解决.
明目标、知重点
思考 3 如图,△ABC 中,A→C与A→B的夹角与C→A与 A→B的夹角是否相同? 答 不相同,它们互补.A→C与A→B的夹角为∠CAB,而C→A与A→B的夹 角为 π-∠CAB.
明目标、知重点
例1 已知e1,e2是平面内两个不共线的向量,a=3e1-2e2, b=-2e1+e2,c=7e1-4e2,试用向量a和b表示c. 解 ∵a,b不共线,
→→ 以OA,OB为邻边作平行四边形 OACB,则
→
→
OC=a+b,BA=a-b.
∵|a|=|b|,∴平行四边形OACB为菱形.
明目标、知重点
∴O→C与O→A的夹角∠AOC=60°, B→A与O→A的夹角即为B→A与B→C的夹角∠ABC=30°. ∴a+b与a的夹角为60°,a-b与a的夹角为30°. 反思与感悟 求两个向量的夹角,关键是利用平移的方法使两个 向量的起点重合,根据向量夹角的概念确定夹角,再依据平面图 形的知识求解向量的夹角.过程简记为“一作二证三算”.
高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,
2.3平面向量的基本定理及坐标表示(一)

B - e O e2 2
a
C
讨论:
⑵ 改变a的位置如下图两种情 况时, 怎样构造平行四边形 ?
C
A M
e1
a
N
'
e1
A B
O
e2 B
a
C
B e O e2 2
讨论:
⑵ 改变a的位置如下图两种情 况时, 怎样构造平行四边形 ?
C
A M
e1 e1
a
N
'
e1
A B
O
e2 B
B e O e2 2
N
B
M
C
a
e2
O
A
'
'
A
A
a
C
e1 e1
M
e1
O
a
e2
B N
C
'
e2 B
平面向量基本定理:
如果 e1 , e 2 是同一平面内两个不 共线的向量,那么对这 一平面内任 a 意一个向量a , 有且只有一对实数 1 , 2 , 使 a 1 e1 2 e 2 . a
(1)平面向量基本定理:
2.3.1平面向量基本定理
一、复习引入
如图, 有非零向量 a , 则 b 与 a 共线的 条件是什么?
a a
b
b
向量b与非零向量a共线 当且仅当有唯一一个实数λ,使b=λa
思考:
(1)给定平面内两个向量 e1 , e2 , 请你作出 向量 3e 2e , e 2e .
1 2 1 2
e1
a
e1
OAMaB NhomakorabeaC
显然: OM ON a
2020版人教A数学必修3 课件:2.3.1 平面向量基本定理

2.(2018·黄石市高一检测)已知平行四边形ABCD,则下列各组向量中,是 该平面内所有向量基底的是( D ) (A) AB , DC (B) AD , BC (C) BC , CB (D) AB , DA
解析:由于 AB , DA 不共线,所以是一组基底.
3.如图,M,N 是△ABC 的一边 BC 上的两个三等分点,若 AB =a, AC =b,则
正解:由已知得 BA = OA - OB =2a-2b, BC = OC - OB =(-a+3b)-2b=-a+b, 显然 BA =-2 BC ,可见 BA 与 BC 共线,且是反向共线,故 BA 与 BC 的夹角 为 180°.
学霸经验分享区
(1)对基底的理解 ①基底的特征 基底具备两个主要特征:a.基底是两个不共线向量; b.基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作 为这个平面内所有向量的一组基底的条件. ②零向量与任意向量共线,故不能作为基底. (2)准确理解平面向量基本定理 ①平面向量基本定理的实质是向量的分解,即平面内任一向量都可以 沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的. ②平面向量基本定理体现了转化与化归的数学思想,用向量解决几何 问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归, 使问题得以解决.
题型三 任意一向量基底表示的唯一性应用 [例 3] 如图所示,在△ABC 中,点 M 是 AB 的中点,且 AN = 1 NC ,BN 与 CM 相
2 交于 E,设 AB =a, AC =b,试用基底 a,b 表示向量 AE .
解:易得 AN = 1 AC = 1 b, AM = 1 AB = 1 a,
新知导学 课堂探究
新知导学·素养养成
第二章 2.3 2.3.1 平面向量基本定理
2.3.1平面向量基本定理1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.用基底表示向量[典例]如图,在平行四边形ABCD中,设对角线AC=a,BD=b,试用基底a,b表示AB,BC.[活学活用]如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,BA=a,BC=b.试以a,b为基底表示EF,DF,CD.向量夹角的简单求解[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b 与a的夹角又是多少?[活学活用]如图,已知△ABC是等边三角形.(1)求向量AB与向量BC的夹角;(2)若E为BC的中点,求向量AE与EC的夹角.平面向量基本定理的应用[典例]NC,AM与BN相交于点P,求AP∶PM与BP∶PN.[一题多变]1.[变设问]在本例条件下,若CM=a,CN=b,试用a,b表示CP,2.[变条件]若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN .层级一 学业水平达标1.已知平行四边形ABCD 中∠DAB =30°,则AD 与CD 的夹角为( ) A .30° B .60° C .120°D .150°2.设点O 是平行四边形ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB . A .①② B .①③ C .①④D .③④3.若AD 是△ABC 的中线,已知AB =a ,AC =b ,则以a ,b 为基底表示AD =( ) A .12(a -b )B .12(a +b )C .12(b -a )D .12b +a4.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =( ) A .12(e 1+e 2)B .12(e 1-e 2)C .12(2e 2-e 1)D .12(e 2-e 1)5.设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43AC B .AD =13AB -43ACC .AD =43AB +13AC D .AD =43AB -13AC6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.7.已知e 1,e 2是两个不共线向量,a =k 2e 1+⎝⎛⎭⎫1-5k2e 2与b =2e 1+3e 2共线,则实数k =______.8.如下图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM =13BC ,CN =13CA ,AP =13AB ,若AB =a ,AC =b ,试用a ,b 将MN ,NP ,PM 表示出来.10.证明:三角形的三条中线共点.层级二 应试能力达标1.在△ABC 中,点D 在BC 边上,且BD =2DC ,设AB =a ,AC =b ,则AD 可用基底a ,b 表示为( )A .12(a +b )B .23a +13bC .13a +23bD .13(a +b )2.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =( ) A .43a +23bB .23a +43bC .23a -23bD .-23a +23b3.如果e 1,e 2是平面α内所有向量的一组基底,那么,下列命题中正确的是( ) A .若存在实数λ1,λ2,使得λ1e 1+λ2e 1=0,则λ1=λ2=0B .平面α内任一向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2不一定在平面α内,λ1,λ2∈RD .对于平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对4.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C.x+2y-2=0 D.2x+y-2=05.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a +________b.6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.8.若点M是△ABC所在平面内一点,且满足:AM=34AB+14AC.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设BO=x BM+y BN,求x,y的值.。
平面向量的基本定理及坐标表示(教学设计)
2.3 平面向量的基本定理及坐标表示(1)(教学设计)2.3.1平面向量基本定理;2.3.2平面向量的正交分解及坐标表示[教学目标]一、知识与能力:1. 了解平面向量基本定理。
2.掌握平面向量基本定理,理解平面向量的正交分解及坐标表示;3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.二、过程与方法:体会数形结合的数学思想方法;培养学生转化问题的能力.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算教学难点:平面向量基本定理.一、复习回顾:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =02.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、师生互动,新课讲解:思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?.在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式.1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.(2)向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB=θ(0︒≤θ≤180︒)叫做向量a 与b 的夹角,当θ=0︒时,a 与b 同向;当θ=180︒时,a 与b 反向.如果a 与b 的夹角是90︒,则称a 与b 垂直,记作a ⊥b .例1 (课本P94例1)已知向量e 1、e 2,求作向量-2.5e 1+3e 2。
2.3平面向量基本定理
当向量的始点在坐标原点时, 向量的坐标就是向量终点的坐标.
[思考尝试· 夯基]
1.思考判断(正确的打“√”,错误的打“×”) (1)与 x 轴平行的向量的纵坐标为 0;与 y 轴平行的向量的横坐 标为 0.( √ )
(2)两个向量的终点不同, 则这两个向量的坐标一定不同. (× ) (3)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐 标.( √ )
练习:P53步步高,例 2,跟踪训练3 例题讲解:P53 跟踪训练1.
练习:P54 当堂检测3,5
2.3.4 平面向量共线的坐标表示
[知识提炼· 梳理]
1.平面向量共线的条件 向量 a(a≠0)与 b 共线, 当且仅当有唯一一个 实数 λ,使 b=λ_a.
2.平面向量共线的坐标表示: 设 a=(x1,y1),b=(x2,y2),其中 b≠0,则 a,b 共 线⇔x1y2-x2y1=0.
[常规解答] 设 AC,BD 交于点 O, 1→ 1 → → 1→ 1 → → 则有AO=OC= AC= a,BO=OD= BD= b. 2 2 2 2 1 1 → → → → → 所以AB=AO+OB=AO-BO= a- b, 2 2 1 1 → → → BC=BO+OC= a+ b. 2 2
练习:步步高P51例3,跟踪训练3
2. 3 平面向量的基本定理及坐标表示 2.3.1 平面向量基本定理
[知识提炼· 梳理] 1.平面向量基本定理
条件 e1,e2 是同一平面内的两个不共线向量 结论 对于这一平面内的任意向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2 不共线的向量 e1,e2 叫做表示这一平面 内所有向量的一组基底
→ =-OC → ,故 O 为 CM 的中点, 所以OM 1 1 1 所以 S△AOC= S△CAM= S△ABC= ×4=1. 2 4 4
人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)
x
e2
O
a 3e1 2e2
3 a x 4y 2
yn
A
a 3m 2n
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线).
若1与2中只有一个为零 , 情况会是怎样?
若2 0, 则a 1 e1 ,即a与e1共线, 若1 0, 则a 2 e2 ,即a与e2共线,
本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
课堂总结 1.平面向量基本定理可以联系物理 学中的力的分解模型来理解,它说明在
同一平面内任一向量都可以表示为不共
线向量的线性组合,该定理是平面向量
D
A
N M B
C
例2.用向量的方法证明: 1 平行四边形OACB中, BD BC , OD与BA 3 1 相交于E , 求证 : BE BA. 4 D B C E
O
A
例3.证明: 向量OA, OB, OC的终点A, B, C共线 的等价条件是存在实数 、 且 1, 使得 OC OA OB.
问题 3 : 设 e1 , e2 是同一平面内两个不共 线的向量, a是这一平面内的任一向 量, 我们来通过作图研 究a与e1 , e2 之间的关系?
平面向量基本定理: 如果e1 , e2 是同一平面内两个不共 线的向量, 那 么对于平面内的任一向 量a , 有且只有一对实数
1 , 2 , 使得a 1 e1 2 e2 .
坐标表示的基础,其本质是一个向量在
其他两个向量上的分解。
2. 在实际问题中的指导意义在于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 平面向量基本定理
一览众山小
诱学导入
材料:在物理学中我们知道,一个放在斜面上的物体所受的竖直向下的重力G,可分解为使
物体沿斜面下滑的力F1,和使物体垂直于斜面压紧斜面的力F2,如图
2-3-1.
图2-3-1 图2-3-2
如图2-3-2,一盏电灯,可以由电线CO吊在天花板上,也可以由电线AO和绳BO拉住.CO 所受的拉力F应与电灯重力平衡,拉力F可以分解为AO与BO所受的拉力F1和F2.
问题:从上面的实例中可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.
如果e1、e2是同一平面内的两个不共线向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?
导入:将a用e1、e2表示出来.
温故知新
1.向量加法与减法三角形法则和平行四边形法则是怎样的?
答:向量加法的三角形法则是把其中一个向量的起点平移,使之与第二个向量的终点重合,则从第一个向量的起点指向第二个向量终点的向量,就是两个向量的和向量.
由同一点A为起点的两个已知向量a、b为邻边作平行四边形ABCD,则以A为起点的对角线AC就是a与b的和.
向量减法的三角形法则是把两个向量的起点放在一起,它们的差是以减向量的终点为起点,被减向量的终点为终点的向量.
2.向量数乘的意义是什么?
答:实数λ与向量a的乘积λa是一个与a共线的向量.运用两个法则对向量进行线性运算时,可使两个向量的起点置于同一点上,也可使两个向量首尾相连.
1。