某公路路面结构设计

某公路路面结构设计
某公路路面结构设计

课题的内容和要求:

一、课题内容

根据给定设计资料完成路面结构组合设计。

二、课题要求

1、依据设计资料,按照相应的规范完成2种以上路面结构设计方案,并进行比选。

2、熟练应用路面设计软件,完成设计说明书。

三、设计资料

本公路是黑龙江省公路网化建设中的重要组成部分,地处平原重冻区,公路自然区划属Ⅱ2区,自然地理环境比较复杂,地形、地质、水文、气候等约束限制条件多,冻胀、翻浆等公路病害频发。本设计路段为微丘地形,所经地区的地表多为较厚的腐殖土或落叶覆盖层,其保温性良好,下层0.5—4.0米多为风化沙砾、碎石土和砾石土,4.0米以下为风化岩石路线位于东经126o21′30″— 126o20′29″,北纬46o21′28″—46o26′16″之间。沿线所处自然区划为Ⅱ2区。气候:①年平均气温3.5oC ②降雨量400mm~600mm ③冬季主导风向为西北风④年平均风速3.5m/s ⑤最大冻深1.2m。水文情况:地表排水一般,地下水位埋深大于3m。沿线公路主要病害:冻胀、翻浆。

据调查,2011年7月的交通量与车辆组成如下:

车型小汽车解放CA30A 东风EQ140 太脱拉130S

辆/日2500 400 200 300

车型日野KB222 吉尔130 解放CA15 扶桑FV102N

辆/日300 400 200 100

交通量年平均增长率为6.5%。

拟建成年月:2013年7月;

本路段设计使用年限为20年。

1基本资料的确定

1.1确定公路等级

1)计算2011年7月的折算交通量

其中折算系数查《公路工程技术指标》(JTG B01 2003),表2.0.2各汽车代表车型与车辆折算系数。

计算结果如下表:

表1 折算交通量

车型序号

车型名称 折算系数

交通量(辆/日) 折算后交通量(辆/日) 1 小汽车 1 2500 2500 2 解放CA30A 1.5 400 600 3 东风EQ140 1.5 200 300 4 太脱拉130S 2 300 600 5 日野KB222 2 300 600 6 吉尔130 1.5 400 600 7 解放CA15 1.5 200 300 8

扶桑FV102N

3

100

300 总计

5800

有上表可知,2011年7月的月平均日交通量为5800辆/日,近似代替2011年的年平均日交通量。

2)计算设计交通量

1(1)n AADT ADT -=?+γ

其中:AADT — 设计交通量(pcu/d );

ADT — 起始年平均日交通量(pcu/d ); γ — 年平均增长率(%); n — 预测年限

故2033年的设计交通量为:

1221(1)5800(1 6.5%)21766(/)n AADT ADT pcu d --=?+γ=?+=

3)确定公路等级

根据《公路工程技术标准》(JTG B01 2003),将公路根据功能和适应的交通量分为五

个等级。

1.高速公路为专供汽车分向分车道行驶并应全部控制出入的多车道公路,四车道高速公路应能适应将各种汽车折合成小客车的年平均日交通量25000~55000 辆;六车道高速公路应能适应将各种汽车折合成小客车的年平均日交通量45000~80000 辆;八车道高速公路应能适应将各种汽车折合成小客车的年平均日交通量60000~100000 辆。

2.一级公路为供汽车分向分车道行驶并可根据需要控制出入的多车道公路,四车道一级公路应能适应将各种汽车折合成小客车的年平均日交通量15000~30000 辆;六车道 一级公路应能适应将各种汽车折合成小客车的年平均日交通量25000~55000 辆。

3.二级公路为供汽车行驶的双车道公路,双车道二级公路应能适应将各种汽车折合成小客车的年平均日交通量5000~15000 辆。

4.三级公路为主要供汽车行驶的双车道公路,双车道三级公路应能适应将各种车辆折合成小客车的年平均日交通量2000~6000 辆。

5.四级公路为主要供汽车行驶的双车道或单车道公路,双车道四级公路应能适应将各种车辆折合成小客车的年平均日交通量2000 辆以下;单车道四级公路应能适应将各种车辆折合成小客车的年平均日交通量400 辆以下。

由设计交通量和道路的重要性可初步选定道路等级为高速公路,四车道。

1.2拟定路基宽度和设计速度及其他资料

1)拟定设计速度为:100km/h ;

2)根据《公路工程技术标准》(JTG B01 2003) 表3.0.11双向四车道,路基宽度为:26m ;

3)道路设计使用年限为20年;

4)拟采用沥青路面结构,设计年限为15年; 5)沿线土质为粉质土; 6)土基回弹模量的确定

因无实测条件,由查表法预测土基回弹模量:

(1)确定临界高度

查《路基路面工程》邓学均,表14-6路基临界高度参考值,公路自然区

划属Ⅱ2区得:1H =3.4m ,2H = 2.6m ,3H = 1.9m 。地下水位埋深大于3m ,所以填方路段的路基处于干燥状态,挖方路段的路基处于中湿状态。 (2)确定平均稠度

查《路基路面工程》邓学均,表14-7土基干湿状态的稠度建议值,得:填方路段的平均稠度为1.05,挖方路段的平均稠度为1。 (3)确定土基回弹模量

查《路基路面工程》邓学均,表14-9二级自然区划各土组土基回弹模量参考值(MPa ),得:填方路段的土基回弹模量为31.5Mpa ,挖方路段的土基回弹模量为30.5Mpa 。

2轴载计算

2.1代表轴载

资料中车辆轴载如下表:

表2车辆轴载表

车型序号车型名称前轴重后轴重后轴数后轴轮组数后轴距

1 小汽车———— 1

2 0

2 解放CA30A 29.50 36.75 2 2 2

3 东风EQ140 23.70 69.20 1 2 0

4 太脱拉130S 50.60 88.90 2 2 2

5 日野KB222 50.20 104.30 1 2 0

6 吉尔130 25.75 59.50 1 2 0

7 解放CA15 20.97 70.38 1 2 0

8 扶桑FV102N 54.00 100.00 2 2 2

2.2轴载换算

我国沥青路面设计以双轮组单轴载100kN为标准轴载,表示为BZZ-100。标准轴载的计算参数按表3确定。

表3标准轴载计算参数

标准轴载名称BZZ-100 标准轴载名称BZZ-100

标准轴载P(KN)100 单轮当量圆直径d(mm)21.30 轮胎接地压强P(Mpa)0.70 两轮中心距(cm)1.5d

轴载换算以设计弯沉值和沥青层层底拉力为设计标准或者以半刚性材料层的拉力为设计标准。

2.2.1以设计弯沉值和沥青层层底拉力为设计标准

4.35

121()K

i i i P

N C C n P ==∑

式中:N — 相当于标准轴载100KN 的作用次数(次/d ); i n — 各级轴载的作用次数(次/d ); i P — 各种被换算车型的轴载(KN ); P —标准轴载(KN )

1C — 轴数系数;

2C — 轮组系数,单轮组2C = 6.4;双轮组2C = 1.0;四轮组2C = 0.38; K —被换算车型的轴载级别。

注:当轴间距大于3m 时,按单独的一个轴计算,此时轴系数为1;当轴间距小

于3m 时,双轴或者多轴按1C =1 + 1.2(m – 1)计算,m 为轴数。

表4 轴载换算结果表(弯沉)

车型

i P

(KN) 1C

2C

i n

(次/d) 4.3512()i i P

C C n P

(次/d ) 解放CA30A 前轴 29.50 1.0 6.4 400 13 后轴 36.75 2.2 1.0 400 11 东风EQ140 后轴 69.20 1.0 1.0 200 40 太脱拉130S 前轴 50.60 1.0 6.4 300 99 后轴 88.90 2.2 1.0 300 396 日野KB222 前轴 50.20 1.0 6.4 300 96 后轴 104.30 1.0 1.0 300 360 吉尔130 前轴 25.75 1.0 6.4 400 7 后轴 59.50 1.0 1.0 400 42 解放CA15 后轴 70.38 1.0 1.0 200 43 扶桑FV102N

前轴 54.00 1.0 6.4 100 44 后轴

100.00

2.2

1.0

100

220 4.35

121

(

)k

i i i P N C C n P

==∑ 1371

轴载小于25KN 的轴载作用不计

2.2.2以半刚性材料层的拉力为设计标准

'

'

'8

1

2

1

()K

i i i P

N C C n P ==∑

式中:'N —以半刚性材料层的拉力为设计指标时的标准轴载的当量轴次(次/d );

'1C — 轴数系数;

'

2

C — 轮组系数,双轮组为1.0,单轮组为18.5,四轮组为0.09。 其余符号含义参照上式。

对于轴间距小于3m 的双轴及多轴的轴数系数按下式计算:

'

1

C = 1 + 2(m – 1) 式中:m — 轴数。

表5轴载换算结果表(半刚性基层层底拉应力)

车型 i P

(KN) '1C

'

2

C i n

(次/d) ''

812()i i P C C n P

(次/d ) 东风EQ140 后轴 69.20 1.0 1.0 200 11 太脱拉130S 前轴 50.60 1.0 18.5 300 24 后轴 88.90 3.0 1.0 300 351 日野KB222 前轴 50.20 1.0 18.5 300 22 后轴 104.30 1.0 1.0 300 420 吉尔130 后轴 59.50 1.0 1.0 400 6 解放CA15 后轴 70.38 1.0 1.0 200 12 扶桑FV102N

前轴 54.00 1.0 18.5 100 13 后轴

100.00

3.0

1.0

100

300 '

'

'8

1

2

1

()K

i i i P

N C C n P ==∑

1160

轴载小于50KN 的轴载作用不计

2.2.3设计年限累计当量标准轴载数

设计年限内一个车道通过的累积当量标准轴载次数e N 按下式计算:

e [(1)1]365N =t N η+γ-?γ

式中:e N — 设计年限内一个车道通过的累积标准当量轴次(次/车道); t — 设计年限(年);

N — 路面运营第一年双向日平均当量轴次(次/d ); γ— 设计年限内交通量平均增长率(%);

η—车道系数,双向四车道高速公路取0.45。

e 17[(1)1]365

N [(1)1]36513710.45

6.5t N η

+γ-?=γ

+6.5%-?=??%

=6641438次

'

e 17[(1)1]365N [(1)1]365

11600.45

6.5t N η

+γ-?=γ

+6.5%-?=??%

=5619305次

根据《公路沥青路面设计规范》(JTG D50-2006)P14表3.1.8交通分级可确定轴载等级为:中等交通。

3 初拟路面结构

3.1路面结构

根据本地区的路用材料,结合已有工作经验与典型构造,拟定以下两个方案。根据结构层的最小施工厚度、材料、水文、交通量以及施工机具的功能因素,初步确定路面结构组合及厚度如下:

方案一:4cm 细粒式密级配沥青混凝土+5cm 中粒式密级配沥青混凝土+8cm 粗粒式密级配沥青混凝土+22cm 密级配沥青碎石+?级配碎石,以级配碎石为设计层。 方案二6cm 细粒式密级配沥青混凝土+10cm 中粒式密级配沥青混凝土+12cm 粗粒式密级配沥青混凝土+?cm 水泥稳定碎石+20cm 石灰土,以水泥稳定碎石为设计层。

3.2路面材料配合比设计与设计参数的确定

3.2.1试验材料的确定

半刚性基层所用集料取自沿线料场,结合料沥青选用A 级90号,技术指标均符合《公路沥青路面施工技术规范》(JTG F40—2004)相关规定。 3.2.2路面材料抗压回弹模量的确定 (1)沥青混合料抗压回弹模量的确定

表6沥青材料抗压回弹模量测定与参数取值

材料名称

20℃抗压回弹模量(MPa )

15℃抗压回弹模量(MPa )

p

E

σ

2p E -σ

p E

σ

2p E -σ

2p E +σ

AC-13 1400 0 1400 2000 0 2000 2000 AC-20 1200 0 1200 1800 0 1800 1800 AC-25 1000 0 1000 1200 0 1200 1200 ATB-25

1200

1200

1400

1400

1400

(2)半刚性材料及其他材料抗压回弹模量的确定

根据邓学钧编著的《路基路面工程》表14-14和相关计算拟定材料抗压回弹模量 (表7):

表7半刚性材料及其他材料抗压回弹模量测定与参数取值

材料名称 抗压模量/Mpa

p E

σ

2p E -σ

2p E +σ

水泥稳定碎石 1500 0 1500 1500 石灰土 550 0 550 550 级配碎石

350

350

350

(3)路面材料劈裂强度确定

根据邓学钧编著的《路基路面工程》表14-13和表14-14确定材料劈裂强度(表8):

表8路面材料劈裂强度

材料名称 AC-13 AC-20 AC-25 ATB-25、35

水泥稳定碎石 石灰土 劈裂强度

1.4

1.0

0.8

0.8

0.5

0.225

4验算拟定方案,并确定各方案的最终设计结果

1.根据我国《公路沥青路面设计规范》(JTG D50—2006)规定路面设计弯沉值d l 由

下式计算:

0.2

d e c s =600N A A A b l -

式中:d l —设计弯沉值,0.01mm ;

e N —设计年限内一个车道累计当量轴次,次;

c A —公路等级系数,高速公路、一级公路为1.0,二级公路为1.1,三、四级公路

为1.2;

s A —面层类型系数,沥青混凝土面层为1.0,热拌沥青碎石、冷拌沥青碎石、上拌

下贯或贯入式路面、沥青表面处治为1.1;

A b —路面结构类型系数,半刚性基层沥青路面为1.0;柔性路面为1.6。

2.计算设计方案弯层值:

方案一为柔性路面, 1.6, 1.0, 1.0b c s A A A ===

0.2

d1600(6641438)

mm)l -=??1.0?1.0?1.6=41.5(0.01

(1)填方路段

土基回弹模量为31.5Mpa ,设计层为级配碎石底基层。利用公路

沥青路面设计软件HPDS2006,得到满足设计弯沉指标要求和各层底拉应力要求的级配碎石底基层厚度为8cm 。

层位 结构层材料名称 厚度 (mm ) 容许拉应力(MPa ) 1 AC-13 40 0.49 2 AC-20 50 0.35 3 AC-25 80 0.28 4 ATB-25 220 0.28 5

级配碎石

80

验算路面防冻厚度:根据《公路沥青路面设计规范》(JTG D50—2006)表5.2.4规定,路面最小防冻厚度450~500mm 。

验算结果表明 ,路填方段路面总厚度为470mm 面总厚度满足防冻要求。 通过对设计层厚度取整, 最后得到路面结构设计结果如下:

----------------------------------------

细粒式沥青混凝土 40 mm

----------------------------------------

中粒式沥青混凝土 50 mm

----------------------------------------

粗粒式沥青混凝土 80 mm

----------------------------------------

密级配沥青碎石 220 mm

----------------------------------------

级配碎石 80 mm

----------------------------------------

新建路基

其中密级配沥青碎石层做为上、下基层。上基层为80mm 厚ATB-25,下基层为140mm 厚 ATB-35。

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

厂房结构设计原理

厂房结构设计原理 第一节地面厂房整体稳定和地基应力计算 水电站厂房结构一般可分为三个组成部分。 1.上部结构 主厂房的上部结构包括各层楼板及其梁柱系统、吊车梁和构架、以及屋顶及围护墙等。其作用主要为承受设备重量、活荷重和风雪荷 载等,并传递给卞部结构。 2.下部结构 厂房的下部结构包括蜗壳、尾水管和尾水墩墙等结构。对于河床式厂房,下部结构中还包括进水口结构。其作用主要为承受水荷载的作用、构成厂房的基础,承受上部结构、发电支承结构,将荷载分布 传给地基和防渗等。 3.发电机支承结构、 发电机支承结构的作用是承受机组设备重以及动力荷载,传给下 部结构。 根据教学大纲的要求,本章主要内容为厂房整体稳定和地基应力计算,发电机支承结构、蜗壳和尾水管结构的结构设计原理。

地面厂房在水平荷载如水压力和土压力等以及扬压力的作用下应 保持整体稳定,厂基面上垂直正应力应满足规范要求。稳定不能保证、地基应力不满足要求时,应采取措施,如设置灌浆帷幕和排水孔降低扬压力,对坝后式厂房可以考虑是否采用厂坝整体连接方式,利用坝体帮助稳定。 厂房整体稳定和地基应力计算的内容一般包括沿地基面的抗滑稳定、抗浮稳定和厂基面垂直正应力计算。河床式厂房本身是童水建筑物,厂房地基内部存在软弱层面时,还应进行深层抗滑稳定计算。 一、计算情况和荷载组合 厂房稳定和地基应力计算要考虑厂房施工、运行和扩大检修期的各种不利情况,主要计算情况如下: 1.正常运行 对河床式厂房来说争正常运行情况中应考虑两种水位组合: (1)上游正常蓄水位和下游最低水位。这种组合情况厂房承受的水头最大,但扬压力不大。 (2)上游设计洪水位和下游相应水位。这种情况扬压力较大,对稳定不利。 对坝后式厂房和引水式厂房来说,引起稳定问题的水平荷载为下游水压力,正声运行情况中取下游设计洪水位进行组合。厂房上游面作用的荷载有压力管道和下部结构纵缝面上的水压力,后者作用的面积与止水的布置方式有关,水压力的压强则与厂基面扬压力分布图有关,根据具体情况确定。

(完整word版)2014年土木工程专业(地铁车站)毕业设计任务书

土木工程专业 城市地下空间工程方向毕业设计任务书 中南林业科技大学土木工程与力学学院 二0一四年三月

××地铁车站初步设计 一、毕业设计目的 毕业设计是按教学计划完成理论教学和相关实践教学之后的综合性教学,是对专业方向教学的继续深化和拓宽,是培养学生工程实践能力的重要教学阶段,其目的在于全面培养、训练学生运用已学的专业基本理论、基本知识、基本技能,进行本专业工程设计或科学研究的综合素质。 二、毕业设计基本要求 1、按设计课题的要求,独立完成设计任务,做出不同的设计方案,交出各自的成果。 2、认真设计、准确计算、细致绘图、文字表达确切流畅。 3、树立科学态度,注重钻研精神、独立工作能力的培养。 4、严格按照有关文件要求进行毕业设计管理,努力提高毕业设计质量。 5、图纸绘制要求:全部采用A3图纸(可加长);计算机出图必须有3张;图纸布局要协调,要紧凑而不拥挤;线条粗细要正确,位置要准确; 6、注重资料的收集、分析和整理工作,设计完成后,设计成果应按如下要求装订成册:(1)《毕业设计计算书》A4一份;(2)《毕业设计图纸》A4一份。 7、图纸装订顺序:封面,目录,设计总说明,设计图纸、表格。 8、设计计算书装订顺序:封面、目录、中英文摘要、设计总说明、设计计算的全部内容、致谢(300字左右)。 三、设计任务与要求 (一)、设计资料 1、车站地质勘察报告 2、预测客流(见附表) 3、车辆外形尺寸:A型车或B型车。 4、车辆编组:设计时采用远期列车6辆编组。 5、防水等级:一级;二次衬砌混凝土抗渗等级不小于S6。 6、主要技术标准:执行《地铁设计规范》(GB50157-2003)的有关技术标

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

主厂房结构优化专题分析

编号:FA008CT-A-05 新都华润雪花啤酒分布式能源站工程 勘察设计投标文件 招标编号:XD2T201401 第二卷技术部分 第二册专题报告 主厂房结构优化专题报告 中国华电工程(集团)有限公司 二○一四年二月北京

总目次 第一卷商务部分 第二卷技术部分 第一册工程技术方案说明 第二册专题报告 第三册投标人需提交的其他文件和资料第三卷投标报价书

目次 1 前言........................................................................... 错误!未定义书签。 2 厂区工程地质条件.................................................... 错误!未定义书签。 2.1地形地貌.................................................................. 错误!未定义书签。 2.2工程地质条件.......................................................... 错误!未定义书签。 2.3水文地质条件.......................................................... 错误!未定义书签。 2.4场地类别、建筑场地类型...................................... 错误!未定义书签。 2.5地震参数.................................................................. 错误!未定义书签。 2.6地震液化情况.......................................................... 错误!未定义书签。 2.7场地稳定性评价...................................................... 错误!未定义书签。 2.8场地地基土的适宜性.............................................. 错误!未定义书签。 3 地基方案选择和评价................................................ 错误!未定义书签。 3.1地基土工程特性 .................................................... 错误!未定义书签。 3.2天然地基持力层的选择.......................................... 错误!未定义书签。 3.3基础型式的选择 .................................................... 错误!未定义书签。 3.4地基沉降 ................................................................ 错误!未定义书签。 4 其他建(构)筑物地基基础 .................................... 错误!未定义书签。 5 结论........................................................................... 错误!未定义书签。 6 存在问题及建议 ....................................................... 错误!未定义书签。

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

电厂主厂房建筑结构设计研究

电厂主厂房建筑结构设计研究 摘要:随着我国电力行业的不断发展,电力的发展对于促进人们生活水平方面起到重要的作用,电厂主厂房的规模也在不断扩大,大容量的电力机组在厂房中的应用越来越广泛,对于厂房的设计提出更高的要求。其中,电厂的主厂房是发电厂的核心部分,主厂房的负载较重,使用钢筋混凝土的建筑结构设计已经不能适应当前电厂发展的要求。而且主厂房的建筑结构质量对于电力系统的正常运行起到重要的作用,需要将主厂房的设计作为一项重要的工作来完成。文章将从电厂主厂房建筑结构设计中的技术问题方面进行分析,提出相应的措施。 关键词:电厂主厂房;建筑结构;技术问题;措施 我国社会经济快速发展的背景下,电力行业也在不断发展,各行各业对于电力需求越来越多,电力行业也迎来新的契机,电力企业需要对当前的供电系统进行不断完善,能够保证电能的正常输送。电厂主厂房的质量也是保证电力系统正常运行的核心部分,对于电厂的改革也成为当前电力企业改革的重点,要保证电厂主厂房的质量,需要从施工技术和施工管理两个方面进行分析,要确保工程建设的质量,电厂主厂房建筑结构的设计十分复杂,而且技术含量相对比较高,会融合各种专业中的技术,属于工业设计中的重点。对于主厂房的设计需要相关的设计人员具备丰富的设计经验,能够把握建筑结构设计中

的重要技术。 1电厂主厂房的结构形式 我国电厂主厂房的布局逐渐形成固定的框架结构,主厂房中的布置结构建筑体积比较大,空间的利用率相对比较小,而且结构设计需要根据实际情况进行分布,进行科学合理的结构布置。(1)主厂房的支撑结构,大型发电厂的布置一般都会选择钢框架加上支撑结构,在发生地震时,能够较好地协调钢框架和支撑受力性能,具有良好的抗震性能和较大的抗侧刚度;如果厂房中各种设备布置过于集中也会造成很多的问题,需要将各种设备的布置做好分配,能够起到保护厂房的效果,也能够满足抗震设计的要求。(2)厂房截面结构,当厂房的结构过于复杂时,也会增加厂房结构的地震反应,在钢结构的支撑下,减少支撑的面积,能够增加厂房钢结构的刚度,有效保护厂房,厂房钢结构面积会受到很多因素的影响,厂房的结构设计需要考虑到厂房的支撑面积,保证厂房整体的稳定。例如,在确定主厂房结构及锅炉等主要设备的标高时,需要考虑地下设施电缆等设备的位置,要留有调整的余地。 2主厂房建筑结构中存在的技术问题 对于电厂主厂房的建筑结构设计,建筑的分区繁多,结构也是复杂多样,而且主厂房中的设备比较重要,投资比较大,设计相对比较难,主厂房施工中的技术也是影响主厂房质量的重要内容。主厂房内的各个设备工艺都是汇集了各种建筑结构专业设计,需要各个专业之间的有效结合,才能够保证建筑结构设计的完整性。建筑结构设计中,

公路路面结构识图及施工规范图集

公路路面结构识图及施工规范图集 一、路面的基本结构 路基和路面是公路的主要工程结构物。路基是在天然地表面按照路线的设计线性(位置)和设计横断面(几何尺寸)的要求开挖或填筑而成的岩土结构物,是路面的基础,承受由路面传来的行车荷载。路面是在路基顶面的行车部分用各种混合料分层铺筑的供车辆行驶的一种层状结构物。 路床:路面结构层底面以下0.8 m范围内的路基部分称为路床。路床分为上路床(0~0.3 m)和下路床(0.3~0.8 m)两层。 上路堤:路面结构层底面以下0.8~1.5 m的填方部分称为上路堤。 下路堤:上路堤以下的填方部分称为下路堤。

高速公路、一级公路的路基宽度一般是由车道、中间带和路肩组成的,如图1-1所示。 二、三、四级公路的路基宽度一般是由车道和路肩组成的,如图1-2所示。 【施工规范】高速、一级公路石灰应不低于Ⅱ级,二级公路石灰应不低于Ⅲ级,二级以下公路宜不低于Ⅲ级。高速、一级公路的基层,宜采用磨细消石灰。二级

以下公路使用等外石灰时,有效氧化钙含量应在20%以上,且混合料强度应满足要求。 一、具有足够的承载力 行驶在公路上的汽车,通过车轮把垂直力、水平力以及汽车产生的振动力和冲击力传给路面,使路面结构内部产生应力、应变和位移。如果路基和路面结构整体或某一组成部分的强度或抵抗变形的能力不足,路面就会出现断裂、沉陷、波浪或车辙等病害,影响路基、路面的正常使用。 【施工规范】高速、一级公路极重、特重交通荷载等级基层的4.75 mm以上粗集料应采用单一粒径的规格料。

在路基和路面交工验收时,一般情况下,柔性材料(如级配碎石、沥青混凝土)用弯沉表示承载力,刚性材料(如水泥混凝土)、半刚性材料(如无机结合料稳定材料)用强度表示承载力。点这免费下载施工技术资料 【施工规范】混合料摊铺应保证足够的厚度,碾压成型后每层摊铺厚度宜不小于160㎜,最大厚度宜不大于200㎜。 施工过程的压实度检测,应以每天现场取样的击实结果确定的最大干密度为标准,每天取样的击实试验应符合下列规定: A击实试验应不少于3次平行试验,且相互之间的最大干密度差值应不大于0.02g/cm3;否则,应重新试验,并取平均值作为当天压实度的检测标准。 B该数值与设计阶段确定的最大干密度差值大于0.02g/cm3时,应分析原因,及时处理。

ansys课程设计-地铁车站主体结构设计

目录 课程设计任务书 ................................................................................................................ - 1 - GUI方式 ............................................................................................................................... - 3 - 一、打开ANSYS........................................................................................................... - 3 - 二、建立模型.............................................................................................................. - 3 - 1、定义单元类型.................................................................................................. - 3 - 2、定义单元实常数.............................................................................................. - 3 - 3、定义材料特性.................................................................................................. - 3 - 4、定义截面.......................................................................................................... - 3 - 5、建立几何模型.................................................................................................. - 3 - 6、划分网格.......................................................................................................... - 4 - 7、建立弹簧单元.................................................................................................. - 4 - 三、加载求解.............................................................................................................. - 5 - 1、施加位移约束.................................................................................................. - 5 - 2、施加荷载.......................................................................................................... - 6 - (1)计算结构所受荷载................................................................................ - 6 - (2)施加结构所受荷载................................................................................ - 6 - (3)施加重力场............................................................................................ - 7 - 3、求解.................................................................................................................. - 8 - 四、查看计算结果...................................................................................................... - 8 - 1、添加单元表...................................................................................................... - 8 - 2、查看变形图...................................................................................................... - 8 - 3、查看各内力图.................................................................................................. - 9 - 4、查看内力列表.................................................................................................. - 9 - 单元内力表........................................................................................................................ - 11 - APDL方式......................................................................................................................... - 17 -

主厂房现浇混凝土结构施工方案

主厂房上部结构现浇钢筋混凝土施工方案 一、工程概况 结构形式为钢筋混凝土框架结构,主厂房主体现浇钢筋混凝土结构主要包括煤仓间框架及各层平台、汽机房排架及各层平台、屋面板等。汽机房跨距30m,柱高31.62m,内有5m层平台和10m运转层平台。煤仓间跨距13.5m,除氧煤仓间为四层现浇钢筋混凝土框架结构,各层平台分别为:10m、19m、28m、38m,屋面层高度为43m ,循环水泵房跨度9.6m,排架结构。主体结构形式主要有汽机房为混凝土排架结构;煤仓间为钢筋混凝土框架结构。 二、施工安排与施工顺序 1.吊车布置:在汽机间A排外布置一台QTZ40塔式起重机,用于汽机间结构施工的垂直运输。煤仓间位置东侧布置1台QTZ40塔式起重机,用于煤仓间结构施工的垂直运输。其它钢结构运输、吊装用轮胎式吊车。 2.框排架施工:根据各层排架柱系梁位置分层施工,每层施工缝设于梁底或梁顶处,为保证柱体混凝土浇筑质量,在柱支模时需预留间距为2m~3m的振捣孔及混凝土下料孔。 3.现浇梁板结构:按照施工规范要求,框架主梁底部留设施工缝,先施工框架柱,然后施工现浇梁板混凝土。 总施工顺序:除氧煤仓间现浇框架结构组织流水作业。除氧间及煤仓间施工层划分详见图纸。设计中梁的钢筋伸入柱子内的长度较大时,施工层可适当调整。每个施工层合理划分施工段,每一个施工段内模板、搭排架、钢筋绑扎、混凝土浇筑各工序间可组织小流水作业。 现浇框架及楼板施工顺序为:框架柱钢筋绑扎→柱铁件预埋及加固→柱模安装及加固→框架梁底模安装→柱混凝土浇筑→框架梁钢筋绑扎→梁铁件安装及加固→梁侧模安装及加固、支设板模→现浇板钢筋绑扎→浇筑各层平台梁板混凝土→养护、拆模。 三、模板及支撑体系 本工程为清水镜面混凝土,对模板得质量要求高。主体结构施工用模板采用15mm厚酚醛覆面胶合板,50×90木方,木模板内衬3mm厚的宝丽板,用φ48钢脚手架管作为加固系统。柱加固中间不设对拉螺栓,用[12槽钢及φ16对拉螺栓加固,螺栓仅在柱外侧设置。大梁加固采用PVC管,内穿对拉螺栓和钢管加固。胶合板用PVC胶与PVC板粘贴。(1)梁柱截面情况(单位: mm): 除氧煤仓间柱:800×1900、700×1800

单层工业厂房结构设计

单层工业厂房结构设计 设计条件 1.金加工车间跨度21m ,总长60 m ,柱距6 m 。 2.车间设有2台200/50kN 中级工作制吊车,其轨顶设计标高9 m 。 3.建筑地点:市郊区。 4.车间所在场地:低坪下 m 为填土,填土下4 m 为均匀亚黏土,地基承载力设计值2200/a f kN m ,地下水位 m ,无腐蚀。 基本风压W= m 2,基本雪压S=m 2。 / 5.厂房中标准构件选用情况: (1).屋面板采用G410(一)标准图集中的预应力混凝土大型屋面板,板重(包括灌浆在)标准值1,4KN/m 2,屋面板上做二毡三油,标准值为20.35/kN m 。 (2).天沟板采用G410(三)标准图集中的TGB77—1,板重标准值为2.02/kN m 。 (3).屋架采用G410(三)标准图集中的预应力混凝土折线型屋架YWJA —21,屋架辎重标准值91KN 每榀。 (4).吊车梁采用G425标准图集中的先发预应力混凝土吊车梁YXDL6—8,吊车梁高1200 m m ,翼缘宽500 m m ,梁腹板宽200 m m ,自重标准值45KN/根,轨道及零件重1/kN m ,轨道及垫层构造要求200 m m 。 (5)材料: A.柱:混凝土C30 B.基础.混凝土C30 , C.钢筋.Ⅱ级。 结构构件选型及柱截面尺寸确定 因该厂房跨度在1536m 之间,且柱顶标高大于8m ,所以采用钢筋混凝土排架结构。为了是屋盖具有较大刚度,选用预应力混凝土折线形屋架及预应力混凝土屋面板。选用钢筋混凝土吊车梁及基础梁。厂房各主要构件选型见下表: 表主要承重构件选型表

由设计资料可知屋顶标高16m ,轨顶标高为9m ,设室地面至基础顶面的距离为0.5m ,则计算简图和吊车梁的高度求总高度H 、下柱高度l H 和上柱高度u H 分别为: 12.40.512.9H m m m =+=,12.9 3.89.1l H m m m =-= 12.99.1 3.8u H m m m =-= 根据柱的高度、吊车起重量及工作级别等条件,可查表确定柱截面尺寸: 表柱截面尺寸及相应的计算参数

工业厂房设计规范2017

工业厂房设计规范2017 第一章总则 第1.0.1 条为了使厂房建筑主要构配件的几何尺寸达到标准化和系列化, 以利于工业化生产,特制订本标准。 第1.0.2 条本标准适用于: 一、设计装配式或部分装配式的钢筋混凝土结构和混合结构厂房; 二、编制厂房建筑构配件标准设计图集。 注:①设计钢结构厂房、受条件限制的改(扩)建厂房、现浇式钢筋混凝土 结构厂房、工艺对厂房有特殊要求的厂房或按本标准设计在技术经济上会产生显 著不合理的厂房,可不执行本标准的某些规定; ②采用新技术、新结构和新材料的厂房,可不受本标准某些规定的限制。 第1.0.3 条在一个建设场地内,确定各厂房设计方案时,宜使构配件的类 型统一。 第1.0.4 条在技术经济合理的基础上,厂房的体形应力求简单,避免设置 纵横跨和多跨厂房中的高度差。

第1.0.5 条在编制厂房建筑构配件标准设计图集时,应使用途相同的构配 件具有最大限度的互换性。 第1.0.6 条厂房建筑设计除应符合本标准的有关规定外,还应符合现行有 关国家标准的规定。 第二章基本规定 第2.0.1 条厂房建筑的平面和竖向协调模数的基数值均应取扩大模数3M。 注:M 为基本模数符号,1M 等于100mm 第2.0.4 条厂房建筑构件的竖向定位,可采用相应的设计标高线作为定位 线。 第2.0.5 条本标准所称构件的长度、宽度和高度均为标志尺寸。限定标志 尺寸的面应为该构件的定位平面。 第2.0.6 条钢筋混凝土结构的单层厂房,宜采用柱子下部为刚接和柱顶与 屋架或屋面梁为铰接的排架结构方案。 第2.0.7 条钢筋混凝土结构的多层厂房,梁与柱的连接处,宜采用横向为 刚接和纵向为铰接或刚接的框架结构方案。

主厂房总体施工设计概述

编号: 目录 一、工程概况 1.1、工程概况 1.2、施工条件 二、施工组织与部署 2.1、工程管理目标 2.2、工程管理机构 2.3、施工总体安排 2.4、工期要求 2.5、工程进度计划管理 2.6、工程质量检验评定标准及技术资料的归档方案 三、施工前的准备 3.1、技术及劳务准备 3.1.1、技术人员准备 3.1.2、劳务人员准备 3.2、机械设备准备 3.3、现场道路 3.3.1、临时用水 3.3.2、临时用电 3.4、各种物质资源调查 四、施工平面布置图 五、主要分部工程施工方案 5.1、主厂房基础工程施工方案

编号: 5.2、主厂房上部框架施工方案 5.3、彩钢板施工方案 5.4、脚手架施工方案 5.5、楼地面及装饰工程施工方案 5.6、屋面工程施工方案 5.7、填充墙施工方案 5.8、安装工程总要求 5.9、给排水工程施工方案 5.10、采暖工程施工方案 5.11、电气工程 5.12、特殊结构施工方案 六、各项管理措施 6.1工程质量保证措施 6.2、质量保证措施 6.2.1、编制依据 6.2.2、质量保证计划 6.2.3、质量保证体系 6.2.4雨季施工措施 6.2.5冬季施工措施 6.2.6泵送混凝土施工方案

一、工程概况 本工程为恒源热电厂主厂房工程。工程位于厂区中部,“两机三炉”机组。本工程基础设计为钢筋混凝土桩基础,独立桩承台:主体工程为现浇钢筋混凝土框架结构,汽机间为排架结构。除氧煤仓间总高33.98米:锅炉间为7米高平台,局部全高11米。主体工程钢筋总量为700吨,混凝土为7000立方米。本工程后期装饰工程主要做法为:锅炉间7米平台、汽机间7米平台、除氧煤仓间7米平台为花岗岩楼面;其他楼地面为水泥砂浆楼面:墙面为水泥砂浆面层外饰仿瓷涂料;汽机间屋面及局部墙面采用彩钢板封闭。本工程工程质量要求高,施工工期短,要求工程施工措施编制合理,工序穿插合理。 本工程为厂区重点工程,各种原材料,半成品需求量大,要求制定完善的物资供应体系。 二、施工组织与部署 2.1、工程管理目标 质量管理目标:要求质量管理目标为优良,我公司决心确保优良。 安全管理目标:无重伤事故,轻伤事故频率低于3‰。 工程管理目标:总工期为月,在无不可抗力的影响下确保按期完成。 2.1、施工组织管理 2.1.1、工程进度管理 锅炉基础垫层4立方米3月17日完成 A B C D列垫层73立方米3月17日完成 锅炉基础混凝土617立方米3月30日完成 A B C D 列基础混凝土1106立方米4月30日完成 -0。05—3。98米B-C列混凝土170立方米4月30日完成

路面结构设计计算书

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 1)轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 :s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN ; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数,单轴—双轮组时, i δ=1;单轴—单轮时,按式43.03 1022.2-?=i i P δ计算; 双轴—双轮组时,按式22.051007.1--?=i i P δ;三轴—双轮组时,按式22.08 1024.2--?=i i P δ计算。 轴载换算结果如表所示

太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注:轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范,一级公路的设计基准期为30年,安全等级为二级,轮迹横向分布系数η是0.17~0.22 取0.2,08.0=r g ,则 [][] 362.69001252.036508 .01)08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其交通 量在4 4102000~10100??中,故属重型交通。 2)初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低~中。根据一级公路、重交通等级和低级变异水平等级,查表4.4.6 初拟普通混凝土面层厚度为24cm ,基层采用水泥碎石,厚20cm ;底基层采用石灰土,厚20cm 。普通混凝土板的平面尺寸为宽3.75m ,长5.0m 。横缝为设传力杆的假缝。 3)确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=,水泥碎石a MP E 15001=,石灰土a MP E 5502= 设计弯拉强度:a cm MP f 0.5=, a c MP E 4101.3?= 结构层如下: 水泥混凝土24cm 水泥碎石20cm 石灰土20cm × 按式(B.1.5)计算基层顶面当量回弹模量如下: a x MP h h E h E h E 102520.020.0550 20.0150020.02 222222122 2121=+?+?=++= 1 2 211221322311)11(4)(1212-++++=h E h E h h h E h E D x 1233)2 .05501 2.015001(4)2.02.0(122.0550122.01500-?+?++?+?= )(700.4m MN -= m E D h x x x 380.0)1025 7.412()12(3 1 31=?== 165.4)351025(51.1122.6)( 51.1122.645.045.00=?????? ?-?=?? ????-?=--E E a x

车间工业厂房结构设计

车间工业厂房结构设计 已知条件 厂房跨度21m ,柱距6m ,车间总长96m ,无天窗。设有两台20/5t 双钩吊车(A4中级工作制),柱顶标高13.2m ,牛腿面标高7.8m ,采用钢屋盖,预制砼柱、砼吊车梁、柱下独立基础。室外地坪标高,000.0±基础顶面离室外地坪为0.5m 。纵向维护墙为370mm 厚烧结粘土空心砖(重m KN 2/8)支承在基础梁上的自承重空心砖砌体墙,圈梁设在柱顶处。地基承载力特征值m /2802KN F ak =。取轨道顶面至吊车梁顶面的距离为m h a 2.0=。 当地基本风压值m KN W 2o /35.0=m KN 2/25.0=,基本雪压值,土壤冻结深度=-0.5m, 一.构件选型 跨度取为L=21m (L k =21-1.5=19..5 m ),轨顶标高为(7.8+1.2+0.2)= 9.2m ,吊车为中级工作制,双钩桥式起重机的工业厂房,吊车重量为20t ,牛腿面标高为7.8m 。 1.屋面板 选用标准图集中的预应力混凝土大型屋面板,板重(包括灌缝在内)标准值为1.4 kN/m 2 2.屋架 选用标准图集中的预应力混凝土折线屋架,屋架自重标准值为95kN/榀。(未包括挑出牛腿部分,挑牛腿部分根据标准图集另外计算自重)。 3.天沟板 选用JGB77-1天沟板,板重标准值为2.02kN/m 2 。 4. 吊车梁 采用标准图集中的先张法预应力混凝土吊车梁YXDL6-YXDL8,吊车梁高1.2m ,自重标准值为41.8kN/根。 5. 吊车轨道联结 轨道及零件中为1.5 kN/m 2 轨道及垫层构造高度为200mm. 按A4级工作级别,Q=20/5t ,L k =19.5m, 根据吊车规格参数计算最大、最小轮压标准值:KN P 205max =KN P 35min =,, 最大轮压设计值:P d =1.05×1.4×1.15×=max P 1.05×1.4×1.15×205=346.55KN 小车自重标准值:75KN,k 2=G 与吊车额定起重量相对应的重力标准值:KN G k 2003=

路面结构设计分析

路面结构设计 学院: 专业: 学号: 姓名: 授课老师:

0 前言 道路是人类社会发展和进步的垫脚石,道路工程在人类社会发展中有着重要的作用。随着运输工具的现代化和人们交往的日益扩大,道路交通的作用更大重要和突出。道路是人们生活、学习、工作、旅游等出行的通道,是旅客、货物中转和集散的最主要途径,是城乡结构的骨架、城市建设的基础,是抵御自然灾害的通道,是自然灾害或战争时人员集散的场地,等等。总之,道路是社会发展的基础产业,是经济发展的先行设施,在工农业生产、国土开发、国防建设、旅游事业等国民经济和社会发展个方面发挥了举足轻重的作用。 我国家高速公路常用的路面结构形式主要有刚性和柔性两种,即水泥混凝土和沥青混凝土路面。水泥混凝土路面具有刚度大承载能力强,耐久性、耐候性、耐高温性能强,抗弯拉强度高、疲劳寿命长,平整度衰减慢、高平整度持续时间长,扩散荷载能力强,稳定性好、施工取材方便,路面环保,运行油耗低经济性好,路面色度低、色差小、隔热性好等优点,但水泥混凝土路面同等平整度舒适性差,板体性强、对基层的抗冲刷性能要求高,反射易使眼睛疲劳,超载、板底脱空等很敏感,且受施工质量的影响大,一旦出现质量问题,破坏就会迅速发展,难以维修、维护,并且破坏后修复困难,维修费用很高。沥青混凝土路面具有可以分期修建、通车快,平整度易于得到保证、整体性好、行车舒适、易于修复、噪音小等优点,但沥青混凝土路面具有对水和温度比较敏感,在水文、气候条件较差及缺乏碱性集料的地区,易造成沥青路面的早期破坏,路面平整度保持性差,路面材料耐久性差,使用寿命较短,运行及养护维修成本较高、环保性能差等缺点。 综上所述,沥青混凝土路面和水泥混凝土路面各有其的优缺点。路面结/构设计就是合理设置路面各结构层的位置和层厚,充分发挥各层材料的特性,以抵抗车轮荷载和环境因素的作用,实现路面的设计使用寿命,同时,提供良好的服务质量。在设计路面结构时,采用何种结构类型不是简单的问题。很有必要从筑路地区气候环境、地质状况、交通量大小、材料种类及供给情况、施工技术水平等因素,两种路面的施工方法、使用性能、破坏状况、维护方式、养护费用等方面进行全面比较权衡,从道路等级、路用性能要求、经济、技术、社会、环境效益等方面进行综合分析,优选出较合理的路面结构类型。

相关文档
最新文档