如何用几何画板动态演示二次函数函数图像

合集下载

利用几何画板构建二次函数图像性质的直观教学

利用几何画板构建二次函数图像性质的直观教学

利用几何画板构建二次函数图像性质的直观教学二次函数是高中数学中的重要内容,几何画板可以很好地辅助教学,帮助学生直观地理解二次函数的图像性质。

本文将介绍如何利用几何画板构建二次函数的图像,并通过直观的方法教学。

让我们来绘制一个二次函数的图像。

打开几何画板,选择直线和抛物线工具。

利用直线工具绘制x轴和y轴,这是我们的坐标系。

接下来,利用抛物线工具绘制一个二次函数的图像。

选择一个坐标点作为抛物线的顶点,并选择两个离顶点较近的点作为抛物线的两个焦点。

连接顶点和两个焦点,就得到了一个二次函数的图像。

接下来,让我们来观察二次函数的图像性质。

二次函数的图像是一个抛物线。

当二次函数的二次项系数大于0时,抛物线开口向上;当二次项系数小于0时,抛物线开口向下。

这个性质可以通过调整二次项系数来观察得出。

二次函数的图像关于顶点对称。

利用几何画板的对称工具,以抛物线的顶点为对称轴进行对称操作,我们可以观察到抛物线的两侧图像完全对称。

二次函数的图像与一次函数的图像相比,更加平滑。

我们可以在几何画板上绘制一个一次函数的图像,然后将二次函数的图像与之进行对比,可以直观地感受到二次函数的图像比一次函数的图像更加平滑。

我们可以通过改变二次函数的其他系数来观察其对图像的影响。

改变一次项系数可以使得图像在x轴上平移;改变常数项可以使得图像在y轴上平移。

利用几何画板,我们可以方便地进行这些操作,并观察到图像的变化。

通过利用几何画板构建二次函数的图像,并观察其性质,可以帮助学生更好地理解二次函数的图像性质。

学生可以通过直观的方法体验到二次函数的图像相比于一次函数更加平滑,并且可以通过调整系数来观察图像的变化。

这样的直观教学方法可以提高学生的学习兴趣,使他们更加深入地理解二次函数的概念和性质。

运用几何画板动态解析二次函数的图象和性质

运用几何画板动态解析二次函数的图象和性质

运用几何画板动态解析二次函数的图象和性质作者:顾桂新来源:《教师·下》2016年第10期在二次函数的教学中,二次函数顶点式y=a(x-h)2+k的顶点坐标是学生难以理解也很容易错的知识点。

而二次函数一般式y=ax2+bx+c中系数a、b、c与二次函数的图象与性质的关系更是学生容易混淆、难以掌握的知识点。

文章通过运用几何画板动态解析二次函数的顶点式y=a(x-h)2+k是如何产生的,动态解析一般式y=ax2+bx+c中系数a、b、c的改变后二次函数的图象是如何变化的,从中梳理二次函数的图象和性质。

一、二次函数y=ax2的图象与性质在二次函数的图象和性质的教学中,我们是从简单的二次函数y=ax2入手学习二次函数的图象和性质的。

二次函数y=ax2中只含有一个系数a,我们利用几何画板改变a的取值观看y=ax2的图象的变化。

从图1、图2发现:a>0时,二次函数y=ax2的图象开口向上;a利用几何画板,把二次函数y=ax2的左侧抛物线翻折到右侧(如图3、图4所示),可以发现:二次函数y=ax2不管a的正负,其对称轴都是y轴(即直线x=0);顶点坐标是(0,0)。

当a>0时,图象有最低点,即有最小值0;当a在二次函数y=ax2上取一点Q,通过移动点Q。

如图5所示:当a>0时,在y轴左侧(即x0),y随x的增大而增大。

如图6所示:当a0),y随x的增大而变小。

二、二次函数顶点式y=a(x-h)2+k的动态形成在函数的学习中,先学习最简单函数。

从简单到复杂,从特殊到一般。

二次函数顶点式的形成可以看作由二次函数y=ax2的图形移动得到。

1.二次函数y=a(x+h)2可以看作y=ax2左右移动得到如图7所示:y=0.4(x+4.7)2的图象可以看作y=0.4x2的函数图象向左移动4.7个单位长度得到。

y=0.4(x-4.7)2的图象可以看作y=0.4x2的函数图象向右移动4.7个单位长度得到。

探索二次函数性质(几何画板动态)

探索二次函数性质(几何画板动态)

几何画板运用于探索二次函数性质(y=ax2)(动态)二次函数图像的性质是初三学习的一个难点,通过改变二次函数系数大小,直观看见图像变化,采取动态比较过程,学生更容易吸收理解,下面我将介绍具体操作过程:
打开几何画板:步骤1准备工作:绘图→网络样式→方形网格
得到如图所示:
y=ax2的图像性质
步骤2绘制函数图像:数据→新建参数→名称输入a→点击确定→绘图→绘制新函数,
在弹出的方框中选择“方程→符号y=”,
选择参数a,并依次在方框中选择*、x、^、2,;点击确定即可。

具体操作方法见下图
步骤3设置动态系数:
选中参数后选择编辑→操作类按钮→动画
如下图所示更改参数(如图中所示范围为参数变化范围可根据自己需求设置),其中标签为按钮名称。

完成后如图所示点击a<0按钮即可生成动画:
同理:按照上述方法操作可制作而成系数为正时。

也可以再绘制y=x2图形作为参考。

利用几何画板构建二次函数图像性质的直观教学

利用几何画板构建二次函数图像性质的直观教学

利用几何画板构建二次函数图像性质的直观教学几何画板是一种在绘制几何图形时使用的工具。

利用它可以直观地呈现出图形的性质,有助于学生理解和记忆。

本文将介绍如何利用几何画板构建二次函数图像的性质,以帮助教师进行直观教学。

一、画出一般式二次函数的图像y=ax^2+bx+c其中a、b、c为常数,a≠0。

我们以a=1,b=0,c=0为例,画出y=x^2的图像。

步骤如下:1. 打开几何画板,选取一个坐标系工具。

2. 选择函数曲线工具,并输入函数y=x^2。

3. 在坐标系上点击两个点,依次为(0,0)和(1,1),即可画出一条y=x^2的图像。

示意图:二、观察二次函数图像的性质1. 零点和轴对称性将一般式二次函数y=ax^2+bx+c转化成标准式y=a(x-h)^2+k形式,其中(h,k)为顶点坐标。

利用几何画板,我们可以轻松地观察出二次函数图像的顶点坐标,从而得到零点和轴对称性。

(1) 零点二次函数的零点是指函数图像与x轴交点的横坐标,即使y=0的x值。

通过画板,我们可以很容易地标出二次函数图像的零点,如下图:(2) 轴对称性由于二次函数图像是关于顶点对称的,所以可以通过画板将其轴对称,得到关于y=h的对称图形。

以y=x^2为例,步骤如下:1. 标出顶点坐标为(0,0)。

2. 选取直线工具,过顶点的横坐标0画出垂直于x轴的一条直线。

3. 复制这条直线,将其平移到顶点横坐标的相反数处,即(-0,0)。

4. 双击直线,选择反转工具,即可得到关于y=0的对称图形。

2. 开口方向和函数值的正负二次函数的开口方向由a的正负决定,当a>0时,开口向上,当a<0时,开口向下。

同时,当x趋近于无穷大或负无穷大时,函数值趋近于正无穷大或负无穷大,具体取决于a的正负。

在画板上,我们可以通过修改一般式二次函数中的a的值,观察图像的变化来理解和记忆这个性质。

如下图所示:三、总结通过利用几何画板,我们可以直观地观察和理解二次函数图像的性质。

几何画板如何绘制二次函数

几何画板如何绘制二次函数

几何画板如何绘制二次函数
二次函数是描述客观世界运动变化规律的数学模型,在学习二次函数的时候,我们学习过用描点法来大概画出二次函数,在几何画板中我们可以也用描点法准确的画出二次函数。

几何画板利用描点法绘制二次函数的具体的操作步骤如下:(几何画板官网)第一步定义三个坐标点
确定三个坐标点:(2,2)、(-2,2)、(1,-1)。

第二步描点画图
(1)打开几何画板软件,单击左边工具栏“自定义工具”—“函数工具”—“过三点的抛物线1”。

紧接着会自动出现平面直角坐标系,如图所示,这样我们就可以轻松找到坐标点。

利用自定义工具自动生成平面直角坐标系
(2)单击左边工具栏“自定义工具”—“函数工具”—“过三点的抛物线2”,在坐标系中分别找到三点(2,2)、(-2,2)、(1,-1)并单击,就回自动生成二次函数图像,同时在左上角显示函数解析式。

在坐标系中分别找到三个坐标点自动生成二次函数图像
第三步图像调节
(1)刻度调节。

如果你觉得坐标轴上面标示的刻度有些多或者少,我们可以找到x轴上面靠近原点处的一个单位点,鼠标左键按住并左右拖动可以调节点的密集程度。

鼠标左键按住单位点并左右拖动调节点的密集程度
(2)位置调节。

如果你觉得坐标轴的位置你不太满意的话,你可以通过按住原点上面的红点拖动来实现位置的改变。

鼠标左键按住原点拖动来实现位置的改变
以上向大家介绍了几何画板中利用描点法画二次函数图像的方法,操作简单,大家可根据教程多多练习,生动形象的二次函数图像能够帮助我们加大对于二次函数的理解。

在几何画板中,如何用“迭代法”构造二次函数的轨迹及动态演示函数图象的生成过程

在几何画板中,如何用“迭代法”构造二次函数的轨迹及动态演示函数图象的生成过程

在几何画板中,如何用“迭代法”构造二次函数轨迹及动态演示函数图象的生成过程?下面以二次例函数.2y 05x x 6=-++为例(见最后的截图):1.定义直角坐标系,绘制函数.2y 05x x 6=-++的图象;2.描图象“轨迹”的起点:新建参数=.1x 37-→计算().1y x 455=-(计算过程:数据→计算→点击.2y 05x x 6=-++→点击=.1x 37-→确定即可完成)→同时选定=.1x 37-和().1y x 455=-绘图绘制点即可完成(也可分别点选输入绘制);3.新建.b 02=,计算.1x b 350+=-;4.新建反映迭代次数的参数n 47=(注意数据设置成整数,并注意迭代范围和速度时间和单位的设置);5.迭代:同时选定=.1x 37-、n 47=→按住Shift →变换→深度迭代→=.1x 37- →+.1x b 350=-(点击+.1x b 350=-即可)→迭代.见上面的示意图,若不需要标示的迭代,只需选定=.1x 030和n 22=来进行迭代(见反比例函数的示意图);6.在x 轴上构造控制轨迹线段,线段的终点(如图的M ):建立参数+.1x n b 564⋅=,通过“绘图”的绘制点点击和输入的方式(+.1x n b 564⋅=,0)完成;线段起点(如图的N )可以点选完成,落在迭代轨迹的起点的区间内,这样动画的效果更好;构造线段MN .7.在x 轴上构造控制轨迹线段的控点和构造轨迹:选定线段→线段上的点→平移点→过线段上的点→作射线或直线(若轨迹在正半轴和负半轴则作直线)或作垂直于x 轴的直线(道理是一样的)→构造此射线或直线与函数图象的交点→选择线段上的构造的点和交点→构造→轨迹.8.隐藏不需要的点、线、迭代等(包括隐藏原反比例函数的图象、动画参数表);9.选定迭代次数的按钮n 47=,制作动画按钮(设置范围和速度等).补充说明:①、构造轨迹的辅助平移点的环节可以舍去,直接过“线段上的点”作轴的垂线(直线、射线),再构造交点,构造轨迹;②、要使动画不显得那么慢,除了速度设置,还可以把作为迭代平移的+.1x b 350=-中平移距离参数b 值设置大一些;③、要使轨迹动画全覆盖,除了构造轨迹的线段的端点注意设置,还要注意迭代次数的参数范围比轨迹参数实际的设置大一些来解决.④.若在动画演示中显现坐标,设计还要多一些步骤.动画参数的范围的范围要反映迭代次数的范围.⑤.比如本例输入在0~47之间.见截图(截图上的的一些点线还没有作隐藏,课件完成后根据需要作隐藏):郑宗平 2015/7/29。

用几何画板做动态函数图像的步骤

用几何画板做动态函数图像的步骤

用几何画板做动态函数图像的步骤一、两点说明:1.本文适用软件为几何画板3.05板本。

2.如果需要选择两个以上对象,用选择工具时要同时按住SHIFT键。

3.如果没有特别说明,单击、双击都是指用鼠标左键。

4.单击、双击后面的词如无特别说明都是指菜单及菜单中的内容,文中省去了引号。

二、几个函数图象的作法1.正比例函数(1)作可变系数k:①单击图表中的建立坐标系,屏幕上出现平面直角坐标系;②选择x轴(用选择工具单击x轴)后单击作图中的对象上的点,此时x轴上出现一个点并且是被选择状态;③同时选择x轴和x轴上的这个点后单击作图中的垂线,屏幕上出现x轴的一条垂线;④选择这条垂线后单击作图中的对象上的点,选择这个点后单击度量中的坐标,屏幕上出现了这个点的坐标,双击这个点的坐标(或者单击度量菜单中的计算)后屏幕上出现了一个计算器,单击计算器上的数值中的点Y,计算器的屏幕上出现这个点的纵坐标,单击计算器上的确定后屏幕上出现了这个点的纵坐标;⑤用文本工具双击上面所得的纵坐标弹出度量值格式对话框,点文本格式后从键盘上输入k,单击确定后屏幕上点的纵坐标变为k=…,用选择工具拖动x轴垂线的上点可以看到k值的变化。

(2)计算函数值:①选择x轴后单击作图中的对象上的点作出x轴上的一个动点,选择这个点后单击度量中的坐标,屏幕上出现这个点的坐标,双击这个坐标弹出计算器,单击计算器上的数值中的点x,单击计算器上的确定,屏幕上出现这个点的横坐标,用(1)⑤的方法把它改为x=…;②用选择工具双击屏幕上的纵坐标(或者单击度量菜单中的计算)后屏幕上出现了一个计算器,依次单击屏幕上的k=…(省略号是数值),计算器上的乘号,电脑屏幕上的x=…后屏幕上出现kx=…。

(3)描点作图:①依次选择屏幕上的x=…,kx=…,单击图表菜单中的P绘出(x,y),屏幕上出现以x 为横坐标,以kx为纵坐标的点;②同时选择这个点和x轴上与它对应的点,单击显示菜单中的追踪点,单击作图中的轨迹,屏幕上出现了函数的图象。

运用几何画板动态解析二次函数的图象和性质

运用几何画板动态解析二次函数的图象和性质

“左加右减” )。
2 . 二 次 函 数 y=ax2± k可 以 看 作 y=ax2上下移动得到
y x 图 8 所 示 : =0.4 2+4.4的 图 象 可 y x 以 看 作 是 =0.4 2 的函数图象向上移动 y x 4.4个 单 位 长 度 得 到 。 =0.4 2-3.6的图 y x 象 可 以 看 作 是 =0.4 2 的函数图象向下
一 、 二 次 函 数 y=ax2 的图 象与性质
在二次函数的图象和性质的教学
中 ,我 们 是 从 简 单 的 二 次 函 数 y= ax2 人
手学习二次函数的图象和性质的。二次
函 数 y=ax2 中 只 含 有 一 个 系 数 a ,我们 a 利 用 几 何 画 板 改 变 的 取 值 观 看 y=ax2
是由
移动得到
y x 例如:图 9 所示 , =0.4( ±4.8)2+
y x 3.1可 以 看 作 =0.4 2 的函数图象向右移
动 4.8个 单 位 长 度 ,再 向 上 移 动 3.1个
单位长度得到。
V::
Vy
/_
_

.

J—
图9
通 过 动 态 解 析 二 次 函 数 顶 点 式 y=a x h k ( - ) 2+ 的图象,从图象就可以直观 得出二次函数顶点式y=a (x-h ) 2+k 的
© 优课堂
YOUKETANG
运用几何画板动态解析二次函数的图象和性质
顾桂新
在 二 次 函 数 的 教 学 中 ,二 次 函 数
顶 点 式 y=a (x-h ) 2+k 的顶点坐标是学
生难以理解也很容易错的知识点。而二
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何用几何画板作二次函数图
二次函数是描述客观世界运动变化规律的数学模型,是以变化与对应为基础的重要数学概念。

要让学生理解二次函数的变量之间的相互依赖关系,清楚地看到二次函数的几种形式y=ax2、y=ax2 +k、y=(x-h)2、y=a(x-h)2+k、y=ax2+bx+c之间的平移、对称关系,需要给学生提供大量的图象素材,让学生观察、分析与对比。

当然最好还是让他们直观地观看当函数中的几个参数a、b、c或参数h、k发生变化时,图形是如何变化的,看到在运动和变化的过程中变量之间的对应关系。

这个靠老师口头讲解、黑板上画图都很难达到这个要求,而利用多媒体技术可以帮助我们做到这一点。

几何画板与Z+Z教育平台可以让抽象的函数问题变得直观形象、化静为动,动态地演示作图过程,动态地演示函数值随自变量的变化而变化的情景,有利于学生理解函数的概念、图象与性质。

如何有效地把信息技术和数学教学进行整合?如何把几何画板与Z+Z教育平台这些新的教学工具完美地融合到二次函数的教学过程中?下面我简单介绍一下用几何画板制作二次函数课件:
我想用几何画板制作课件的目标主要有三个:1、快速地作出我们想要的二次函数的图象;2、动态演示几种形式的二次函数的图象,帮助学生理解二次函数的图象、性质及几种形式的二次函数图象之间的平移与对称关系;3、动态演示二次函数的函数值随自变量的变化而变化的情景,帮助学生理解二次函数的单调性与二次函数的极值问题。

一、利用几何画板作二次函数y=3x2-4x+1的图象。

这种形式的图象比较容易在几何画板窗口上画出,教师可以在上课过程中即兴作图。

1、建立平面直角坐标系。

在进入几何画板窗口后,单击编辑窗口上的“图面”选择“显示坐标轴”,此时你可以看到窗口上出现了一个坐标轴,你拉动x轴正半轴上的一个滑动点,可以改变单位长度的大小。

2、画点。

点击编辑窗口左侧的工具栏中的画点工具,在x轴上任意处单击,可以在
x轴上做出一个点,如点A。

如果你想把这个点改为别的名字,你可以用手形工具,双击字母A,在出现的对话框中输入你想要的字母。

3、测算坐标。

单击点A,单击上编辑窗口的“测算”,选择“坐标”,可以看到编辑窗口左上角出现点A的坐标,如A(-2.18,0.00)
4、分离坐标。

把坐标A中的横坐标分离出来,当作二次函数y=3x2-4x+1的自变量x。

双击编辑窗口中的点A的坐标(-2.18,0.00)会出现一个计算器,然后单击计算器上的“值”,接着选择点A下拉菜单中的x,再按确定,就可以将A的横坐标XA=-2.18分离出来。

如下图所示:
5、更改横坐标名字。

单击编辑窗口左侧的“手”形工具,对着坐标XA=-2.18双击,则会出现一个对话框,上面有“数学格式”与“文本格式”两种选择,选择“文本格式”,把坐标XA 改成X,此时二次函数的自变量X就算做成了。

6、求出当X=-2.18时函数y=3x2-4x+1的函数值。

单击工具栏上的箭头工具
,双击编辑窗口上的任一坐标,则会弹出“计算器”,在计算器中输入3x2-4x+1,再按确定。

(计算器上的“*”表示乘号,“/”表示除号,“^”表示乘方;另外,我们只需单击一下编辑窗口中的横坐标X=-2.18,就可以在计算器上输入变量X。

如3*X^2-4*X+1)再手形
工具双击编辑窗口中的把它改为y=3x2-4x+1=23.98。

如图
7、描点。

顺次选定编辑窗口上的X=-2.18与y=3x2-4x+1=23.98,再单击菜单栏上的“图面”按钮,选择“P 画点-根据(x、y)”,则可以描出一个点B,如果看不见点B,你可以左右拖动点A,直至看到点B为止。

如图:
8、连线。

选定编辑窗口上的点A与点B,再单击菜单栏上的“构造”按钮,选择“轨迹”,
就可以做出函数y=3x2-4x+1的图象。

你若用选择工具右击图象,可以在出现的下拉
菜单中选择图象的线型(粗、细)和图象的颜色。

假如图象精确度不够,你可以用工具
双击图象,在出现的对话框中,把图象上的点数改多,就可以提高图象的精确程度,此时二次函数y=3x2-4x+1的图象就做成了。

如图:
只要重复上述几步,我们就可以类似地做出我们所想要画的二次函数的图象,所用的时间不会超过2分钟,可以在课堂上大量使用。

如果左右拖动点A,你也可以演示函数值y 随着自变量x的变化而变化的情景,容易让学生理解二次函数的单调性与极值(最大值与最小值)问题。

二、利用几何画板作二次函数y=ax2、y=ax2 +k、y=(x-h)2、y=a(x-h)2+k 与y=ax2+bx+c的图象。

制作这几种函数图象要比制作y=3x2-4x+1的图象多作几个参数
h、k或a、b、c,只要变动参数h、k或a、b、c的值,图象就会发生变化,这个课件可以动态演示二次函数的图象。

(以制作y=ax2+bx+c的图象为例)
(一)制作参数a、b、c。

1、做X轴的垂线。

重复“一、”中的第1第2两步,在编辑窗口中建立平面直角坐标系,在X轴上任取一点M,然后选定X轴与点M,单击菜单栏上的“构造”按钮,选择下拉菜单中的“垂直线”就可以画出一条与X轴互相垂直的直线。

2、画点。

用画点工具在垂线上做出三个点,用手形工具分别“单击”这三
个点,三个点的旁边会出现三个大写英文字母,再用手形工具“双击”它们,就可以在出现的对话框中把这三个字母改为a、b、c。

(另外,在出现的对话框中也可以设置字母的“字样”。


3、制作参数。

选定点a,单击菜单栏上的“测算”,再选择“坐标”测算出点a的坐标
(9.71、6.32),然后用选择工具双击点a的坐标,在出现的计算器中把点a的纵坐
标ya=6.32分离出来(可模仿“一、”中的第4步分离坐标),接着用手形工具把分离出来的纵坐标ya=6.32改名为a=6.32(可模仿|“一、”中的第5步),此时参数a制作完成,上下拉动点a,你可以看到参数a的值也在变化。

(参数b和c的制作同a一样)
(二)、制作自变量x。

在X轴上任作一点P(-5.50、0.00),把点P的横纵标xp=-5.50分离出来,并改名为x=-5.50,此时变量X的制作完毕,它的制作方式与制作参数a、b、c 是一样的,只不过在分离坐标时不同而已。

(三)、计算二次函数y=ax2+bx+c的函数值(可模仿“一、”中的第6步)。

用选择工
具双击任一个点的坐标弹出计算器,然后在计算器中依次输入a*x^2+b*x+c(只需点击编辑窗口中的参数a、b、c与自变量x就可以把它们输入计算器中),按确定,编辑窗
口中就会出现,再用手形工具单击,在
弹出地对话框里把它改为。

(四)、描点。

选定x=-5.50与单击编辑窗口上的菜单栏,选择“画点-根据(x,y)做出点Q,如图所示:
(五)、连线。

选定点P与点Q,再单击“构造”中的“轨迹”就可以做出y=ax2+bx+c 的图象。

如下图所示(如果要更改图象,可模仿“制作二次函数y=3x2-4x+1的图象“中的第8步修改图象的线型、颜色与精确度)。

只要拉动垂线上的动点a、b、c就可以改变参数a、b、c的值,二次函数y=ax2+bx+c 的图象也会随之而变化,使学生很直观地理解函数的图象及其性质,其中的数形结合,化静为动给学生带来了直观上的感受,也给学生以最直接的理性认识,清楚地看到图象的变化过程。

对于二次函数的其它形式如y=ax2、y=ax2 +k、y=(x-h)2、y=a(x-h)2+k 图象,其课件制作方法与上面是一样的,只需做出函数的自变量与几个参数即可。

用几何画板动态演示y=ax2、y=ax2 +k、y=(x-h)2、y=a(x-h)2+k的图象可以让学生很方便地理解这几种函数之间的平移与对称关系,也为学生探索二次函数的图象的性质、探讨二次函数的单调性和函数的极值等问题争取了时间,函数二次函数的图象的开口方向如何?顶点坐标与图象的对称轴是什么?等问题,学生都可以在教师的动态演示之下获得解决。

几何画板参与下的二次函数的教学,学生很容易看到各个变量之间的依赖关系,使函数的图象与性质直观化、形象化,但我们应正确把握演示的时机,要让学生参与到函数的图象与性质的探究中来,要在学生充分动手与思考之后才给予演示,否则学生反而会成为观看演示的观众,信息技术反而会剥夺学生动手与思考的机会,与我们的目标相悖。

相关文档
最新文档