v4 路面结构设计

v4 路面结构设计
v4 路面结构设计

v4 路面结构设计

4 路面结构设计

4.1路面类型及结构层组合

路面设计应根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验。)在满足交通量和使用要求的前提下,应遵循因地制宜、合理取材、方便施工、利于养护、节约投资的原则,进行路面设计方案的技术经济比较,选择技术较先进、经济合理、安全可靠、有利于机械化的路面结构方案。

4.1.1路面类型的确定

目前,我国等级较高的公路一般采用沥青混凝土路面或水泥混凝土路面,两种路面类型各有优缺点,比较见表4.1

表4.1 路面类型比较表

比较项目沥青混凝土

路面

水泥混凝土

类型柔性刚性

接缝无有

噪音小大机械化施工容易较困难施工速度快慢

稳定性易老化水稳、热稳均

较好

养护维修方便困难

开放交通 快 慢 晴天反光情

况 无 稍大 强度 高 很高 行车舒适性

较好

由交通量的计算知本道路为中等交通,则路面要选择高等级路面。通过对两种不同类型路面的比较,另外结合当地材料来源及路面设计原则等各方面综合考虑,选用沥青混凝土路面类型。 4.1.2标准轴载及轴载换算

设计采用现行路面设计规范中规定的标准轴载BZZ-100KN ,p=0.7MPa ,δ=10.65cm ,设计使用年限为15年。

1)当以设计弯沉值为指标以及验算沥青层层底拉应力时

凡轴载大于25kN 的各级轴载(包括车辆的前、后轴)Pi 的作用次数ni ,按式(6-1)换算成标准轴载P 的当量作用次数N :

4.35

1,2,1

K

i i i i i P N C C n P =??

= ?

??∑ (4-1)

式中:N ——标准轴载的当量轴次,次/d ;

n i ——被换算车型的各级轴载作用次数,次/d ; P ——标准轴载,kN ;

P i ——被换算车型各级(单根)轴载,kN ;

C 1i ——被换算车型各级轴载的轴数系数。当轴间距大于3m 时,

按单独的一个轴计算,轴数系数即为轴数m ;当轴间距小于3m 时,按双轴或多轴计算,轴数系数为C 1i =1+1.2(m-1);

C 2i ——被换算轴载的轮组系数,单轮组为6.4,双轮组为1.0,四

轮组为0.38。

2)当进行半刚性基层层底拉应力验算时

凡轴载大于50kN 的各级轴载(包括车辆的前、后轴)P i 的作用次数n i ,按式4-2换算成标准轴载P 的当量作用次数N :

8

''

1,2,1K

i i i i i P N C C n P =??'= ???

∑ (4-2) 式中:'

1,i C ——被换算车型各级轴载的轴数系数。当轴间距大于3m 时,按

单独的一个轴计算,轴数系数即为轴数m ;当轴间距小于3m

时,双轴或多轴的轴数系数为'

1,12(1)i C m =+-;

'

2,i C ——被换算轴载的轮组系数,

单轮组为18.5,双轮组为1.0,四轮组为0.09。

上述轴载换算公式仅适用于单轴轴载小于130kN 的轴载换算。

各种汽车当量轴次计算见表4.2:

表4.2(a ) 交通量计算表 车 型 P i (kN) C 1,i

C 2,

i

C 1,i C 2,i (P i /P)

4.3

5

n i 次/日 n bi 次/日

黄河JN150 后轴 101.6

1 1 1.071

1200 1285.

2 前轴 49.0 1 6.4 0.287 1200

344.1

太脱拉138

后轴 80.0 2.2 1

0.758 450 341.1

前轴

51.4 1 6.4 0.354 450 159.3

解放A10B 后

60.8

5

1 6.4 0.115 750 86.25 前

19.4

1 1 0.005 750 3.75

跃进NJ13 0 后

38.3

1 1 0.008

100

8

N= n bi=2228次/日表4.2(b)交通量计算表

车型

P i

(kN)

C1,

i

C2,i

C1,i

C2,i

(P i/P)4.3

5

n i

次/

n bi

次/日

黄河JN15 0 后

101.

6

1 1 1.135

120

1362 前

49.0 1

18.

5

0.061

120

73.2

太脱拉后

80.0 1 1 0.503 450

226.3

5

138 前

51.4 3

1 0.090 450 40.5 解放A10B 后轴 60.85 1

1

0.019 750 14.1

跃进NJ130

后轴

-

- - - 1000

N =∑n bi =1717次/日

注:当计算弯沉和沥青混凝土层底拉应力时,轴载换算系数=C 1C 2(P i /P)4..35;

当计算半刚性基层层底拉应力时,轴载换算系数()

8

'

'1

2

i

C C P

P =;

总(车辆)换算系数=后轴换算系数+前轴换算系数;

当量轴次=交通量×总换算系数。

在设计年限内,一个车道上的累计当量轴次e N 参照式(4-3)进行计算:

()111365

t e N N γηγ

??+-???= (4-3)

式中:N e ——设计年限内一个车道上的累计当量轴次,次;

t ——设计年限,取15年;

N 1——路面竣工后第一年的平均日当量轴次,次/d ;

N t ——设计年限最后一年的平均日当量轴次,次/d ;

γ——设计年限内交通量的平均年增长率,为6%; η——车道系数,取0.5。

所以

()15616%1365

22280.59.4642106%

e N ??+-???=??=?(次) ()15'616%1365

17170.57.2936106%

e N ??+-???=??=?(次) 6

310?

N 、'e

N <7

1.210?为中等交通。

4.1.3路面结构层组合

沥青路面交通等级为中等交通,根据规范推荐结构,并考虑到商州地区的实际情况,即有大量粉煤灰、石灰、水泥、碎石供应。

对于填方路基土基稳定性不好,则充分利用当地的资源,采用碎石处理,拟定结构层组合方案。

表4.3 填方路基路面结构层组合方案表

材料名称 厚度 AC-16 4cm AC-25 8cm 水泥粉煤灰碎石

? 二灰土 20cm 碎石处理土基

对于全挖方路基,路面下直接是岩石,根据工程实例,则不需设置底基层,拟定结构层组合方案。

表4.4 挖方路基路面结构层组合方案

材料名称厚度

AC-16 4cm

AC-25 8cm

水泥粉煤灰碎石?

石基

4.2路面结构层组成设计

4.2.1基层组成设计

基层、底基层应具有足够的强度和稳定性,在冰冻地区应具有一定的抗冻性。拟选用水泥粉煤灰碎石为基层,厚度根据计算得到。底基层为16cm 厚二灰土。

1)材料要求

水泥为普通硅酸盐水泥。粉煤灰含量为17%。碎石最大粒径不大于37.5mm,并应达到一定的级配规定。中等交通水泥粉煤灰碎石结构压实度及7d无侧限抗压强度见表4.5

表4.5 水泥粉煤灰碎石结构压实度及7d无侧

限抗压强度

层位类别压实度

(%)

抗压强度

(MPa)

基层集料≥98 1.5~3.5 底基层集料≥97 ≥1.0

2)配合比

《公路沥青路面设计规范》JTG D50-2006建议水泥粉煤灰碎石配合比位8:17:80 。抗压模量E=1300~1700MPa(弯沉计算)、E=2400~3000MPa (拉应力计算用),劈裂强度σ=0.4~0.55MPa。

4.2.2面层组成设计

一级公路路面沥青混凝土面层应具有良好的抗滑耐磨、高温稳定性好、抗裂强等性能。各层沥青混合料应满足所在层位的功能要求,便于施工,不容易离析。各层应连续施工并连结成为一个整体。

1)材料要求

(1)沥青

根据面层的类型、交通量、气候、施工方法选择石油沥青(AH-70),锥入度,AH-70;延度>100cm;软化度=44~45°C;含蜡量<3%;密度>1。

(2)矿料

矿料包括碎石、砾石、石屑、砂和矿粉。它是沥青面层的骨架,承受行车荷载和车轮的磨耗主要靠矿料。

碎石:有足够的强度和耐磨行,压碎值≤25%~28%;含泥量<1%,含水量<3%;粘结力≥4级。

砂和石屑:砂(粒径<2.36mm),石屑(粒径<4.75mm),砂和石屑要求级配,含泥量<3%~5%。

矿粉(填料,粒径<0.075mm):由石灰石、白云石磨细的石粉。要求粒径<0.075mm成分占70%、含水量<1%。

2)配合比设计

通过马歇尔试验、浸水马歇尔试验,车辙试验进行配合比设计。

3)强度指标

沥青混合料的车辙试验的动稳定度不低于800次/mm;水稳定性指标:浸水马歇尔试验残留稳定度不小于80%,冻融劈裂试验残留强度不小于75%;在温度-10℃、加载速率50mm/min条件下,低温弯曲试验破坏应变不小于2000με;渗水系数不大于120 ml/min。

4.3填方路基路面结构层厚度确定

路线经过地区属Ⅲ4区,土质为粉性土,由于本路基设计为不利季节处于干燥状态,由规范知临界高度H1应2.4~3.0m之间。本路段地下水位较低,设计标高较高,路基处于干燥状态。根据《公路沥青路面设计规范》中附表F.0.1、F.0.2可知ω≥1.20。

根据《公路沥青路面设计规范》中附表和 F.0.3,知土基回弹模量在≥74MPa ,选定74MPa作为土基回弹模量。对于填方和半填半挖路基,在半填半挖路段,挖方处进行多挖40cm,进行碎石处理,使整个路基顶层抗压模量相同。抗压模量为200~350MPa,取300MPa。

填方路段:K0+000.00~K0+40.00,K0+280.00~K0+720.00,K0+820.00

~K0+910.00,K1+60.00~K1+400.00。

半填半挖路段:K0+40.00`K0+280.00,K0+990.00~K1+60.00,K1+400.00 ~480.00。

在设计年限内,一个车道上的累计当量轴次6

9.464210e N =?次。

拟定路面结构方案,确定路面材料回弹模量和极限抗弯拉强度见表4.6

表4.6 路面结构及参数表

层次 材料名称 层厚(cm ) 抗压回弹模量(MPa ) 劈裂强度(MPa ) 15C 20C 1 AC-16 4 1800 1200 1.0 2 AC-25 8

1200 1000

0.8

3 水泥粉煤灰碎石 ?

2700 1500

0.5

4 二灰土 20 2400 800

0.25 5

土基

300

路面设计采用双圆垂直均布荷载作用下的多层弹性连续体系理论,以设计弯沉值为路面整体刚度的设计指标,计算路面结构厚度。并对沥青混凝土面层和半刚性基层进行层底拉应力的验算。 4.3.1确定路面设计弯沉值ld

路面设计弯沉值是表征路面整体刚度大小的指标,是路面厚度计算的主要依据。其值应根据公路的等级、在设计年限内累计标准当量轴次、面层和基层类型按式6.4计算确定:

0.2600d e c s b l N A A A -= (4.4)

式中:d l ——路面设计弯沉值,0.01mm ;

e N ——设计年限内一个车道上累计当量轴次;

c A ——公路等级系数,一级公路为1.0; s A ——面层类型系数,沥青混凝土面层为1.0;

b A ——基层类型系数,对半刚性基层、底基层总厚度等于或大于

20cm 时为1.0。

所以

60.2

6009.464210 1.0 1.0 1.024.151d l -=????=() mm (0.01)

4.3.2计算容许弯拉应力

1)中粒式沥青混凝土(AC-16) 抗拉强度结构系数

0.22

0.09/s a e c K A N A = (4.5)

式中:a A ——沥青混合料级配的系数;细、中粒式沥青混凝土为1.0,粗粒

式沥青混凝土为1.1;

结构层材料的容许拉应力

sp

R s

K σσ=

(4.6)

式中:

R σ——路面结构层材料的容许拉应力;

sp

σ——结构层材料的极限抗拉强度,由试验确定,我国公路沥青

路面设

计规范采用极限劈裂强度;

s

K ——抗拉强度结构系数。

所以

60.22

0.09 1.09.464210/1.0 3.083s K =???=()

1.0

0.323.083

sp

R s

K σσ=

=

=

()

MPa

2)粗粒式沥青混凝土(AC-25)

1.1a A =,同理知

60.22

0.09 1.19.464210/1.0 3.391s K =???=()

0.8

0.243.391

sp

R s

K σσ=

=

=

()MPa

3)水泥粉煤灰碎石 抗拉强度结构系数

0.11

0.35/s e c K N A = (4.7)

60.11

0.359.464210/1.0 2.049s K =??=()

0.5

0.2442.049

sp

R s

K σσ=

=

=

()

MPa

4)二灰土

抗拉强度结构系数

0.11

0.45/s e c K N A = (4.7)

60.11

0.459.464210/1.0 2.634s K =??=()

0.25

0.0952.634

sp

R s

K σσ=

=

=

()

MPa

4.3.3按容许弯沉计算路面厚度

1)计算综合修正系数

0.36

0.38

01.632000s l E F p δ????

= ? ?

??

??

(4.9)

式中:ls ——路面实际弯沉值,取d l

,0.01mm ;

E0——土基回弹模量,MPa ;

p ,δ——标准轴的轮胎接地压强和当量圆半径,MPa,cm 。 所以

0.38

0.36

24.153001.63 1.098200010.650.7F ?

???

=??= ?

????

??

2)计算'

L α

'12d L l E p F

αδ=

(4.10)

'0.024121200

1.77

20.710.65 1.098L α?=

=???

3) 进行三层体系换算

'112

k k αα= (4.11)

4

2i i H h ==∑ (4.12) 1

h =4cm 1

E =1200MPa

h=1

h =4cm

1

E =1200MPa

2

h =8cm

2

E =1000 MPa

H=?cm 2

E =1000 MPa

3

h =?cm

3

E =1500 MPa

4

h =20cm

4E =800 MPa 0

E =300 MPa

E

=300 MPa

图4.1 弯沉3层体系换算图

由4

0.3810.65

h δ=

=,2

11000

0.831200

E

E =

=,0

2300

0.31000

E

E =

=,查

三层体系表面弯沉系数诺谟图,得

k 1=0.305,α=6.5

所以

'21 1.770.896.50.305

L k k αα===? 查三层体系表面弯沉系数诺谟图,得

4.2H =, 即

H=4.2×10.65=44.73 (cm )

4

332

82021.58 1.184i i H h h h ===+??=+∑

317.07h = cm ()

考虑到施工的方便和《公路沥青路面设计规范(JTG D50-2006)》表4.1.5-各种结构层压实最小厚度和适宜厚度规定,水泥粉煤灰碎石厚度选用18cm 。

4.3.4验算弯拉应力

1)弯拉应力等效换算法

(1)计算上层地面弯拉应力的换算方法 上层换算公式

1

i

k h h ==∑ (4.13)

中层换算公式

1

1

n k k i H h -=+=

∑ (4.14)

(2)计算中层底面弯拉应力

此时即为计算路基之上的n-1层的弯拉应力

2

1

n k h h -==∑ (4.15)

2)结构层弯拉应力计算

11122

212r r r r p p m m p p n n σσσσσσ--

-

-

?==??

?==?

(4.16)

式中 1

r σ——三层体系上层底面弯拉应力,()MPa ;

2

r σ——三层体系中层底面弯拉应力,

()

MPa ;

σ

-

、1

m 、2

m 、1

n 、2

n ——查三层体系上、

中层地面弯拉应力系数诺模图。

3)验算各层底面弯拉应力

(1)验算沥青混凝土上面层(AC-16)底面弯拉应力

1

h =4cm 1

E =1800MPa

h=1

h =4cm

1

E =1800MPa

2

h =8cm

2

E =1200 MPa

H=?cm

2

E =1200 MPa

3

h =18cm 3

E =2700 MPa

4

h =20cm

4

E =2400 MPa 0

E =300 MPa

E =300 MPa

图6.2 沥青混凝土面层底面弯拉应力3层体系

换算图

4

2

8182091.8k k H h ===+??=∑

cm ()

4

0.38

10.65

h ==,2

10.67

E E =,查表得 0σ-

<。则

100.32

r r σσ<<=

()

MPa (2)AC-20底面弯拉应力 同理,0

σ-

<,1

00.24

r r σ

σ<<=

()MPa

(3)验算水泥粉煤灰碎石底面弯拉应力

1

h =4cm 1

E =1800MPa

h=?cm

1

E =2700MPa

2

h =8cm

2

E =1200 MPa

3

h =18cm 3

E =2700 MPa

4

h =20cm

4

E =2400 MPa

H=20cm 2

E =2400 MPa 0

E =300 MPa

E =300 MPa

图4.3 水泥粉煤灰碎石弯拉应力3层体系换算

2

1

188430.14n k k h h -===+=∑ cm ()

30.14

2.8310.65

h =

=,210.9E E =,020.125E E =, 1.5H =。 查表得: 0.03σ-

=,1 1.16m =,2 1.3m =。则

11120.70.03 1.16 1.30.032r r p p m m σσσ--

===???= ()MPa

则 10.244r r σσ<= ()MPa

(4)验算二灰土底面弯拉应力

换算图同水泥粉煤灰碎石弯拉应力3层体系换算图。 查表得:0.195σ-

=,1 1.2

n =,2

0.45

n =。则

22120.70.195 1.20.450.0737r r p p n n σσσ-

-

===???= ()MPa

则 1

0.09

r r σ

σ<=

()

MPa

经过验算各层地面弯拉应力满足要求。 4.3.5验算沥青混凝土剪应力

由于本路段设计最大纵坡i=2.8%,小于规范设计的最大纵坡和本线路为公路,不需要计算和验算剪应力。

4.4其他路基路面结构厚度确定

4.4.1挖方路基路面结构

在挖方路基段:K0+720.00~K0+820.00,K0+910.00`K0+990.00,K1+480.00~K1+540.00。开挖后下方为岩石,则回弹模量很大,不需设置底基层,只设置基层。

拟定路面结构方案,确定路面材料回弹模量和极限抗弯拉强度见表4.7

表4.7 路面结构及参数表

层次 材料名称 层厚(cm ) 抗压回弹模量(MPa ) 劈裂强度(MPa ) 15C 20C 1

AC-16

4

1800 1200

1.0

2 AC-25 8 1200 1000 0.8

3 水泥粉

煤灰碎

?2700 1500 0.5

5 石基—300

根据计算,基层只需满足构造、施工要求即可,取水泥粉煤灰碎石厚为18cm,也做为基底找平。根据验算各层地面弯拉应力满足要求。

4.4.2隧道内路面结构

隧道路段:K1+542.04~K1+820.86。

基层采用素混凝土,厚度为15cm,其抗压强度为C25。路面采用复合式路面沥青上面层。其路面结构见表4.8

表4.8 隧道复合式路面结构

层数材料名称厚度(cm)

1 SMA-13 4

2 AC-16 4

3 钢纤维水泥混

凝土面板

22

4 素混凝土基层15

4.5路面施工要求

4.5.1沥青混凝土面层施工要求

1)材料要求

(1)沥青

根据面层的类型、交通量、气候、施工方法选择石油沥青(AH-70),锥入度,AH-70;延度>100cm;软化度=44~45°C;含蜡量<3%;密度>1。

(2)矿料

矿料包括碎石、砾石、石屑、砂和矿粉。它是沥青面层的骨架,承受行车荷载和车轮的磨耗主要靠矿料。

碎石:有足够的强度和耐磨行,压碎值≤25%~28%;含泥量<1%,含水量<3%;粘结力≥4级。

砂和石屑:砂(粒径<2.36mm),石屑(粒径<4.75mm),砂和石屑要求级配,含泥量<3%~5%。

矿粉(填料,粒径<0.075mm):由石灰石、白云石磨细的石粉。要求粒径<0.075mm成分占70%、含水量<1%,其亲水系数应小于1 ,视密度不小于2.5 t/ m3 。

2)混合料拌合、运输

拌合:温度为155C~165C;混合料要均匀,颜色一致,无花白料,无团粒。

运输:每两车配备帆布,保温防水;车厢喷液体(水:柴油=1:3~1:5)防止粘车;车上旧料清除干净。

3)混合料摊铺

摊铺机连续不断摊铺;摊铺速度V=2~2.5m/min;摊铺温度为120C~145C;路面下面层、中面层走钢丝,上面层走雪橇。

4)碾压

碾压温度为120C~145C;碾压完成温度为:钢轮压路机不低于70C;轮胎压路机不低于80C;震动压路机不低于65C;严格可控制含水量,按“初压、复压、终压”碾压工艺进行碾压。

5)面层质量控制

保证沥青混凝土路面质量达到设计要求,应控制以下质量标准。

表4.9 沥青混凝土面层质量控制标准

序号控制质量内容标准

1 压实度≥95%

2 平整度 1.2mm

3 高程±10mm

4 厚度总厚度-1

5 上

面层-8mm

5 宽度+0以上

6 中线偏位20mm

7 横坡±0.3%

8 弯沉≤竣工验收弯

沉值

1)混合料组成

为节省投资,增加基层强度,在水泥稳定碎石中加入就地取材的粉煤灰,组成水泥、粉煤灰稳定碎石基层。混合料配合比为水泥:粉煤灰:碎石=6:14:80,因粉煤灰含水量在20~30%左右,所以施工配比调整为6:17.5:80;最佳含水量为9.8%;最大干密度2.15g/cm3松铺系数1.47。

2)材料要求

水泥:为了保证混合料在一定时间内能够拌和、运输、摊铺、碾压完成,不得使用硬水泥、早强水泥、及受潮变质的水泥。

粉煤灰:粉煤灰的烧失量应小于20%。

碎石:选用硬度大、无风化、洁净的碎石,碎石中针片状颗粒的总含量应不超过20%,压碎值不大于35%,最大粒径不超过37.5mm。磨耗率<28%,含泥量<5%,密度>2.5 t/m3 ,针片状含量<15%。

3)混合料的拌合

水泥%粉煤灰稳定碎石采用集中场拌法,尽量避免水泥含量超过设计配合比的一个百分点。拌合时,在拌和仓中适量加水,搅拌均匀。拌合时避免出现粒料不均、灰土成团或含水量不均的现象。

4)混合料的运输

运输混合料时,应根据摊铺层的厚度和要求达到的压实干密度来计算每车混合料的摊铺面积。同时配备适当数量的车辆运送混合料,运输期间保障施工道路畅通,尽量缩短运输时间,根据运距和气温高低决定是否采用蓬布覆盖,防止水分散失。

5)混合料的摊铺

在基层摊铺前对下承层进行清理,把浮土、杂物等清扫干净,并保持下

国内外沥青路面设计方法分析

第5期(总第118期) ■综合论述 国内外沥青路面设计方法分析 姚连军1,李丽2 (1.重庆市交通规划勘察设计院,重庆401121;2.重庆交通大学,重庆400074) 摘要基于国内外沥青路面现有设计体系,介绍了经验法、力学-经验法、基于性能设计法三大类别,并针对其代表性的设计方法的特点进行了评析;结合我国沥青路面结构设计体系,指出我国设计体系中存在的设计指标、路面材料设计参数、交通荷载等方面存在缺陷,并提出相应的建议。 关键词道路工程;沥青路面;设计方法;设计指标 Abstract:Based on current design of asphalt pavement both home and abroad,the paper has made introduction to three means of design,namely empirical method,stress empirical method and property-centered method.Moreover,it has made comments on certain representative features of designs.Taking structure design of asphalt pavement in China into account,the paper presents some demerits in design target,parameter of pavement materials,traffic capacity and the like and finally proposes solutions to such problems. Keywords:highway engineering,asphalt pavement,means of design,design target 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作面层的路面结构。沥青路面设计的任务是根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验,设计经济合理的路面结构使之能起到承受交通荷载和环境因素的作用,在预定的使用期限内满足各级公路相应的承载能力、耐久性、舒适性和安全性的要求。以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了经验法和力学-经验法、基于性能的设计方法等类型。 1国外沥青路面设计方法 1.1经验法 经验法主要通过对试验路或使用道路的实验观测,建立路面结构(结构层组合、厚度和材料性质)、荷载(轴载大小和作用次数)和路面性能三者间的经验关系。最为著名的经验设计方法有CBR法和AASHTO法。 CBR法[1~2]以CBR值作为路基土和路面材料(主要是粒料)的性质指标。通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR轮载~路面结构层厚度(以粒料层总厚度表征)三者间的经验关系。利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。路面各结构层次的厚度,按各层材料的CBR值进行当量厚度换算。不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。此方法设计过程简单,概念明确,适用于重载、低等级的路面设计;但CBR值仅是一种经验性的指标,并不是材料承载力的直接度量指标,它与弹性变形量的关系很小。而路基土应工作在弹性范围内的应力状态下,因而,路面结构设计对路基土的抗剪强度并无直接兴趣,更关心的是路基土的回弹性质(回弹模量)及其在重复荷载作用下的塑性应变。 AASHTO法[3~4]是在AASHO试验路的基础上建立的,整理试验路的试验观测数据,得到的路面结构-轴载-使用性能三者间的经验关系式。AASHTO方法提出了现时服务能力指数(PSI)的概念,以反映路面的服务质量。不同轴载的作用,按等效损坏(PSI)的原则进行转换。路面使用性能指标PSI,主要受平整度的影响,与裂缝、车辙、修补等损坏的关系很小。因此,这是一项反映路面功能性能的指标,而不是表征路面结构性损坏的指标。此外,这个方法源于一条试验路的数据,仅反映一种路基土和一种环境条件,推广应用于其它地区或国家时便存在着很大的局限性。但AASHO试验路的测定数据得到了良好的整理和保存,为许多力学-经验法的设计指标和参数验证提供了丰富的依据[5]。AASHO法提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。1.2力学-经验法 力学-经验法利用在力学反应量与路面性能(各种损坏模式)之间建立的性能模型,按设计要求设计路面结构。从20世纪60年代初开始,各国科技人员致力于研制和实施沥青路面的力学-经验设计法,著名的有AI法和Shel1法。 Shell法[6]是由英、荷壳牌石油公司研究所研究、发展和完善起来的。在该设计方法中,混合料的粘弹性性质以其劲度模量体现,其值取决于沥青含量、沥青劲度和沥青混合料的空隙率。路基模量受应力影响,路基动态模量可以通过现场的动态弯沉试验在道路实际湿度条件和荷载条件下测定,也可在室内通过三轴仪测定。此方法中交通荷载以标准双轮轴载次数为代表,设计年限内的累计轴次即为设计寿命。临界荷位的应力应变由计算机程序BISAR计算。Shell设计法考虑了控制疲劳开裂的沥青层底面的容许水平拉应变ε fat 和控 制永久变形的路基顶面的容许竖向压应变ε z 两项主要设计标准和水泥稳定类材料底面的弯拉应力和路表面的永久变 3 ··

城市道路混凝土路面结构设计

城市道路混凝土路面结构设计 一、水泥路面的特性 混凝土路面以其强度高、刚性大和耐久性好,能适应重载、高速而密集的汽车运输要求,已在城市道路中广泛采用。 1、强度高、刚性大和耐久性好:混凝土路面具有较高的抗压、抗弯拉和抗磨耗的力学强度,具有较高的承载能力和扩荷载能力,耐久性好,一般可使用20~30年以上,沥青路面一般在10~15年,是沥青路面使用年限的2倍。 2、稳定性好:环境温度和湿度对混凝土路面的力学强度影响甚小,因而热稳定性、水稳定性和时间稳定性都比较好。抗油类侵蚀能力强,抗洪能力比沥青路面强。 3、平整度和粗糙度好:表面起伏变形少,路面在潮湿时候仍能保持足够的粗糙度,使车辆不打滑而能保持较高的安全行车速度。 4、养护费用少,维修成本低:水泥路面的建造费用比沥青路面节省一倍。按每立方米混合料测算,沥青混合料需要1000元~1400元,而水泥路面仅需要330元~580元。维护方面:沥青路面局部修复养护费用比新建费用大致高4倍~5倍,而水泥路面局部修复的养护费用是建造费用的2倍~3倍。 5、运输成本低:以V=60km/h行车速度计算,水泥路面的油耗比沥青路面节省8%;随着速度的加大,在V=80km/h行车速度时,水泥路面的油耗比沥青路面可节省10.5%。在当前高油价、高污染的时代,

达到低碳节能的目标。 综上所述,由于我国资源和能源的紧缺,加快水泥混凝土路面技术进步是我国道路建设的客观需求,也是促进我国能源大发展的重要战略措施。 二、混凝土路面的设计概况 混凝土板厚一般采用等厚度形式,根据交通量大小及轴载大小确定路面厚度,板厚最小18cm。板宽一般按每车道,耽不大于4.5m;板长一般采用4~5m,最长不超过6m。胀缝间距一般直线段为200m设一道,在交叉口与直线联接处设胀缝。 三、水泥混凝土路面板尺寸的确定 水泥混凝土路面板尺寸包括板的厚度及平面尺寸。采用弹性半无限地基板理论和有限元法计算板内应力,以荷载应力和温度应力产生的综合疲劳损坏(断裂)为设计控制标准。以BZZ-100KN的单轴荷载作为标准轴载,按等效原则将各级轴载换算为标准轴载。 1、混凝土面层厚度的确定 (1)使用年限内标准轴载在车道内的累计重复作用次数。在使用年限内,标准轴载在车道内的累计重复作用次数Ne,可通过对现有道路的轴载情况调查和交通增长分析后,按下式计算:Ns=365N0[(1十)-T]./式中:N0一设计初期车道上日标准轴载作用次数; 平均年交通量增长率(%); T一路面的使用年限; 一车轮轮迹横向分布系数。对双向双车道混合行驶者取0.30~

路面结构组合设计

路面结构组合设计 1.1设计说明 1.1.1工程概况 (1)工程所在地:湖南省境内 (2)公路自然区划:区,由地下水位资料可知该路基为潮湿状态; (3)公路等级:一级公路(双向四车道、设中央分隔带); (4)路线总长度:1223.061m。 1.1.2设计内容 沥青混凝土路面 (1)拟定路面结构组合方案,进行方案比较。 (2)进行轴载换算(手算和程序计算),确定路面设计弯沉值。 (3)确定路基路面结构层设计参数。 (4)各结构层材料组成设计。 1.1.3设计成果 (1)设计说明书; (2)沥青路面结构设计图。 1.2 主要技术经济指标 1.2.1交通组成 经调查预测,本路竣工后第一年双向平均日交通量下表(辆/d)

预测交通组成表表2 备注:依据规范,轴重小于25KN的车辆不计入计算; 使用期内交通量平均增长率为4.7%,沥青混凝土路面设计使用年限15年。 2. 沥青混凝土路面结构设计 2.1轴载换算 路面设计以双轮组单轴载100KN为标准轴载,小客车不考虑轴载。 2.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次,昼夜交通量(辆/日)为双向车道年平均日通行车辆数。 ①轴载换算 轴载换算采用如下的计算公式: 式中:轴数系数 轮组系数 其中: 计算结果如下表(表3)所示:

轴载换算结果表 表3 注:轴载小于25KN 不计 ②累计当量轴次 根据设计规范,一级公路沥青路面的设计年限15年,四车道的车道系数取0.45。 累计当量轴次: 式中:第一年双向日平均当量轴次(次/日) 设计年限内交通量的平均增长率(%) 设计车道的车轮轮迹横向分布系数 2.1.2 验算半刚性基层底拉应力中的累计当量轴次

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

路面设计原理与方法

路面设计原理与方法 1.柔性路面,刚性路面定义,结构特性,二者在设计理论与方法上有何主要区别 在柔性基层上铺筑沥青面层或用有一定塑性的细粒土稳定各种集料的中、低级路面结构,因具有较大的塑性变形能力而称这类结构为柔性路面。它的总体结构刚度较小,刚性路面采用波特兰水泥混凝土建造,用水泥混凝土作面层或基层的路面结构。它的分析采用板体理论,不用层状理论。板体理论是层状理论的简化模型。它假设混凝土板是中等厚度的平板,其截面在弯曲前和弯曲后均保持平面形状。如果车轮荷载作用在板中,无论是板体理论,还是层状理论均可采用,两者将得到几乎相同的弯拉应力和应变。如果车轮荷载作用在板边,假定离板边距离小于0.61m(2ft),只能用板体理论分析刚性路面。层状理论之所以适用于柔性路面而不适合于刚性路面,是因为水泥混凝土的刚性比HMA大得多,荷载分布的范围很大。而且刚性路面有接缝存在,这也使得层状理论不能适用。 刚性路面和柔性路面不同,刚性路面可以直接铺设在压实的土基上,或者铺设在加铺的粒料或稳定材料层上。 柔性路面设计以层状理论为基础,假设各层在水平方向是无限的,且是连续的。刚性路面由于板的刚度大和存在接缝,设计基础采用板体理论。如果荷载作用在板中,层状理论同样也能用于刚性路面设计中。 2.机场道面、道路路面各有什么特点。二者在功能和构造方面有什么主要区别?各自的设计原理与方法有什么相同点和不同点 机场道面的功能性能包括平整度、抗滑性能(对于跑道和快滑道)、纵横坡和排水性能等。 道面使用要求:具有足够的结构强度 ?表面具有足够的抗滑能力 ?表面具有良好的平整度 ?面层或表层无碎屑 机场道面是指在民用航空运输机场飞行区范围内供飞机运行使用的铺筑在跑道、滑行道、站坪、停机坪上的结构物。由于飞机运行方式对安全使用的要求高、飞机荷载重量和轮胎接地压力大于车辆荷载等原因,机场道面一般采用热拌热铺沥青混凝土。最多采用的热拌沥青混凝土结构是连续式密级配沥青混凝土,也有少数OGFC,SMA的应用也较为广泛。由于机场沥青混凝土道面所要求具备的强度条件、耐久性、抗滑性能等,在道路路面工程中所采用的沥青表处、沥青贯入碎石等面层结构不适用于机场道面。机场沥青混凝土道面中面层和底面层一般采用密级配沥青混凝土。沥青碎石结构可用于机场沥青混凝土道面底面层。 由于飞机的荷载和轮胎压力比公路车辆的荷载和轮胎压力大很多,因此机场道面通常比公路路面厚一些,而且需要较好的面层材料。无论是公路路面,还是机场道面,任何力学设计方法对荷载和轮胎压力的作用均可自动予以考虑。然而,采用力学法应注意以下不同的地方: (1)、机场道面的荷载重复作用次数通常小于公路路面的荷载重复作用次数。对于机场道面,由于飞机的左右偏离,一组机轮通过若干次只认为是重复作用一次;而对于公路路面,一个车轴通过一次即认为是重复作用一次。实际上公路荷载并不是作用在同一位置,这个情况在破坏极限中用增加荷载容许重复次数加以考虑。对柔性路面的疲劳引入一个修正系数,而对刚性路面的疲劳引入一个当量损伤率。 (2)、公路路面设计采用移动荷载,以荷载作用时间作为输入量描述其粘弹性特性,以荷载重复作用下的回弹模量作为输入量描述其弹性特性。机场道面设计在跑道中部采用移动荷载,在跑道端部采用静荷载,因此,跑道端部的道面厚度大于中部的厚度。

公路路面结构识图及施工规范图集

公路路面结构识图及施工规范图集 一、路面的基本结构 路基和路面是公路的主要工程结构物。路基是在天然地表面按照路线的设计线性(位置)和设计横断面(几何尺寸)的要求开挖或填筑而成的岩土结构物,是路面的基础,承受由路面传来的行车荷载。路面是在路基顶面的行车部分用各种混合料分层铺筑的供车辆行驶的一种层状结构物。 路床:路面结构层底面以下0.8 m范围内的路基部分称为路床。路床分为上路床(0~0.3 m)和下路床(0.3~0.8 m)两层。 上路堤:路面结构层底面以下0.8~1.5 m的填方部分称为上路堤。 下路堤:上路堤以下的填方部分称为下路堤。

高速公路、一级公路的路基宽度一般是由车道、中间带和路肩组成的,如图1-1所示。 二、三、四级公路的路基宽度一般是由车道和路肩组成的,如图1-2所示。 【施工规范】高速、一级公路石灰应不低于Ⅱ级,二级公路石灰应不低于Ⅲ级,二级以下公路宜不低于Ⅲ级。高速、一级公路的基层,宜采用磨细消石灰。二级

以下公路使用等外石灰时,有效氧化钙含量应在20%以上,且混合料强度应满足要求。 一、具有足够的承载力 行驶在公路上的汽车,通过车轮把垂直力、水平力以及汽车产生的振动力和冲击力传给路面,使路面结构内部产生应力、应变和位移。如果路基和路面结构整体或某一组成部分的强度或抵抗变形的能力不足,路面就会出现断裂、沉陷、波浪或车辙等病害,影响路基、路面的正常使用。 【施工规范】高速、一级公路极重、特重交通荷载等级基层的4.75 mm以上粗集料应采用单一粒径的规格料。

在路基和路面交工验收时,一般情况下,柔性材料(如级配碎石、沥青混凝土)用弯沉表示承载力,刚性材料(如水泥混凝土)、半刚性材料(如无机结合料稳定材料)用强度表示承载力。点这免费下载施工技术资料 【施工规范】混合料摊铺应保证足够的厚度,碾压成型后每层摊铺厚度宜不小于160㎜,最大厚度宜不大于200㎜。 施工过程的压实度检测,应以每天现场取样的击实结果确定的最大干密度为标准,每天取样的击实试验应符合下列规定: A击实试验应不少于3次平行试验,且相互之间的最大干密度差值应不大于0.02g/cm3;否则,应重新试验,并取平均值作为当天压实度的检测标准。 B该数值与设计阶段确定的最大干密度差值大于0.02g/cm3时,应分析原因,及时处理。

路面结构设计

5.路面结构设计 5.1沥青路面 5.1.1交通量及轴载计算分析 路面设计以单轴载双轮组100KN 为标准轴载。 1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算: 轴载换算采用如下的计算公式:=N ∑=k i i i P P n C C 135.421)/( 计算结果如下表所示: 表5.1轴载换算表 =i i i 1 21

②累计当量轴次 根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]18918830 5.060.430336506449 .0365106449.0115 =????-+= (次) 2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算 验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i k i i ∑== 计算结果如下表所示: 表5.2 轴载换算结果(半刚性基层层底拉应力) =i i i 1 21

②累计当量轴次 参数取值同上,设计年限是15年,车道系数取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]321652575.087.731636506449 .0106449.0115 =???-+= (次) 5.1.2结构组合设计及材料选取 1) 拟订路面结构组合方案 根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。 另设20cm 厚的中粗砂垫层。 2) 拟订路面结构层的厚度 由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。 5.1.3设计指标及设计参数确定 1) 确定路面等级和面层类型 由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。 2) 确定土基的回弹模量 ① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。 ② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。

沥青路面结构设计方法的简介

沥青路面结构设计方法的简介 摘要:针对沥青路面结构设计方法进行调研,重点对AASHTO沥青路面设计法、壳牌( SHELL)设计法和我国沥青路面结构设计法进行深入分析.对沥青路面结构设计方法的形成及发展、各沥青路面设计方法 的特点进行评述、 关键词:沥青路面:结构设计:AASHTO:路面力学模型 1 引言 沥青路而设计方法随着路而技术、交通状况及人们对路而破坏状态认识的变化而不断发展,经历了古典理论法、经验设计法和理论分析法三个阶段。 2沥青路面设计方法的形成及发展 从1901年美国麻省道路委员会第八次年会上提出的第一个路而设计方法的公式,至1940年的Goldbeck公式,沥青路而设计法均属于古典理论法,其特点是以土基顶而的应力大小为依据设计路而厚度。随着路而结构形式、施工技术水平、以及路而力学理论和计算手段的发展,古典理论法逐渐被淘汰。经验法和理论分析法是目前常用的路而设计方法。 经验法是建立在大量实际道路和试验路调查基础上的设计方法,典型的有AASHTO沥青路而设计法、CBR设计法等。经验法通过路而调查提出路而破坏标准、设计指标以及交通作用与设计指标的关系,以此为基础进行厚度计算。经验法建立在实践的基础上,因此在路而设计因素变化不大的情况下,经验法的设计结果比较容易接近实际要求。但是,由于经验法设计曲线或设计公式是由一定时期的路而调查得到的,随着路而结构、材料、施工养护以及交通情况的变化,其对以后路而设计的适用性往往受到限制,需要根据各种影响因素的变化不断修订,但由于其参数、指标有很大的主观性,理论基础模糊,修订工作比较困难。 随着路而力学和计算技术的发展逐渐产生了理论分析法。理论分析法典型的有壳牌(SHELL)法、美国地沥青协会(TAI)法等,我国沥青路而设计法也属于理论法的范畴。当然,沥青路而设计中任何理论分析法都不是纯理论的,都必须与路而调查、室内试验结论相结合,包含有经验法的部分成果。理论分析法的特征是通过路而力学模型计算结构层厚度,其优点是理论基础清晰,便于修订更新,缺点是路而模型对实际路而的大量简化会引起一些误差,而误差的修正系数与经验法的指标一样,是比较模糊的,带有一定的经验性。同经验法一样,理论分析法也要随着路而实践的发展而修订。 近年来,随着人们对路而破坏特性认识的深入,逐渐产生了长寿命路而的设计思想。长寿命路而的设计思路是:保证路而足够的整体强度,把病害限制在路而表层,通过定期(10 -20年)的表而修复,防比表而病害影响路而结构安全,保证路而在相当长的设计年限内不发生结构性损坏(40年以上)。以下针对国内外主流的沥青路而设计方法做介绍。 3美国AASHT093沥青路面设 计方法

路面结构计算书

一、主要技术标准、技术指标 (1)道路等级:小区内道路(路面结构按公路四级标准计算)。 (2)设计行车速度:20km/h,特殊路段5~15km/h。 (4)路面结构类型:水泥混凝土路面。 (5)设计基准期:20年。 (6)交通等级:轻级。 (7)结构物荷载等级:公路Ⅱ级。 (8)路面结构计算荷载:BZZ-100。 (9)抗震设防:沿线地区动峰值加速度系数小于0.05g,抗震设防烈度为6度,简易设防。 二、设计依据 (1)、《关于印发农村公路建设指导意见的通知》(交公路发〖2004〗372号) (2)、《公路路基设计规范》(JTG D30-2004) (3)、《公路水泥混凝土路面设计规范》(JTG D40—2002) (4)、路面结构计算软件:HPDS2006。 三、路面结构厚度计算 设计内容: 新建单层水泥混凝土路面设计 公路等级: 四级公路 变异水平的等级: 中级 可靠度系数: 1.05 面层类型: 普通混凝土面层 序路面行驶单轴单轮轴载单轴双轮轴载双轴双轮轴载三轴双轮轴载交通量号车辆名称组的个数总重组的个数总重组的个数总重组的个数总重 (kN) (kN) (kN) (kN) 1 标准轴载0 0 1 100 0 0 0 0 6 行驶方向分配系数.59 车道分配系数.85 轮迹横向分布系数.62 交通量年平均增长率 4.5 % 混凝土弯拉强度 4.5 MPa 混凝土弯拉模量29000 MPa 混凝土面层板长度 5 m 地区公路自然区划Ⅳ

面层最大温度梯度86 ℃/m 接缝应力折减系数.89 基(垫)层类型----新建公路路基上修筑的基(垫)层 层位基(垫)层材料名称厚度(mm) 回弹模量(MPa) 1 级配碎砾石200 300 2 新建路基30 基层顶面当量回弹模量ET= 71.7 MPa 中间计算结果: ( 下列符号的意义请参看“程序使用说明”) HB= 170 r= .676 SPS= 2.11 SPR= 3.64 BX= .88 STM= 1.86 KT= .49 STR= .91 SCR= 4.55 GSCR= 4.78 RE= 6.22 % HB= 177 r= .703 SPS= 1.99 SPR= 3.44 BX= .83 STM= 1.84 KT= .49 STR= .9 SCR= 4.34 GSCR= 4.56 RE= 1.33 % HB= 179 r= .711 SPS= 1.96 SPR= 3.38 BX= .83 STM= 1.86 KT= .49 STR= .91 SCR= 4.29 GSCR= 4.5 RE= 0 % 设计车道使用初期标准轴载日作用次数: 3 路面的设计基准期: 20 年 设计基准期内标准轴载累计作用次数: 21298 路面承受的交通等级:轻交通等级 基层顶面当量回弹模量: 71.7 MPa 混凝土面层设计厚度: 179 mm 通过对设计层厚度取整以及设计人员对路面厚度进一步的修改, 最后得到路面结构设计结果如下: --------------------------------------- 普通混凝土面层180 mm --------------------------------------- 级配碎砾石200 mm --------------------------------------- 新建路基

路面结构设计计算书(有计算过程的)DOC.doc

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 车型 前轴重 后轴重 后轴数 后轴轮组数 后轴距 交通量 ( m ) 小客车 1800 解放 CA10B 19.40 60.85 1 双 — 300 黄河 JN150 49.00 101.60 1 双 — 540 交通 SH361 60.00 2× 110.00 2 双 130.0 120 太脱拉 138 51.40 2× 80.00 2 双 132.0 150 吉尔 130 25.75 59.50 1 双 — 240 尼桑 CK10G 39.25 76.00 1 双 — 180 1)轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: n 16 P i N s i N i 100 i 1 式中 : N s —— 100KN 的单轴—双轮组标准轴载的作用次数; P i —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型 i 级轴载的总重 KN ; N i —各类轴型 i 级轴载的作用次数; n —轴型和轴载级位数; i —轴—轮型系数,单轴—双轮组时, i =1;单轴—单轮时,按式 i 2.22 103 P i 0.43 计算; 双轴—双轮组时,按式 i 1.07 10 5 P i 0. 22 ;三轴—双轮组时,按式 i 2.24 10 8 P i 0. 22 计算。 轴载换算结果如表所示 车型 P i N i P i 16 i i N i ( P ) 解放 CA10B 后轴 60.85 1 300 0.106 黄河 JN150 前轴 49.00 2.22 103 49 0.43 540 2.484 后轴 101.6 1 540 696.134 交通 SH361 前轴 60.00 2.22 103 60 0.43 120 12.923 后轴 2 110.00 1.07 10 5 220 0.22 120 118.031

路面结构设计分析

路面结构设计 学院: 专业: 学号: 姓名: 授课老师:

0 前言 道路是人类社会发展和进步的垫脚石,道路工程在人类社会发展中有着重要的作用。随着运输工具的现代化和人们交往的日益扩大,道路交通的作用更大重要和突出。道路是人们生活、学习、工作、旅游等出行的通道,是旅客、货物中转和集散的最主要途径,是城乡结构的骨架、城市建设的基础,是抵御自然灾害的通道,是自然灾害或战争时人员集散的场地,等等。总之,道路是社会发展的基础产业,是经济发展的先行设施,在工农业生产、国土开发、国防建设、旅游事业等国民经济和社会发展个方面发挥了举足轻重的作用。 我国家高速公路常用的路面结构形式主要有刚性和柔性两种,即水泥混凝土和沥青混凝土路面。水泥混凝土路面具有刚度大承载能力强,耐久性、耐候性、耐高温性能强,抗弯拉强度高、疲劳寿命长,平整度衰减慢、高平整度持续时间长,扩散荷载能力强,稳定性好、施工取材方便,路面环保,运行油耗低经济性好,路面色度低、色差小、隔热性好等优点,但水泥混凝土路面同等平整度舒适性差,板体性强、对基层的抗冲刷性能要求高,反射易使眼睛疲劳,超载、板底脱空等很敏感,且受施工质量的影响大,一旦出现质量问题,破坏就会迅速发展,难以维修、维护,并且破坏后修复困难,维修费用很高。沥青混凝土路面具有可以分期修建、通车快,平整度易于得到保证、整体性好、行车舒适、易于修复、噪音小等优点,但沥青混凝土路面具有对水和温度比较敏感,在水文、气候条件较差及缺乏碱性集料的地区,易造成沥青路面的早期破坏,路面平整度保持性差,路面材料耐久性差,使用寿命较短,运行及养护维修成本较高、环保性能差等缺点。 综上所述,沥青混凝土路面和水泥混凝土路面各有其的优缺点。路面结/构设计就是合理设置路面各结构层的位置和层厚,充分发挥各层材料的特性,以抵抗车轮荷载和环境因素的作用,实现路面的设计使用寿命,同时,提供良好的服务质量。在设计路面结构时,采用何种结构类型不是简单的问题。很有必要从筑路地区气候环境、地质状况、交通量大小、材料种类及供给情况、施工技术水平等因素,两种路面的施工方法、使用性能、破坏状况、维护方式、养护费用等方面进行全面比较权衡,从道路等级、路用性能要求、经济、技术、社会、环境效益等方面进行综合分析,优选出较合理的路面结构类型。

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 轴载换算结果如表所示: 表7.2 轴载换算结果表

注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示:

(整理)路面结构设计

交通组成表 路面设计以双轴组单轴载100KN作为标准轴载 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。

1).轴载换算 轴载换算采用如下的计算公式:33 .421? ? ? ??=P P N C C N i i 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,1 1 1.2(1)c m =+-,m 是轴数。当轴间距离 大于3m 时,按单独的一个轴载计算此时轴数系数为m ; 当轴间距离小于3m 时,应按照公式 11 1.2(1)c m =+-计算考虑轴数系数。 2c :轮组系数,单轮组为 6.4,双轮组为1,四轮组为 0.38。 轴载换算结果如表所示

注:轴载小于25KN的轴载作用不计。 b).累计当量轴数计算

根据设计规范,一级公路沥青路面的设计年限为15年,四车道的车道系数η是0.4~0.5取0.45,γ=10%,累计当量轴次: (1)1365t e e N N γηγ ??+-????= [] 次)(113445721 .045.036.185936511.0115=???-+= 验算半刚性基层层底拉应力的累计当量轴次 a).轴载换算 验算半刚性基底层底拉应力公式为 8 ''121 () k i i i p N c c n P ==∑ 式中:'1c 为轴数系数,)1(21'1-+=m c ' 2 c 为轮组系数,单轮组为 1.85,双轮组为1,四 轮组为0.09。 计算结果如表所示:

路面结构设计计算书(有计算过程的)

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 1)轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 :s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN ; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数,单轴—双轮组时, i δ=1;单轴—单轮时,按式43.03 1022.2-?=i i P δ计算; 双轴—双轮组时,按式22.051007.1--?=i i P δ;三轴—双轮组时,按式22.08 1024.2--?=i i P δ计算。 轴载换算结果如表所示

太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注:轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范,一级公路的设计基准期为30年,安全等级为二级,轮迹横向分布系数η是0.17~0.22 取0.2,08.0=r g ,则 [][] 362.69001252.036508 .01)08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其交通 量在4 4102000~10100??中,故属重型交通。 2)初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低~中。根据一级公路、重交通等级和低级变异水平等级,查表4.4.6 初拟普通混凝土面层厚度为24cm ,基层采用水泥碎石,厚20cm ;底基层采用石灰土,厚20cm 。普通混凝土板的平面尺寸为宽3.75m ,长5.0m 。横缝为设传力杆的假缝。 3)确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=,水泥碎石a MP E 15001=,石灰土a MP E 5502= 设计弯拉强度:a cm MP f 0.5=, a c MP E 4101.3?= 结构层如下: 水泥混凝土24cm 水泥碎石20cm 石灰土20cm × 按式(B.1.5)计算基层顶面当量回弹模量如下: a x MP h h E h E h E 102520.020.0550 20.0150020.02 222222122 2121=+?+?=++= 1 2 211221322311)11(4)(1212-++++=h E h E h h h E h E D x 1233)2 .05501 2.015001(4)2.02.0(122.0550122.01500-?+?++?+?= )(700.4m MN -= m E D h x x x 380.0)1025 7.412()12(3 1 31=?== 165.4)351025(51.1122.6)( 51.1122.645.045.00=?????? ?-?=?? ????-?=--E E a x

沥青路面结构设计方法

第8章 沥青路面结构设计方法 1.沥青路面的设计为什么要选用多指标来控制?试说明各设计指标的意义,及其与路面破坏现象的联系。 在路面结构设计中人们不可能控制所有的损坏类型,但鉴于路面损坏模式的多样性,各种损坏对路面的使用性能具有不同性质和不同程度的影响,所以沥青路面设计也不能像其他结构物设计那样,仅选用一种损坏模式的临界状态和单一的设计指标作为结构的临界状态和设计指标,而必须采用多种临界状态和多项设计指标。 1)弯拉疲劳开裂——弯拉应变和弯拉应力指标 在以疲劳开裂作为临界状态的结构设计方法中,通常采用结构中临界点的弯拉应变作为设计,以标准轴载在当量疲劳温度或标准温度时产生的弯拉应变不大于该材料在该温度条件下的容许弯拉应变作为设计准则。 2)车辙——路基顶面的压应变指标 以车辙作为临界状态,采用车辙深度或永久变形量和行车安全所容许的车辙深度或永久变形。国际上采用间接的设计指标控制路面的车辙,即路基顶面的压应变。通过对压应变的控制,控制了路基的变形量,从而间接控制了车辙的大小。 3)路标回弹弯沉 采用路面的回弹弯沉作为路面结构的设计指标,以控制路面结构的整体刚度,间接控制结构的疲劳开裂和永久变形。 2.路面结构组合设计中: 1)如何按交通特点和结构层的功能选择结构层次? 路面在交通荷载(包括垂直力和水平力)的作用下,内部产生的应力和应变随深度向下而递减。因此,要求各层的强度和抗变形能力可自上而下逐渐减小,使得各结构层材料的效能得到充分发挥。 从施工工艺、材料规格和强度形成原理方面考虑,路面结构层数又不宜过多,结构层的厚度也不能过小,宜自上而下由薄到厚。 面层直接经受行车荷载和气候因素的作用,要求高强(抗剪和抗拉)、耐磨、热稳性好和不透水,因而通常选用粘结力强的结合料和强度高的集料作为面层材料。沥青层(面层,上、中、下面层)可根据交通量大小分为单层、双层或三层。

v4 路面结构设计

v4 路面结构设计

4 路面结构设计 4.1路面类型及结构层组合 路面设计应根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验。)在满足交通量和使用要求的前提下,应遵循因地制宜、合理取材、方便施工、利于养护、节约投资的原则,进行路面设计方案的技术经济比较,选择技术较先进、经济合理、安全可靠、有利于机械化的路面结构方案。 4.1.1路面类型的确定 目前,我国等级较高的公路一般采用沥青混凝土路面或水泥混凝土路面,两种路面类型各有优缺点,比较见表4.1 表4.1 路面类型比较表 比较项目沥青混凝土 路面 水泥混凝土 类型柔性刚性 接缝无有 噪音小大机械化施工容易较困难施工速度快慢 稳定性易老化水稳、热稳均 较好 养护维修方便困难

开放交通 快 慢 晴天反光情 况 无 稍大 强度 高 很高 行车舒适性 好 较好 由交通量的计算知本道路为中等交通,则路面要选择高等级路面。通过对两种不同类型路面的比较,另外结合当地材料来源及路面设计原则等各方面综合考虑,选用沥青混凝土路面类型。 4.1.2标准轴载及轴载换算 设计采用现行路面设计规范中规定的标准轴载BZZ-100KN ,p=0.7MPa ,δ=10.65cm ,设计使用年限为15年。 1)当以设计弯沉值为指标以及验算沥青层层底拉应力时 凡轴载大于25kN 的各级轴载(包括车辆的前、后轴)Pi 的作用次数ni ,按式(6-1)换算成标准轴载P 的当量作用次数N : 4.35 1,2,1 K i i i i i P N C C n P =?? = ? ??∑ (4-1) 式中:N ——标准轴载的当量轴次,次/d ; n i ——被换算车型的各级轴载作用次数,次/d ; P ——标准轴载,kN ; P i ——被换算车型各级(单根)轴载,kN ; C 1i ——被换算车型各级轴载的轴数系数。当轴间距大于3m 时, 按单独的一个轴计算,轴数系数即为轴数m ;当轴间距小于3m 时,按双轴或多轴计算,轴数系数为C 1i =1+1.2(m-1); C 2i ——被换算轴载的轮组系数,单轮组为6.4,双轮组为1.0,四 轮组为0.38。 2)当进行半刚性基层层底拉应力验算时 凡轴载大于50kN 的各级轴载(包括车辆的前、后轴)P i 的作用次数n i ,按式4-2换算成标准轴载P 的当量作用次数N :

相关文档
最新文档