材料力学弯曲变形PPT课件
合集下载
材料力学-弯曲变形

(向下)
qB
qmax
w(l)
Pl 2 2EI
(顺时针)
例题2
图示的等截面简支梁长为l,抗弯刚度为
EI,在右端受有集中力偶M0的作用,求梁任
一截面的转角和挠度。
y
解:
由整体平衡得 FAx=0, FAy= FBy= M0/l 从而,截面的弯矩为
M(x)= xFAy= xM0/l
FAx A x o
FAy
横截面变形:
线位移:长度变化
水平方向—小变形假定,挠曲轴平坦,忽略不计 垂直方向—挠度 w= w(x)
转角:角度变化
横截面相对于原位置转过的夹角,
一般用q (x)表示截面转角,并且以逆时针为正
q'
对于细长梁,略去剪力对变形影响 平截面假设成立: 变形的横截面与挠曲轴垂直
q q tan q dw
(l 2
a2)
y
例题3
P x
A
C
于是,梁的挠曲线方程为 FAx
l
w
w1 w2
(x) (x)
0 xa a xb
FAy
a
b
Pb
6 EIl
Pa
6 EIl
x3 (b2 l2 )x (l x)3 (a2 l2
)(l
x)
0 xa a xl
转角方程为
q w ww12((xx))
0 xa a xb
Pb 2EIl
x2
C1
ቤተ መጻሕፍቲ ባይዱdx
Pb 6EIl
x3
C1x
D1
同理,对CB段
w2
w2dx C2
Pa EIl
(l
x)dx
C2
材料力学弯曲应力PPT课件

M
Fl
F 解:1.画梁的剪力图和弯矩图
按正应力计算
max
M max Wz
6F1l bh2
F1
bh2
6l
107 100 1502 109 6
3750N
3.75kN
按切应力计算
max 3FS / 2A 3F2 / 2bh
F2 2 bh / 3 2106 100150106 / 3 10000N 10kN 35
截面为bh=30 60mm2 的矩形
求:1截面竖放时距离中性层20mm 处的正应力和最大正应力max; (2) 截面横放时的最大正应力max
b
解: M Fa 5103 0.18 900Nm
竖放时
横放时
IZ
bh3 12
30 603 12
54cm 4
y 20mm : M y 33.3MPa
主要公式:
变形几何关系 y
物理关系 E
E y
静力学关系
1 M
EIZ
My
IZ
为曲率半径
1
为梁弯曲变形后的曲率
11
§5.2 纯弯曲时的正应力
弯曲正应力公式适用范围
弯曲正应力
My
IZ
•横截面惯性积 Iyz =0
•弹性变形阶段 ( p )
•细长梁的纯弯曲或横力弯曲近似使用
12
试校核梁的强度。
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面
要同时满足 t,max t , c,max c
25
例题
解:(1)求截面形心
52
z1 z
yc
80 2010 120 2080 80 20 120 20
《材料力学》课件8-2两相互垂直平面内的弯曲

弯曲变形的分布
弯曲变形的分布规律
两相互垂直平面内的弯曲变形分布规律与受力情况、材料性质和结构特点等因 素有关。通过分析这些因素,可以确定变形在两个相互垂直平面内的分布情况 。
变形分布对结构性能的影响
弯曲变形的分布情况直接影响到结构的承载能力和稳定性。因此,在设计过程 中,需要充分考虑变形分布的影响,以优化结构性能。
THANKS
感谢观看
案例三:机械零件的弯曲分析
总结词
机械零件的弯曲分析是机械工程中常见的分析类型,主 要关注的是零件在不同工况下的变形和应力分布。
详细描述
在机械零件设计中,两相互垂直平面内的弯曲分析是评 估零件性能的重要手段。通过弯曲分析,可以优化零件 的结构设计,提高零件的刚度和强度,降低应力集中和 疲劳失效的风险,从而提高机械设备的可靠性和稳定性 。
弯曲强度的分布
弯曲强度的分布规律
在两相互垂直平面内的弯曲中,弯曲强度在截面上呈线性分布,即离中性轴越远,弯曲 强度越大。
弯曲强度分布的影响因素
弯曲强度分布受到多种因素的影响,如截面形状、材料性质、弯矩大小等。例如,对于 矩形截面,其弯曲强度分布与弯矩的分布密切相关。
弯曲强度的应用
结构设计中的应用
案例二:建筑结构的弯曲分析
要点一
总结词
要点二
详细描述
建筑结构的弯曲分析主要关注的是在不同载荷和环境因素 下结构的稳定性。
建筑结构的弯曲分析需要考虑的因素包括结构形式、材料 特性、支撑条件、外部载荷等。通过弯曲分析,可以预测 建筑在不同工况下的变形和应力分布,从而优化建筑设计 ,提高建筑的稳定性和安全性。
03
两相互垂直平面内的弯曲的应力 分析
弯曲应力的计算
弯曲应力的计算公式
材料力学(理工科课件)第六章 弯曲变形)

§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
材料力学课件ppt-6弯曲变形

L 6
(x
a)3 ]
4、求转角
x 0 代入得:
A
1
x0
Fb(L2 b2 ) 6LEI
x L代入得:
B
2
xL
Fab(L 6LEI
a)
目录
5、求 ymax 。
由 dy 0 求得 ymax 的位置值x。
dx
A
Fb(L2 b2 ) 6LEI
0,
C
1
xa
Fab(a b) 3LEI
0( a
例6-4 已知:q、l、 EI,求:yC ,B
目录
w w w
目录
弯曲变形/用叠加法求梁的变形 w
B1
ql3 24 EI
,
wC1
5ql 4 384 EI
w
B3
(ql2 ) l 3EI
ql3
3EI
,
wC 3
3ql 4 48 EI
w
B2
(ql) l2 16 EI
ql3 16 EI
,
wC 2
(ql )l 3 48 EI
则简支梁的转角方程和挠度方程为
AC段 (0 x a)
1(x)
Fb 6LEI
[3x2
(L2
b2
)],
y1 ( x)
Fb 6LEI
[x3
(L2
b2 )x],
BC段 (a x L)
2 ( x)
Fb 6LEI
[3x2
(L2
b2 )]
F(x 2
a)2
,
y2
(x)
Fb 6LEI
[x3
(L2
b2)x
目录
§6-4 用叠加法求弯曲变形 一、叠加法前提
材料力学第5章弯曲变形ppt课件

qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D
材料力学课件-6弯曲变形

对称截面形状
对称的截面可以减小弯曲变形和应力。
非对称截面形状
非对称的截面会导致不均匀的弯曲应力分布。
材料的弯曲变形特性
1 弯曲模量衡量材料的抗弯能力,源自 材料的刚度有关。2 弯曲强度
材料能够承受的最大弯曲 应力。
3 弯曲韧度
材料在弯曲变形下能够吸 收的能量。
测量材料的弯曲模量的方法
1
简支梁试验
通过在两个支点上加力,测量梁的挠度
梁的截面形状对弯曲变形的影响
形状对称性
对称的截面形状可以减小弯曲变形。
截面面积
较大的截面面积可降低弯曲应力和变形。
截面离心率
截面离心率越小,弯曲变形越小。
欧拉公式的介绍
欧拉公式描述了弯曲梁的变形和应力之间的关系。它是弯曲变形的经典理论基础,广泛应用于工程设计和结构 分析中。
对称性在弯曲变形中的应用
三点弯曲试验
2
来计算弯曲模量。
在梁的中间施加力,测量梁的挠度和应
力来计算弯曲模量。
3
四点弯曲试验
在梁的两端和中间分别施加力,测量梁 的挠度和应力来计算弯曲模量。
弯曲变形在工程设计中的应用
桥梁设计
弯曲变形是桥梁结构中常见的变形,需要考虑材料 的弯曲特性。
建筑设计
梁在建筑中承担重要的结构作用,需要考虑弯曲变 形。
材料力学课件ppt-6弯曲 变形
本节将介绍弯曲变形的定义和原理,讨论梁的截面形状对弯曲变形的影响, 以及欧拉公式的应用。还将探讨对称性在弯曲变形中的重要性,介绍材料的 弯曲变形特性,并介绍测量材料弯曲模量的方法。最后,我们将探讨弯曲变 形在工程设计中的应用。
弯曲变形的定义和原理
弯曲变形是指材料在承受外部力矩作用下产生的曲线形变。这种变形是由梁 的纵向拉伸和压缩引起的。
材料力学第六章弯曲时的变形精品PPT课件

1
(x)
(1| ww2|)32
(1| ww2|)32
M(x) EI
在规定的坐标系中,x 轴水平向右 w
M
M
为正, w轴竖直向上为正.
x
O
曲线向下凸时: w 0M 0
M 0
曲线向上凸时, w 0M 0w
w 0
M
M
因此, w 与 M 的正负号相同
O M 0 w 0
x
w (1 w2)32
两段梁的挠曲线方程分别为:
1 ( 0 x a)
挠曲线方程 EIw1 M1Fbl x
转角方程
EIwFb l
x2 2
C1
挠度方程 EIw1Fb lx63C1xD 1
2 (axl )
挠曲线方程 E Iw 2 M 2F b lxF (xa)
转角方程 挠度方程
E Iw 2 'F b lx 2 2F (x 2 a)2C 2 E Iw 2 F b lx 6 3 F (x 6 a )3 C 2 x D 2
转角
B
x
w挠度(
B
3、挠曲线 :梁变形后的轴线称为挠曲线 . 挠曲线方程为:
w f(x)
式中,x 为梁变形前轴线上任一点的横坐标,w 为该点的挠度. w
A
C
B
x
挠曲线
C'
w挠度(
B
转角
4、挠度与转角的关系:
tg w ' w '(x )
w
A
挠曲线
C C'
转角
B
x
w挠度
B
5、挠度和转角符号的规定
挠度:向上为正,向下为负.
转角:自x 转至切线方向,逆时针转为正,顺时针转为负.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= (x)
规定:向上的挠度为正,向下的挠度为负。 逆时针转角为正,顺时针转角为负。
挠度曲线在一点的曲率与这一点处横截面上的弯矩、
弯曲刚度之间存在下列关系:
1= M EI
08.05.2020
.
5
在Oxw坐标系中,挠度与转角存在下列关系:
dw tan
dx
y
在小变形条件下,挠曲
线较为平坦,即很小,因而 上式中tan。于是有
08.05.2020
.
8
w
d2w M dx 2 EI
M O
M x
d2w M dx2 EI
由于规定挠度向上为正,有
d 2w M dx2 EI
——挠曲线微分方程
仅适用于线弹性范围内的小变形的平面弯曲问题。
08.05.2020
.
9
§6-3 用积分法求弯曲变形
d2w dx2
M (x) EI
对于等截面梁,应用确定弯矩方程的方法,写出弯矩
横截面形心处的铅垂位移,称为挠度(deflection),用w 表示; 变形后的横截面相对于变形前位置绕中性轴转过的 角度,称为转角(slope) ,用 表示;
横截面形心沿水平方向的 y
位移,称为轴向位移或水
平位移。通常不予考虑。 O
x
w
08.05.2020
.
4
y
挠曲线方程:
w = w(x)
转角方程:
dw
dx
08.05.2020
.
6
§6-2 挠曲线的微分方程
力学中的曲率公式
1M EI
数学中的曲率公式
d2w
1
dx2
3
1
d
w
2
2
dx
08.05.2020
.
7
小挠度情形下
dw
2
1
dx
d2w
1
dx2
3
1
dw dx
2
2
d2w M
dx2 EI
弹性曲线的小挠度微分方程,式中的正负号 与 w 坐标的取向有关。
第六章 弯曲变形
基本要求
1.明确挠曲线、挠度和转角的概念,深刻理解 梁挠曲线近似微分方程的建立。
2.掌握计算梁变形的积分法和叠加法。 3.了解梁的刚度条件。
08.05.2020
.
1
§6-1 引 言
一.工程实际中的弯曲变形
08.05.2020
.
2
二.基本概念
1.挠曲线:梁在弯矩作用下发生弯曲变形。如果在弹
最大转角:
A
Fab(lb) 6lEI
B
Fab(l 6lEI
a)
当a>b时,B为最大转角。
08.05.2020
.
19
AC段
16F lEb(lI2b23x12)
w16 FlE b1(lxI2b2x12)
y
A x1 a
F
C
x2 b
l
08.05.2020
.
12
例6-1 已知:悬臂梁受力如图示,F、l、EI均为
已知。求:梁的挠曲线、转角方程及最大挠度和转角
y
A x l
F Bx
08.05.2020
.
13
y 解:
M (x)F(lx) A
x
Ew IF xFl
l
Ew IFx2FlxC 2
EIw Fx3Flx2C xD 62
由边界条件: x0 时 w , 0 , w 0
b均为已知。试:讨论这一梁的弯曲变形。 y
F
A
C
x1 x2
a
b
l
Bx
08.05.2020
.
16
解: AEC I段 w1: M Flb(xx11)Fl bx1
y A
x1
EIw1
Fbx12 l2
C1
EI1wFl bx613C1x1D1FRA
Fb l
a
F
C
x2 b
l
B
FRB
Fa l
x
C E段 w B I2 M F : (lx2 b x)2 F F l(xx 2 b 2 aF )(x2a)
~~ ~
~
~ ~
~ ~
~
~ ~~
~
~ ~ ~~
位移边界条件
AA
A
A
AA
A
A
A
A AA
wA 0
wA 0
A 0
光滑连续条件
A
A A AA
A
A AA A
A AA A
wA
-弹簧变形
wALwAR
ALAR
wALwAR
08.05.2020
.
11
积分法求解步骤
确定约束力,判断是否需要分段以及分几段 分段点:集中力、集中力偶、分布载荷起止点、EI不同 分段写出弯矩方程 分段建立挠度微分方程 微分方程的积分 利用约束条件和连续光滑条件确定积分常数 确定挠度与转角方程以及指定截面的挠度与转角
性范围内加载,梁的轴线在梁弯曲后变成一连续光滑曲线。
这一连续光滑曲线称为弹性曲线(elastic curve),或挠
度曲线(deflection curve),简称弹性线或挠曲线。
y
F
O
x
08.05.2020
.
3
2.挠度与转角
梁在弯曲变形后,横截面的位置将发生改变,这种位 置的改变称为位移。梁的位移包括三部分:
得: CD 0
08.05.2020
.
F Bx
14
梁的转角方程和挠曲线方程分别为:
Fx (x2l)
2EI w Fx2 (x3l)
6EI
y
A x l
最大转角和最大挠度分别为:
maxB
Fl2
2EI
wmaxvB
Fl3 3EI
08.05.2020
.
F Bx
15
例6-2 已知:简支梁受力如图示。F、EI、l、a、
方程M(x),代入上式后,分别对x作不定积分,得到包含积
分常数的挠度方程与转角方程:
(x)ddw xE MIdxC
——转角方程
w(x)(E Md I)x d xC xD——挠度方程
其中C、D为积分常数。Leabharlann 08.05.2020.
10
积分常数C、D由边界条件和梁段间光滑连续条件或
中间绞链连续条件确定。
~~ ~
08.05.2020
.
18
梁的转角方程和挠曲线方程分别为:
AC段
16F lEb(lI2b23x12)
w16 FlE b1(lxI2b2x12)
y
F
A
C
x1 x2
a
b
l
Bx
CB段 2 6 F lE [b l2 (I b 2 3 x 2 2 ) 3 b l(x 2 a )2 ]
w 2 6 F lE [b l2 (I b 2 x 2 2 )x 2 b l(x 2 a )3 ]
l
E2 I w F l x 6 b 2 3F(x2 6a)3C 2x2D 2
Bx
由连续和光滑条件: x 1 x 2 a 时 w 1 w 2 , ,w 1 w 2
得:
C 1C 2, D 1D 2
由边界条件: x10时w , 10 x2l时w , 20
得:
D1D20 C1C2F 6lb (l2b2)
Ew I2 F l x b 22 2F(x2 2a)2C2
08.05E .2020 2 I w F l x 6 b 2 3F(x2 6a .)3C 2x2D 2
17
EIw1
Fbx12 l2
C1
EI1wFl bx613C1x1D1
y
F
A
C
x1 x2
a
b
Ew I2 F l x b 22 2F(x2 2a)2C2