自动控制实验报告二-二阶系统阶跃响应
实验二 二阶系统阶跃响应_2

实验二二阶系统阶跃响应一、实验目的(1)了解典型二阶系统模拟电路的构成方法及二级闭环系统的传递函数标准式。
(2)研究二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ζ对过渡过程的影响。
(3)掌握欠阻尼二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计算。
观察和分析二阶闭环系统的欠阻尼, 临界阻尼, 过阻尼的瞬态响应曲线, 及在阶跃信号输入时的动态性能指标Mp、tp、ts值, 并与理论计算值对比。
二、实验设备(1)XMN-2型学习机;(2)CAE-USE辅助实验系统(3)万用表(4)计算机三、实验内容本实验用于观察和分析二阶系统瞬态响应的稳定性。
二阶闭环系统模拟电路如图2-1所示, 它由两个积分环节(OP1和OP2)及其反馈回路构成。
图2-1 二阶闭环系统模拟电路图OP1和OP2为两个积分环节, 传递函数为(时间常数)。
二阶闭环系统等效结构图如图2-2所示。
图2-2 二阶闭环系统等效结构图四、该二阶系统的自然振荡角频率为, 阻尼为。
五、实验步骤(1)调整Rf=40K, 使K=0.4(即ζ=0.2);取R=1M, C=0.47μ, 使T=0.47秒(ωn=1/0.47), 加入阶跃输入信号x(t)=1V, 记录阶跃响应曲线①;(2)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1.47μ, 使T=1.47秒(ωn=1/1.47), 记录阶跃响应曲线②;(3)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1μ, 使T=1秒(ωn=1/1), 记录阶跃响应曲线③;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=200K, 使K=2(即ζ=1), 记录阶跃响应曲线④;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=300K, 使K=3(即ζ=1.5), 记录阶跃响应曲线⑤。
六、数据采集及处理七、实验报告1、推导模拟电路的闭环传递函数Y(s)/X(s)?确定R、C.Rf、Ri与自然振荡角频率和阻尼比之间的关系。
系统阶跃响应实验报告

一、实验目的1. 了解系统阶跃响应的基本概念和特性。
2. 掌握系统阶跃响应的测试方法。
3. 分析系统阶跃响应的动态性能指标。
4. 通过实验验证理论知识,加深对系统动态特性的理解。
二、实验原理阶跃响应是指系统在单位阶跃输入信号作用下的输出响应。
对于线性时不变系统,其阶跃响应具有以下特点:1. 稳态值:系统达到稳定状态后的输出值。
2. 超调量:系统输出在稳定前达到的最大值与稳态值之差与稳态值之比。
3. 调节时间:系统输出达到并保持在稳态值的±2%范围内的持续时间。
4. 过渡过程时间:系统输出从0%达到并保持在100%稳态值范围内的持续时间。
三、实验仪器与设备1. 自动控制系统实验箱2. 计算机及实验软件3. 阶跃信号发生器4. 数据采集卡四、实验内容1. 构建实验系统,包括一阶系统和二阶系统。
2. 分别对一阶系统和二阶系统进行阶跃响应实验。
3. 测试并记录系统的稳态值、超调量、调节时间和过渡过程时间等动态性能指标。
4. 分析实验结果,验证理论公式。
五、实验步骤1. 构建一阶系统实验电路,包括惯性环节和比例环节。
2. 将阶跃信号发生器输出接入系统输入端,通过数据采集卡采集系统输出信号。
3. 测试一阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。
4. 构建二阶系统实验电路,包括惯性环节、比例环节和积分环节。
5. 同样地,测试二阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。
6. 对比一阶系统和二阶系统的阶跃响应特性,分析实验结果。
六、实验结果与分析1. 一阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:0%- 调节时间:0.5s- 过渡过程时间:0.5s2. 二阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:10%- 调节时间:1.5s- 过渡过程时间:1.5s从实验结果可以看出,二阶系统的阶跃响应超调量较大,调节时间和过渡过程时间较长,说明二阶系统的动态性能相对较差。
二阶系统阶跃响应实验报告

实验一 二阶系统阶跃响应一、实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。
(2)学会根据模拟电路,确定系统传递函数。
二、实验内容二阶系统模拟电路图如图2-1 所示。
系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。
根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。
三、预习要求(1) 分别计算出T=,ξ= ,, 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。
)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=,ξ= ,σp =% , t s =6s ; T=,ξ= ,σp =% , t s =3s ; T=,ξ= ,σp =% , t s =2s ;(2) 分别计算出ξ= ,T=,, 时,系统阶跃响应的超调量σP 和过渡过程时间tS。
ξ= ,T=,σp=% , t s=;ξ= ,T=,σp=% , t s=6s;ξ= ,T=,σp=% , t s=12s;四、实验步骤(1)通过改变K,使ξ获得0,,,,等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。
(2)当ξ= 时,令T= 秒,秒,秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。
五、实验数据记录与处理:阶跃响应曲线图见后面附图。
原始数据记录:(1)T=,通过改变R0的大小改变K值(2)ξ=,改变C的大小改变T值理论值与实际值比较:(1)T=(2)ξ=对比理论值和测量值,可以看出测量值基本和理论值相符,绝对误差较小,但是有的数据绝对误差比较大,比如T=,ξ=时,超调量的相对误差为30%左右。
造成误差的原因主要有以下几个方面:(1)由于R0是认为调整的阻值,存在测量和调整误差,且不能精确地保证ξ的大小等于要求的数值;(2)在预习计算中我们使用了简化的公式,例如过渡时间大约为3~4T/ξ,这并不是一个精确的数值,且为了计算方便取3T/ξ作统一计算;(3)实际采样点的个数也可能造成一定误差,如果采样点过少,误差相对会大。
实验2二阶系统的阶跃响应及稳定性分析实验

实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。
2.研究二阶系统分别工作在等几种状态下的阶跃响应。
3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。
二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。
2.双踪低频慢扫示波器。
四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。
其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。
改变元件参数Rx大小,可研究不同参数特征下的时域响应。
当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。
五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。
此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。
(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。
(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。
(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。
(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。
二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。
实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。
在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。
实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。
2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。
3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。
实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。
2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。
3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。
结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。
通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。
自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告实验名称:二阶系统的阶跃响应实验报告实验目的:1. 了解二阶系统的阶跃响应特性,掌握二阶系统的调节方法。
2. 学习使用计算机实验仿真软件,分析控制系统的特性和设计计算机系统的参数。
3. 进一步了解数字控制的基本原理和实现方法。
实验原理:二阶系统指的是包含两个振动元件的控制系统,例如质量弹簧阻尼系统、旋转系统等。
通过向系统输入一个单位阶跃信号,可以使系统达到稳态。
在达到稳态后,可以观察到系统的响应特性,例如响应时间、超调量等。
二阶系统的阶跃响应有三种情况,分别为欠阻尼、临界阻尼和过阻尼。
欠阻尼的二阶系统的响应曲线会出现振荡,超调量较大;临界阻尼的二阶系统响应曲线的超调量最小,但响应时间较长;过阻尼的二阶系统响应曲线是退化的,没有振荡。
在实验中,我们使用计算机模拟二阶系统,并通过输入一个单位阶跃信号,观察系统的响应特性。
具体操作步骤如下:1. 在仿真软件中建立一个二阶系统,可以让仿真软件自动生成一个简单的二阶系统。
2. 将系统设置为单位阶跃信号输入,运行仿真,观察系统的响应特性。
3. 记录系统的超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化。
实验器材:1. 计算机2. 仿真软件实验步骤:1. 打开计算机,并运行仿真软件。
2. 在仿真软件中建立一个二阶系统,并设置其为单位阶跃信号输入。
3. 运行仿真,并记录系统的响应特性,包括超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化,并记录变化后的参数。
5. 分析实验结果,并总结出二阶系统的阶跃响应特性。
实验结果:在实验中,我们使用了仿真软件模拟了一个简单的二阶系统,并进行了阶跃响应实验。
通过实验,我们观察到了系统的响应特性,并记录了系统的超调量、响应时间以及稳态误差等参数。
我们对比了欠阻尼、临界阻尼和过阻尼三种情况下的响应特性,发现欠阻尼时会出现较大的超调量,临界阻尼时超调量最小,但响应时间较长,过阻尼时响应曲线是退化的,没有振荡。
《自动控制》一二阶典型环节阶跃响应实验分析报告

自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:1.比例环节(P) 阶跃相应曲线。
传递函数:G(S)=-R2/R1=K说明:K为比例系数(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。
2、惯性环节(T) 阶跃相应曲线及其分析。
传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C说明:特征参数为比例增益K和惯性时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。
(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。
〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。
比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反之亦然。
传递函数:G(S)= -l/TS ,T=RC说明:特征参数为积分时间常数T。
(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。
(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。
〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。
积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。
4、比例积分环节(PI) 阶跃相应曲线及其分析。
传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C说明:特征参数为比例增益K和积分时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二二阶系统阶跃响应
一、实验目的
1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。
定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。
2.进一步学习实验系统的使用方法
3.学会根据系统阶跃响应曲线确定传递函数。
二、实验仪器
1.EL-AT-III型自动控制系统实验箱一台
2.计算机一台
三、实验原理
1.模拟实验的基本原理:
控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 域性能指标的测量方法:
超调量Ó%:
1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB线是否连接好,在实验项目下拉框中选中实验,点击按钮,出
现参数设置对话框设置好参数,按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输
出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相
应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果
6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:
Y MAX - Y∞
Ó%=——————×100%
Y∞
T P与T P:
利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。
四、实验内容
典型二阶系统的闭环传递函数为
ω2n
ϕ(S)= (1) s2+2ζωn s+ω2n
其中ζ和ωn对系统的动态品质有决定的影响。
构成图2-1典型二阶系统的模拟电路,并测量其阶跃响应:
图2-1 二阶系统模拟电路图
电路的结构图如图2-2:
图2-2 二阶系统结构图
系统闭环传递函数为
(2)式中 T=RC,K=R2/R1。
比较(1)、(2)二式,可得
ωn=1/T=1/RC
ζ=K/2=R2/2R1 (3)由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC值可以改变无阻尼自然频率ωn。
今取R1=200K,R2=100KΩ和200KΩ,可得实验所需的阻尼比。
电阻R取100KΩ,电容C 分别取1μf和0.1μf,可得两个无阻尼自然频率ωn。
五、实验步骤
1.连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的
输出U2接A/D、D/A卡的AD1输入,将两个积分电容得两端连在模拟开关上。
检查无误后接通电源。
2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
3.测查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出
现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信
正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
4.在实验项目的下拉列表中选择实验二[二阶系统阶跃响应], 鼠标单击按钮,弹出
实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果
5.取ωn=10rad/s, 即令R=100KΩ,C=1μf;分别取ζ=0.5、1、2,即取R1=100KΩ,R2分
别等于100KΩ、200KΩ、400KΩ。
输入阶跃信号,测量不同的ζ时系统的阶跃响应,并由显示的波形记录最大超调量Mp和调节时间Ts的数值和响应动态曲线,并与理论值比较。
6.取ζ=0.5。
即电阻R2取R1=R2=100KΩ;ωn=100rad/s, 即取R=100KΩ,改变电路中的电
容C=0.1μf(注意:二个电容值同时改变)。
输入阶跃信号测量系统阶跃响应,并由显示的波形记录最大超调量σp和调节时间Tn。
7.取R=100KΩ;改变电路中的电容C=1μf,R1=100KΩ,调节电阻R2=50KΩ。
输入阶跃信号
测量系统阶跃响应,记录响应曲线,特别要记录Tp和σp的数值。
8.测量二阶系统的阶跃响应并记入表中
六、实验报告
1.画出二阶系统的模拟电路图,讨论典型二阶系统性能指标与ζ,ωn的关系。
延迟时间td:增大无阻尼自然振荡频率或减小阻尼比,都可以减少延迟时间。
即,当阻尼比不变时,闭环极点距s平面的坐标原点越远,系统的延迟时间越短;而当无阻尼自然频率不变时,闭环极点距s平面虚轴越近,系统的延迟时间越短。
上升时间tr:要减小上升时间,当阻尼比一定时,需增大无阻尼自然振荡频率ωn ;当ω
一定时,需减小ζ.
n
峰值时间T p:T p=π/ω,和阻尼振荡频率成反比。
最大超调量Mp:Mp=错误!未找到引用源。
可知最大超调量仅和阻尼比有关系,与无阻尼自然振荡频率无关。
随着阻尼比的增大,最大超调量单调的减小。
调节时间T s:错误!未找到引用源。
=错误!未找到引用源。
可知调节时间和闭环极点的实部数值成反比,闭环极点的实部数值越大,即极点离虚轴的距离越远,系统的调节时间越短。
2.把不同ζ和ωn条件下测量的Mp和ts值列表,根据测量结果得出相应结论。
由计算结果与理论值比较发现,测得结果中,超调量较理论值偏小,调节时间较理论值偏大,但很接近理论值,在误差允许范围内。
产生偏差的原因可能是实际测量中有能量的损耗。
3.画出系统响应曲线,再由ts 和Mp 计算出传递函数,并与由模拟电路计算的传递函数相比较。
当C=1uf ,ζ=0,ωn =10rad/s 时,响应曲线:
计算得:
ζ=0.0157,ωn =12.62rad/s,
所以实际系统传递函数是
3.159
4.03
.159)s (2++=
s s ϕ
而理论传递函数是100100
)s (2+=
s ϕ
实际值与理论值存在误差,但是在可允许的范围内。
当C=1uf ,ζ=0.25,ωn =10rad/s 时, 响应曲线是:
计算得:
ζ=0.262,ωn =12.47rad/s
实际系统传递函数是:5.1555.65
.155)s (2++=
s s ϕ
理论传递函数是:
实际值与理论值存在误差,在误差允许范围内。
1005100)s (2++=
s s ϕ
当C=1uf ,ζ=0.5,ωn =10rad/s 时, 响应曲线是:
计算得:
ζ=0.510,ωn =11.00rad/s
实际传递函数是
12122.11121
)s (2++=
s s ϕ 理论传递函数是 10010100
)s (2++=
s s ϕ
实际值与理论值有误差,在误差范围内允许。
当C=1uf ,ζ=1,ωn =10rad/s 时,响应曲线:
计算得: ζ=1,ωn =10rad/
实际传递函数与理论传递函数相同:
10020100
)s (2++=
s s ϕ
实际值与理论值基本不存在差异。
当C=0.1uf ,ζ=0.5,ωn =100rad/s 时,响应曲线:
计算得:
ζ=0.522,ωn =129.85rad/s
实际传递函数是:
168616.13516861
)s (2++=
s s ϕ 理论传递函数是:
1000010010000
)s (2++=
s s ϕ
实际值与理论值存在误差,在允许范围内。
当C=0.1uf ,ζ=1,ωn =100rad/s 时,响应曲线:
计算得:
ζ=1,ωn =100rad/s 实际传递函数与理论传递函数相同:
1000020010000)s (2++=
s s ϕ
实际值与理论值基本不存在误差。
实验总结: 通过这次实验,我了解了 ωn ,ζ对二阶系统的影响,更深入的了解二阶系统的响应特点。
同时,实际值和理论值存在着一定的误差,可能是系统内部的能量损耗导致的,这在以后的自动控制实践中,是一定要考虑的。