山东大学《理论力学》教案第8章 点的合成运动
理论力学 第八章

x o ' = x o ' (t ) 牵连运动方程 y o ' = y o ' ( t ) = ( t )
动系与定系之间的坐标变换关系
x = xO′ + x′ cos y′sin y = yO′ + x′ sin + y′ cos
沿半径为r的圆 例8-1 点M相对于动系 Ox′y′ 沿半径为 的圆 相对于动系 周以速度v作匀速圆周运动 圆心为O 作匀速圆周运动(圆心为 周以速度 作匀速圆周运动 圆心为 1 ) ,动系x′y′ O Oxy 以匀角速度ω绕点 作定轴转动, 相对于定系 以匀角速度 绕点O作定轴转动, 绕点 作定轴转动 如图所示。 重合, 重合。 如图所示。初始时x′y′ 与 与 重合 O Oxy 重合,点M与O重合。 的绝对运动方程。 求:点M的绝对运动方程。 的绝对运动方程
. 已知: 已知 ω, OA, = r, OO1 = l, OA水平 求: ω1 = ?
解:
1.动点:滑块A . 动系:摇杆AB 2. 运动分析 绝对运动:绕O点的圆周运动
相对运动:沿O1B的直线运动 牵连运动:绕O1轴定轴转动
√ √ √
3.
ve = va sin = ωr
r
2 2
l +r ve r2ω ∴ω1 = = 2 2 O A l +r 1
4. 绝对运动方程 vt vt x = x′ cos y′ sin = r1 cos r cosωt r sin r sin ωt y = x′ sin + y′ cos = r1 cos vt sin ωt + r sin vt co-3 用车刀切削工件的直径端面,车刀刀尖 M沿水平轴 作往复运动,如图所示。设oxy为定坐 沿水平轴x作往复运动 沿水平轴 作往复运动,如图所示。 为定坐 标系,刀尖的运动方程为 x = bsin (ωt ) 。工件以 标系, 逆时针转向转动。 等角速度 ω逆时针转向转动。 求:车刀在工件圆端面上切出的痕迹。 车刀在工件圆端面上切出的痕迹。
8点的合成运动

ve ωe r
dve dωe dr r ωe dt dt dt
d 其中: ωe α e dt dr v a ve v r dt x
e
M
e
O
r′
r
rO
y
dve α e r ωe (ve v r ) dt
ae α e r ωe vr
e
aC
aC 2ωe vr
aC 2ωe vr sin
加速度合成定理
aa ae ar aC
旋风的生成
六知四求二
例题1
已知:OA=l; = t 求:T型杆的速度和加速度
O
A
ve
C
vr
B
解:(1)取滑块A为动点,T型杆为动系 (2)分析三种运动,确定速度的方向
va
(3)作出速度平行四边形,求解求知量
v a ve v r
va l
ve va cos l cos
例题 2
dve ae ωe v r dt
dv a dv e dv r aa dt dt dt
dve ae ωe v r dt
dv r ar ωe v r dt
aa ae ar aC
aC 2ωe vr 科氏加速度
科氏加速度的计算
vr
rA k rO
drO v O ωe rO dt
e
O
A
rA
rO
y
drO dk drA dt dt dt
x
drO dk e (rO k ) dt dt
dk ωe k dt
理论力学第八章点的合成运动

3
实例三
描述一个长杆在平面内同时作直线运动和回转运动的合成运动,讨论合成运动对 杆心运动特性的影响。
合成运动中的矢量操作
在合成运动中,我们经常需要进行矢量的加法、减法和乘法等操作。这些操作可以帮助我们推导、计算和分析 合成运动的各种特性。
合成运动的应用及展望
应用
合成运动的概念和原理广泛应用于物理学、工程学和运动学等领域,为我们理解和解决复杂 的运动问题提供了有力的工具。
点的合成运动的基本概念
点的合成运动是指多个点以各自不同的速度和方向同时运动,并在同一时间 到达相对位置的运动方式。它是合成运动的基本形式之一。
合成运动的示意图和公式推导
示意图
通过示意图展示合成运动的过程和结果,帮助加深 理解。
公式推导
推导合成运动的公式,使我们能够定量描述和计算 合成运动的各个特性。
质点运动的合成运动
质点的合成运动是指质点在运动过程中,同时具有平移运动和旋转运动的一 种复杂运动形式。在合成运动中,质点的运动轨迹会呈现出特定的形态和规 律。
质点合成运动实例分析
1
实例一
分析一个小球在倾斜平面上同时进行滚动和滑动的合成运动,探讨其运动规律和 性质。
2
实例二
研究一个弹射体在水平飞行过程中受到重力和空气阻力合成运动的影响,揭示合 成运动对物体运动轨迹的影响。
理论力学第八章点的合成 运动
欢迎大家来到本次关于理论力学第八章点的合成运动的精彩演讲。在本次演 讲中,我们将深入探讨合成运动的定义、基本概念、示意图与公式推导,以 及质点运动的合成运动等内容。
合成运动的定义
合成运动是指由多个简单的运动相结合而成的复杂运动。它将两个或多个运 动矢量合成为一个合成矢量,从而形成全新的运动方式。
理论力学之点的合成运动

1
60o
O1
x
点M .
x
va= ve + vr va = 0.2 m/s
0.5cm
解得: ve= 0.17m/s=2× 0.866 ; vr= 0.1m/s ; 2= 0.2r26ad/s
例题. 具有园弧形滑道的曲柄滑道机构,用来使滑 道 BC获得间歇的往复运动.已知曲柄以匀角速 度 =10 rad/s 绕O轴转动, OA=10cm ,园弧道的 半径 r = 7.5cm. 当曲柄转到图示位置sin = 0.6 时, 求滑道BC的速度.
5
例题.曲柄导杆机构 的运动由滑块 A带动,
B
已知OA= r且转动的 角速度为.试分析滑 块 A的运动.
O
C A
D
动点:滑块A;动系:固连在BCD杆
*、机构运动特点:一运动物体上有一固定点始终与另一 运动物体接触,且在其上运动。
则:动点:固定接触点;动系:另一运动物体。
6
例题. 平底凸轮机构 如图示. 凸轮 O 的半径 为R,偏心距OA=e,以匀 角速度绕O转动,并带 B 动平底从动杆 BCD运 动. 试确定动点并分析 其运动.
Va=Ve/cos= … =2; Vr=Ve tan= … =1
22
例题. 斜面CD与水平成 角,并以 v = 10cm/s 沿水平方向运动.求杆AB的速度vA.
C
v
B
A D
23
解:取杆AB的A端为动点. 动系固连在斜面上。
C
动点A的绝对运 v 动---铅垂直线运 动。
B
vr
va
ve
va B
1 O1
ve
vr
A(A´)
绝对运动—以O1为中心 r为半径
理论力学第8章,点的合成运动

速度合成定理
始末状态
8.2
1 定理推导
速度合成定理
运动合成
M’
绝对运动
牵连运动
相对运动
8.2
1 定理推导
速度合成定理
由矢径的关系 除以时间取极限 速度合成定理
MM '' MM ' M ' M ''
MM '' MM ' M ' M '' lim lim lim t 0 t 0 t t 0 t t
目的:牵连点,AB上C点的速度
作 业
P195
7-17 7-19
谢 谢
8.3
加速度合成定理
科氏加速度方向的判断:
(2)从相对速度方向开始,顺着牵连角速度转90度
8.3
加速度合成定理
例3. 摆动导杆机构,已知AB匀速转动,求CD杆的角加速度?
目的:基本使用过程
8.3
加速度合成定理
练习
练习1. (P197 7-26)求小环的速度和加速度。(85分)
目的:熟悉
速度分析
用ADAMS来表示牵连点的运动
思考题. (p194 7-11 ) 求销钉M的速度?(100分)
动画
目的:同用。
8 点的合成运动
0 引言 1 三种运动 2 速度合成定理
3 加速度合成定理
8.3
加速度合成定理
1 加速度合成定理
说明:
加速度比速度更麻烦。速度只有1项,加速度可能存 在向心加速度和切向加速度2项。
注意:牵连点—动系上与动点重合的点。
8.2
速度合成定理
例1 机构如图。三角块移动速度为V,求BC的速度。
《点的合成运动》课件

04
机械臂的运动也是点的合成运动的实例,机械臂的每 个关节的运动都是相对独立的,但它们的合成结果决 定了机械臂的整体位置和姿态。
03
点的合成运动计算方法
坐标系转换法
总结词
坐标系转换法是一种通过坐标变换来计算点的合成运动的方法。
详细描述
坐标系转换法的基本思想是将点的合成运动分解为一系列坐标系的旋转和平移变换,通过逐一应用这 些变换来计算合成运动的结果。这种方法需要明确各个坐标系之间的关系,并掌握坐标变换的规则。
《点的合成运动》ppt课件
目 录
• 点的合成运动概述 • 点的合成运动原理 • 点的合成运动计算方法 • 点的合成运动在工程中的应用 • 点的合成运动的发展趋势与展望
01
点的合成运动概述
定义与概念
定义
点的合成运动是指一个点在两个或多个运动的作用下的相对 运动。
概念
点的合成运动是分析机构运动的基础,是研究机构运动特性 的重要方法。
合成运动的分类
平面合成运动
一个点在平面内的两个或多个运动作 用下的合成运动。
空间合成运动
一个点在三维空间中的两个或多个运 动作用下的合成运动。
合成运动的应用场景
机械制造
01
在机械制造中,点的合成运动被广泛应用于机构分析和设计,
如连杆机构、齿轮机构等。
机器人学
02
在机器人学中,点的合成运动是实现机器人精确控制和轨迹规
03
,广泛应用于工程、物理和生物等领域。
点的合成运动特性
01
点的合成运动特性包括相对性、 独立性和叠加性。
02
相对性是指点的合成运动是相对 于观察者的,观察者的位置和速
3理论力学 第八章点的合成运动解析

? ? tg ?1 v?
v平
[例8-2] 曲柄摆杆机构
φ
已知:OA= r , ? , OO1=l 图示瞬时OA? O
求:摆杆O1B角速度? 1
解:取套筒A点为动点,摆杆O1B为动系.基座为静系。
绝对速度va = r ?
相对速度vr = ?
方向? OA 方向//O1B
牵连速度ve = ?
方向? O1B
由速度合成定理 va ? vr ? ve 作出速度平行四边形 如图示。
r
ve ? va sin? ? r? ?
r2? l2
又?ve ? O1 A?? 1,
? ? 1 ? Ov1eA?
1? r 2 ?l2
r 2?
r2?
l2
?
r
r 2?
2 ? l2
(
)
[例8-3]圆盘凸轮机构
已知:OC=e , R ? 3e , ? (匀角速度)
vr
va
A veva
B
aa
ar
va
A
Baen
ae?
练习三
解:
A
?
?
o
B
A
? ?
o
ve ? OB??
va
B
vr
动系:OA杆; 动点:滑块B
A
? ?
arn
o
aen ? OB?? 2
ar?
B
aa
a?e ? OB??
[例8-1] 桥式吊车。 已知:小 车水平运行,速度为v平, 物块A相对小车垂直上升 的速度为v? 。求物块A的运 行速度。
一、实例 : M点运动
地面: 摆线, 车箱: 圆。
二、复合运动的一般模型
理论力学第八章点的合成运动

运动学/点的合成运动
▼曲柄摇杆机构运动分析
动 点:套筒A
动 系:摇杆OC 定 系: 地面 绝对运动:圆周(O1) 相对运动:直线(沿
OC)
牵连运动: 定轴转动 (绕O)
运动学/点的合成运动
▼平底凸轮机构运动分析
动点:凸轮圆心点C 动系:平底挺杆 静系:地面 绝对运动:圆周(C) 相对运动:直线
运动学/点的合成运动
飞机螺旋桨上点P的运动分析
飞机上观察 P点为圆周 运动
当飞机直线 平移时地面 上观察P点的 运动为曲线 运动。
P点的运动可看成随飞机的平移与绕螺旋桨轴心转动的合成。
运动学/点的合成运动
本章利用运动的分解、合成的方 法对点的速度、加速度进行分析,研 究点在不同参考系中的运动,以及它 们之间的联系。
运 动 , 带 动 顶 杆 AB 沿 铅
A
R φ
v0
垂方向运动,如图所示。
试求φ=60º时,顶杆AB的
速度。
n
运动学/点的合成运动
解: 1. 选择动点、动系与定系
B
y
y A
v0
R
o φ
x
o
n
x
动点:AB 杆的端点A 动系:固连于凸轮
定系:固连于水平 轨道
2. 运动分析
绝对运动:直线运动
相对运动:沿凸轮轮 廓曲线运动
▼牵连点指某瞬时动系上与
动点相重合的点,不同瞬时 牵连点的位置不同。
▼动点相对动系、定系必
须有运动,不能和动系在同 一物体上。
▼以上可归结为一点、两
系、三运动。
运动学/点的合成运动
四、 运动方程及坐标变换 可以利用坐标变换来建立绝对、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 点的合成运动
一、目的要求
1.深刻理解三种运动、三种速度和三种加速度的定义、运动的合成与分解以及运动相对性的概念。
2.对具体问题能够恰当地选择动点、动系和定系进行运动轨迹、速度和加速度分析,能正确计算科氏加速度的大小并确定它的方向。
3.会推导速度合成定理、牵连运动为平动时点的加速度合成定理,理解并掌握牵连运动为转动时点的加速度合成定理。
并能熟练地应用上述三个定理。
二、基本内容
1.基本概念
点的合成运动的概念;绝对运动、相对运动、牵连运动,以及由此引出的绝对速度、相对速度、牵连速度和绝对加速度、相对加速度、牵连加速度、科氏加速度的概念;点的速度合成定理和加速度合成定理。
2.基本公式
速度合成定理:r e a v v v +=
加速度合成定理:r e a a a a +=(牵连运动为平动)
c r e a a a a a ++=(牵连运动为转动)
r c v a ⨯=ω2
三、重点和难点
1.重点
(1)动点和动系的选择;
(2)运动的合成与分解;
(3)速度合成定理和加速度合成定理的应用和计算。
2.难点
(1)动点和动系的选择;
(2)加速度合成定理的运用与计算;
(3)牵连速度、牵连加速度及科氏加速度的概念。
四、教学建议
1.教学提示
(1)讲清动点、动系的选取原则,通过举例归纳常见机构动点、动系的选取方法。
(2)强化牵连点的概念,熟练掌握牵连速度、牵连加速度的计算。
(3)举例阐明速度合成定理的应用和解题步骤(多用几何法)。
(4)讲清如何用解析法求解加速度合成问题,强调科氏加速度产生的原因与计算(多用投影法)。
本章是运动学重点,也是难点,要求多举例,熟练掌握。
2.例题
速度分析可按六种类型举例,即有一个指定动点、有一个运动连接点,有一个固定不变的接触点,没有一个固定不变的接触点,两个互不关联的物体,双动系;在进行加速度分析时,重点是前4类,特别是要注意科氏加速度的分析。
3.建议学时
课内(7学时)课外(10.5学时)
4.作业布置
习题:8-4,8-8,8-10,8-13,6-15,8-17,8-18,8-19,8-21,8-24,8-25,8-27。