路面结构组合设计

路面结构组合设计
路面结构组合设计

路面结构组合设计

1.1设计说明

1.1.1工程概况

(1)工程所在地:湖南省境内

(2)公路自然区划:IV区,由地下水位资料可知该路基为潮湿状态;

(3)公路等级:一级公路(双向四车道、设中央分隔带) ;

(4)路线总长度:1223.061m。

1.1.2设计内容

沥青混凝土路面

(1)拟定路面结构组合方案,进行方案比较。

(2)进行轴载换算(手算和程序计算),确定路面设计弯沉值。

(3)确定路基路面结构层设计参数。

(4)各结构层材料组成设计。

1.1.3 设计成果

(1)设计说明书;

(2)沥青路面结构设计图。

1.2主要技术经济指标

1.2.1交通组成

经调查预测,本路竣工后第一年双向平均日交通量下表(辆 /d )

路面路基设计--路面结构层

第六章路面结构层 一、填空题 1 .常用的稳定土路面有 _____ , _____ 和工业废渣稳定土。 2 .石灰质量主要是由石灰中的 _____ 和 _____ 的含量决定的。 3 .在石灰土中,石灰等级要求在 _____ 以上,储藏时间不得超过 _____ 。 4 .石灰土中石灰的剂量一般指 _____ 和 _____ 的百分比。 5 .石灰土强度随时间而变化,初期强度 _____ ,后期强度 _____ 。 6 .石灰稳定工业废渣路面可分为 _____ 和 _____ 两大类。 7 .泥结碎石路面的主要缺点是 _____ ,它不适用于 _____ 路段。 8 .级配砾 ( 碎 ) 石路面混合料配合比设计原则应符合 _____ ,并严格控制小于 0 . 5 的细料含量及 _____ 。 9 .碎 ( 砾 ) 石路面结构作为面层时,通常应增设 _____ 层和 _____ 层,以保护路面。 10 .沥青路面按矿料组成不同,可分为 _____ 和 _____ 两大类。 11 .密实类沥青路面的强度主要由 _____ 构成,其次由 _____ 构成。 12 .嵌挤类沥青路面的强度构成是以 _____ 为主,而以 _____ 为辅。 13 .沥青表面处治的施工方法有 _____ 和 _____ 两类。 14 .沥青碎石路面的强度按 _____ 原则形成,故具有较高的一 _____ 性。 15 .贯人式路面施工时,对主层料的辗压要避免矿料过于被 _____ 而影响。 16 .沥青碎石的主要缺点是 _____ 和 _____ 。 17 .水泥混凝土路面的破坏,主要可归纳为 _____ 和 _____ 两大类。 18 .混凝土路面湿治养生的主要目的是为了防止混凝土中水分蒸发 _____ 而产生 _____ ,以保证水泥混凝土硬化过程顺利进行。 二、选择题 1 .()是按面层的使用品质、材料组成及结构强度来划分的。

城市道路混凝土路面结构设计

城市道路混凝土路面结构设计 一、水泥路面的特性 混凝土路面以其强度高、刚性大和耐久性好,能适应重载、高速而密集的汽车运输要求,已在城市道路中广泛采用。 1、强度高、刚性大和耐久性好:混凝土路面具有较高的抗压、抗弯拉和抗磨耗的力学强度,具有较高的承载能力和扩荷载能力,耐久性好,一般可使用20~30年以上,沥青路面一般在10~15年,是沥青路面使用年限的2倍。 2、稳定性好:环境温度和湿度对混凝土路面的力学强度影响甚小,因而热稳定性、水稳定性和时间稳定性都比较好。抗油类侵蚀能力强,抗洪能力比沥青路面强。 3、平整度和粗糙度好:表面起伏变形少,路面在潮湿时候仍能保持足够的粗糙度,使车辆不打滑而能保持较高的安全行车速度。 4、养护费用少,维修成本低:水泥路面的建造费用比沥青路面节省一倍。按每立方米混合料测算,沥青混合料需要1000元~1400元,而水泥路面仅需要330元~580元。维护方面:沥青路面局部修复养护费用比新建费用大致高4倍~5倍,而水泥路面局部修复的养护费用是建造费用的2倍~3倍。 5、运输成本低:以V=60km/h行车速度计算,水泥路面的油耗比沥青路面节省8%;随着速度的加大,在V=80km/h行车速度时,水泥路面的油耗比沥青路面可节省10.5%。在当前高油价、高污染的时代,

达到低碳节能的目标。 综上所述,由于我国资源和能源的紧缺,加快水泥混凝土路面技术进步是我国道路建设的客观需求,也是促进我国能源大发展的重要战略措施。 二、混凝土路面的设计概况 混凝土板厚一般采用等厚度形式,根据交通量大小及轴载大小确定路面厚度,板厚最小18cm。板宽一般按每车道,耽不大于4.5m;板长一般采用4~5m,最长不超过6m。胀缝间距一般直线段为200m设一道,在交叉口与直线联接处设胀缝。 三、水泥混凝土路面板尺寸的确定 水泥混凝土路面板尺寸包括板的厚度及平面尺寸。采用弹性半无限地基板理论和有限元法计算板内应力,以荷载应力和温度应力产生的综合疲劳损坏(断裂)为设计控制标准。以BZZ-100KN的单轴荷载作为标准轴载,按等效原则将各级轴载换算为标准轴载。 1、混凝土面层厚度的确定 (1)使用年限内标准轴载在车道内的累计重复作用次数。在使用年限内,标准轴载在车道内的累计重复作用次数Ne,可通过对现有道路的轴载情况调查和交通增长分析后,按下式计算:Ns=365N0[(1十)-T]./式中:N0一设计初期车道上日标准轴载作用次数; 平均年交通量增长率(%); T一路面的使用年限; 一车轮轮迹横向分布系数。对双向双车道混合行驶者取0.30~

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

公路沥青路面设计规范(JTG-D50-2006)

公路沥青路面设计规范(JTG-D50-2006)

《公路沥青路面设计规范》JTGD 50-2004 条文说明 2004年9月16日

1 总则 1.0.1 由于国民经济发展,带来交通量激增和重载车增多,对路面设计和施工是一个挑战。为提高路面设计水平和工程质量,减少早期损害,总结工程实践的经验教训,吸纳新的科研成果,有必要对原规范进行修订。 1.0.3 路面设计工作是一个系统工程,它不是单纯地厚度计算。因原材料性质决定沥青混合料或各种基层混合料的物理力学特性,各种混合料的性质决定了各结构层的路用性能,所以,材料直接影响路面质量与耐久性。各结构层的组合与当地的气候、交通量与交通组成密切相关,合理的结构组合,使路面获得经济、耐久效果。厚度计算与材料设计参数取值直接相关,没有实测材料参数厚度计算缺乏依据。若缺原材料调查,无合理材料单价,可导致变更设计,突破投资。故设计人员应重视材料调查,选用符合技术要求,经济合理材料,防止简单地套用路面结构,把设计变成是厚度计算。 设计工作包括以下具体内容: 1 调查与收集有关交通量及其组成资料,积极开展轴载谱分布的调查、测试工作; 2 收集当地气候、水文资料,了解沿线地质、路基填挖及干湿状况,通过试验或论证确定路基回弹模量; 3 设计人员应认真做好路用各种材料的调查,并取样试验,根据试验结果选定路面各结构层所需的材料; 4 施工图设计阶段应进行混合料的目标配合比设计,并测试、确定材料设计参数; 5 拟定路面结构组合,采用专用程序计算厚度; 6 对路面结构方案进行概算、技术经济比较,进行初期投资或长期成本寿命分析,提出推荐的设计方案。但是目前我国尚未建立初期投资、营运中的维修、养护费用等全过程的技术经济预估模型,希望有条件的设计、科研单位开展这方面的工作,积累资料。 7 认真做好路面排水、路面结构内部排水和中央分隔带排水系统设计,使路面排水通畅,路面结构内部无积水滞留。 1.0.4 该条文仅增加了路面设计应符合国家环境保护的有关规定,设计中应注意废弃料的处理,不能污染环境。鼓励积极开展旧沥青面层、破碎水泥混凝土板和旧基层材料的再生利用,节约资源,保护环境。 1.0.5 分期修建的方案,由设计单位根据实际情况决定。 1.0.6 新条文强调了设计目的不仅确定路面结构厚度,还应为行车提供快捷、舒适、安全、稳定、耐久的服务功能。现行弹性层状理论设计方法和设计指标,主要是考虑在车辆荷载的反复作用下,使路面具有相应的整体刚度(即承载能力),以及抵抗各结构层因拉应力或拉应变而产生的疲劳破坏。对于当前出现的水损害、车辙、推移、拥包等病害,用弹性层状理论尚难以得出符合实际的设计结果,故需通过沥青混合料的

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

第七节 路面结构层厚度试验检测方法

第七节路面结构层厚度试验检测方法 一、概述 在路面工程中,各个层次的厚度是和道路整体强度密切相关的。在路面设计中,不管是刚性路面,还是柔性路面,其最终要决定的,都是各个层次的厚度,只有在保证厚度的情况下,路面的各个层次及整体的强度才能得到保证。除了能保证强度外,严格控制各结构层的厚度,还能对路面的标高起到一定的控制作用,是一个非常重要的指标。所以在《公路工程质量检验评定标准》(JTJ071一98)中,路面各个层次的厚度的分值较高。 路面各结构层厚度的检测一般与压实度同时进行,当用灌砂法进行压实度检查时,可量取挖坑灌砂深度即为结构层厚度。当用钻芯取样法检查压实度时,可直接量取芯样高度。结构层厚度也可以采用水准仪量测法求得,即在同一测点量出结构层底面及顶面的高程,然后求其差值。这种方法元需破坏路面,测试精度高。目前,国内外还有用雷达、超声波等方法检测路面结构层厚度。 对于基层或砂石路面的厚度可用挖坑法测定,沥青面层与水泥混凝土路面板的厚度应用钻孔法测定。 二、厚度检测方法 (一)挖坑法 (1)根据现行规范的要求,随机取样决定挖坑检查的位置。如为旧路,该点有坑洞等显著缺陷或接缝时,可在其旁边检测。 (2)选一块约40cm x 40 cm的平坦表面作为试验地点,用毛刷将其清扫干净。 (3)根据材料坚硬程度,选择镐、铲、凿子等适当的工具,开挖这一层材料,直至层位底面。在便于开挖的前提下,开挖面积应尽量缩小,坑洞大体呈圆形,边开挖边将材料铲出,置于搪瓷盘中。 (4)用毛刷将坑底清扫,确认为坑底面下一层的顶面。 (5)将钢板尺平放横跨于坑的两边,用另一把钢尺或卡尺等量具在坑的中部位置垂直伸至坑底,测量坑底至钢板尺的距离,即为检查层的厚度,以cm计,精确至0.1cm。 (二)钻孔取样法 (1)根据现行规范的要求,随机取样决定挖坑检查的位置。如为旧路,该点有坑洞等显著缺陷或接缝时,可在其旁边检测。 (2)用路面取芯钻孔机钻孔,芯样的直径应为1oomm。如芯样仅供测量厚度,不作其他试验,对沥青面层与水泥混凝土板也可用直径50mm的钻头,对基层材料有可能损坏试件时,也可用直径150mm的钻头,但钻孔深度必须达到层厚。 (3)仔细取出芯样,清除底面灰尘,找出与下层的分界面。 (4)用钢板尺或卡尺沿圆周对称的十字方向四处量取表面至上下层界面的高度,取其平均值,即为该层的厚度,精确至0.1cm。 (三)施工过程中的简易方法 在施工过程中,当沥青混合料尚未冷却时,可根据需要,随机选择测点,用大改锥插入量取或挖坑量取沥青层的厚度(必要时用小锤轻轻敲打),但不得使用铁镐等扰动四周的沥青层。挖坑后清扫坑边,架上钢板尺,用另一钢板尺量取层厚,或用改锥插入坑内量取深度后用尺读数,即为层厚,以cm计,精确至0.1cm。 三、填补试坑或钻孔 补填工序如有疏忽,易成为隐患而导致开裂涸此,所有挖坑、钻孔均应仔细做好。按下列步骤用取样层的相同材料填补试坑或钻孔: (1)适当清理坑中残留物,钻孔时留下的积水应用棉纱吸干。 (2)对无机结合料稳定层及水泥混凝土路面板,按相同配比用新拌的材料并用小锤击

路面结构组合设计

路面结构组合设计 1.1设计说明 1.1.1工程概况 (1)工程所在地:湖南省境内 (2)公路自然区划:区,由地下水位资料可知该路基为潮湿状态; (3)公路等级:一级公路(双向四车道、设中央分隔带); (4)路线总长度:1223.061m。 1.1.2设计内容 沥青混凝土路面 (1)拟定路面结构组合方案,进行方案比较。 (2)进行轴载换算(手算和程序计算),确定路面设计弯沉值。 (3)确定路基路面结构层设计参数。 (4)各结构层材料组成设计。 1.1.3设计成果 (1)设计说明书; (2)沥青路面结构设计图。 1.2 主要技术经济指标 1.2.1交通组成 经调查预测,本路竣工后第一年双向平均日交通量下表(辆/d)

预测交通组成表表2 备注:依据规范,轴重小于25KN的车辆不计入计算; 使用期内交通量平均增长率为4.7%,沥青混凝土路面设计使用年限15年。 2. 沥青混凝土路面结构设计 2.1轴载换算 路面设计以双轮组单轴载100KN为标准轴载,小客车不考虑轴载。 2.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次,昼夜交通量(辆/日)为双向车道年平均日通行车辆数。 ①轴载换算 轴载换算采用如下的计算公式: 式中:轴数系数 轮组系数 其中: 计算结果如下表(表3)所示:

轴载换算结果表 表3 注:轴载小于25KN 不计 ②累计当量轴次 根据设计规范,一级公路沥青路面的设计年限15年,四车道的车道系数取0.45。 累计当量轴次: 式中:第一年双向日平均当量轴次(次/日) 设计年限内交通量的平均增长率(%) 设计车道的车轮轮迹横向分布系数 2.1.2 验算半刚性基层底拉应力中的累计当量轴次

公路路面结构识图及施工规范图集

公路路面结构识图及施工规范图集 一、路面的基本结构 路基和路面是公路的主要工程结构物。路基是在天然地表面按照路线的设计线性(位置)和设计横断面(几何尺寸)的要求开挖或填筑而成的岩土结构物,是路面的基础,承受由路面传来的行车荷载。路面是在路基顶面的行车部分用各种混合料分层铺筑的供车辆行驶的一种层状结构物。 路床:路面结构层底面以下0.8 m范围内的路基部分称为路床。路床分为上路床(0~0.3 m)和下路床(0.3~0.8 m)两层。 上路堤:路面结构层底面以下0.8~1.5 m的填方部分称为上路堤。 下路堤:上路堤以下的填方部分称为下路堤。

高速公路、一级公路的路基宽度一般是由车道、中间带和路肩组成的,如图1-1所示。 二、三、四级公路的路基宽度一般是由车道和路肩组成的,如图1-2所示。 【施工规范】高速、一级公路石灰应不低于Ⅱ级,二级公路石灰应不低于Ⅲ级,二级以下公路宜不低于Ⅲ级。高速、一级公路的基层,宜采用磨细消石灰。二级

以下公路使用等外石灰时,有效氧化钙含量应在20%以上,且混合料强度应满足要求。 一、具有足够的承载力 行驶在公路上的汽车,通过车轮把垂直力、水平力以及汽车产生的振动力和冲击力传给路面,使路面结构内部产生应力、应变和位移。如果路基和路面结构整体或某一组成部分的强度或抵抗变形的能力不足,路面就会出现断裂、沉陷、波浪或车辙等病害,影响路基、路面的正常使用。 【施工规范】高速、一级公路极重、特重交通荷载等级基层的4.75 mm以上粗集料应采用单一粒径的规格料。

在路基和路面交工验收时,一般情况下,柔性材料(如级配碎石、沥青混凝土)用弯沉表示承载力,刚性材料(如水泥混凝土)、半刚性材料(如无机结合料稳定材料)用强度表示承载力。点这免费下载施工技术资料 【施工规范】混合料摊铺应保证足够的厚度,碾压成型后每层摊铺厚度宜不小于160㎜,最大厚度宜不大于200㎜。 施工过程的压实度检测,应以每天现场取样的击实结果确定的最大干密度为标准,每天取样的击实试验应符合下列规定: A击实试验应不少于3次平行试验,且相互之间的最大干密度差值应不大于0.02g/cm3;否则,应重新试验,并取平均值作为当天压实度的检测标准。 B该数值与设计阶段确定的最大干密度差值大于0.02g/cm3时,应分析原因,及时处理。

沥青路面结构设计示例

7.2路面结构设计 7.2.1路面结构设计步骤 新建沥青路面按以下步骤进行路面结构设计: (1) 根据设计任务书和路面等级及面层类型,计算设计年限内一个车道的累计当量轴次和设计弯沉值。 (2) 按路基土类型和干湿状态,将路基划分为几个路段,确定路段回弹模量值。 (3) 根据已有经验和规范推荐的路面结构,拟定几中可能的路面结构组合及厚度方案,根据选用的材料进行配合比实验及测定结构层材料的抗压回弹模量、抗拉强度,确定各结构层材料设计参数。 (4) 根据设计弯沉值计算路面厚度。对二级公路沥青混凝土面层和半刚性基层材料的基层、底基层,应验算拉应力是否满足容许拉应力的要求。如不满足要求,或调整路面结构层厚度,或变更路面结构层组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 7.2.2 路面结构层计算 该路位于中原黄河冲积平原区,地质条件一般为a)第一层:冲积土;b)第二层:粘质土;c)第三层:岩石。平原区二级汽车专用沥青混凝土公路,路面使用年限为12年,年预测平均增长率为6%。 (1)轴载分析 本设计的累计当量轴次的计算以双轮组单轴载100kN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表7-1确定。 表7-1标准轴载计算参数 表7-2起始年交通量表

1)以设计弯沉为指标及验算沥青层层底拉应力 ① 轴载换算 各级轴载换算采用如下计算公式: 4.35 1121( )k i i i p N c c n p ==∑ (7-1) 式中:N 1—标准轴载的当量轴次,次/日; n i —被换算车辆的各级轴载作用次数,次/日; P —标准轴载,kN ; P i —被换算车辆的各级轴载,kN ; k —被换算车辆类型; C 1—轴数系数,C 1=1+1.2(m -1),m 是轴数。当轴间距大于3m 时,按单独的一个轴载计算,当轴间距小于3m 时,应考虑轴系数; C 2—轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 计算结果如下表7-3所示。 表7-3 轴载换算结果表(弯沉) 注:轴载小于25kN 的轴载作用不计。 ② 累计当量轴次为:

路面结构设计

5.路面结构设计 5.1沥青路面 5.1.1交通量及轴载计算分析 路面设计以单轴载双轮组100KN 为标准轴载。 1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算: 轴载换算采用如下的计算公式:=N ∑=k i i i P P n C C 135.421)/( 计算结果如下表所示: 表5.1轴载换算表 =i i i 1 21

②累计当量轴次 根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]18918830 5.060.430336506449 .0365106449.0115 =????-+= (次) 2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算 验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i k i i ∑== 计算结果如下表所示: 表5.2 轴载换算结果(半刚性基层层底拉应力) =i i i 1 21

②累计当量轴次 参数取值同上,设计年限是15年,车道系数取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]321652575.087.731636506449 .0106449.0115 =???-+= (次) 5.1.2结构组合设计及材料选取 1) 拟订路面结构组合方案 根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。 另设20cm 厚的中粗砂垫层。 2) 拟订路面结构层的厚度 由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。 5.1.3设计指标及设计参数确定 1) 确定路面等级和面层类型 由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。 2) 确定土基的回弹模量 ① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。 ② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。

沥青路面结构厚度计算

沥青路面结构厚度计算 路等级 : 一级公路新建路面的层数 :5 标准轴载 : BZZ-100 路面设计弯沉值 : 24、9 (0、01mm) 路面设计层层位 :4 设计层最小厚度 :150 (mm)层位结构层材料名称厚度20℃平均抗压标准差15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa) 1 细粒式沥青混凝土401400 02000 0 、47 2 中粒式沥青混凝土601200 01800 0 、34 3 粗粒式沥青混凝土801000 01200 0 、27 4 水泥稳定碎石 ?1500 03600 0 、25 5 石灰土250550 01500 0 、1 6 新建路基36 按设计弯沉值计算设计层厚度 : LD= 24、9 (0、01mm) H(4 )=200 mm LS= 26、3 (0、01mm) H(4 )=250 mm LS= 23、4 (0、01mm)

H(4 )=224 mm(仅考虑弯沉) 按容许拉应力计算设计层厚度 : H(4 )=224 mm(第1 层底面拉应力计算满足要求) H(4 )=224 mm(第2 层底面拉应力计算满足要求) H(4 )=224 mm(第3 层底面拉应力计算满足要求) H(4 )=224 mm(第4 层底面拉应力计算满足要求) H(4 )=274 mm σ(5 )= 、101 MPa H(4 )=324 mm σ(5 )= 、087 MPa H(4 )=277 mm(第5 层底面拉应力计算满足要求) 路面设计层厚度 : H(4 )=224 mm(仅考虑弯沉) H(4 )=277 mm(同时考虑弯沉和拉应力) 验算路面防冻厚度 : 路面最小防冻厚度500 mm 验算结果表明 ,路面总厚度满足防冻要求、通过对设计层厚度取整, 最后得到路面结构设计结果如下:-------------------------------------- 细粒式沥青混凝土40 mm-------------------------------------- 中粒式沥青混凝土60 mm-------------------------------------- 粗粒式沥青混凝土80 mm-------------------------------------- 水泥稳定碎石280 mm-------------------------------------- 石灰土250 mm-------------------------------------- 新建路基

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 轴载换算结果如表所示: 表7.2 轴载换算结果表

注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示:

路面结构设计计算书(有计算过程的)DOC.doc

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 车型 前轴重 后轴重 后轴数 后轴轮组数 后轴距 交通量 ( m ) 小客车 1800 解放 CA10B 19.40 60.85 1 双 — 300 黄河 JN150 49.00 101.60 1 双 — 540 交通 SH361 60.00 2× 110.00 2 双 130.0 120 太脱拉 138 51.40 2× 80.00 2 双 132.0 150 吉尔 130 25.75 59.50 1 双 — 240 尼桑 CK10G 39.25 76.00 1 双 — 180 1)轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: n 16 P i N s i N i 100 i 1 式中 : N s —— 100KN 的单轴—双轮组标准轴载的作用次数; P i —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型 i 级轴载的总重 KN ; N i —各类轴型 i 级轴载的作用次数; n —轴型和轴载级位数; i —轴—轮型系数,单轴—双轮组时, i =1;单轴—单轮时,按式 i 2.22 103 P i 0.43 计算; 双轴—双轮组时,按式 i 1.07 10 5 P i 0. 22 ;三轴—双轮组时,按式 i 2.24 10 8 P i 0. 22 计算。 轴载换算结果如表所示 车型 P i N i P i 16 i i N i ( P ) 解放 CA10B 后轴 60.85 1 300 0.106 黄河 JN150 前轴 49.00 2.22 103 49 0.43 540 2.484 后轴 101.6 1 540 696.134 交通 SH361 前轴 60.00 2.22 103 60 0.43 120 12.923 后轴 2 110.00 1.07 10 5 220 0.22 120 118.031

路面结构设计分析

路面结构设计 学院: 专业: 学号: 姓名: 授课老师:

0 前言 道路是人类社会发展和进步的垫脚石,道路工程在人类社会发展中有着重要的作用。随着运输工具的现代化和人们交往的日益扩大,道路交通的作用更大重要和突出。道路是人们生活、学习、工作、旅游等出行的通道,是旅客、货物中转和集散的最主要途径,是城乡结构的骨架、城市建设的基础,是抵御自然灾害的通道,是自然灾害或战争时人员集散的场地,等等。总之,道路是社会发展的基础产业,是经济发展的先行设施,在工农业生产、国土开发、国防建设、旅游事业等国民经济和社会发展个方面发挥了举足轻重的作用。 我国家高速公路常用的路面结构形式主要有刚性和柔性两种,即水泥混凝土和沥青混凝土路面。水泥混凝土路面具有刚度大承载能力强,耐久性、耐候性、耐高温性能强,抗弯拉强度高、疲劳寿命长,平整度衰减慢、高平整度持续时间长,扩散荷载能力强,稳定性好、施工取材方便,路面环保,运行油耗低经济性好,路面色度低、色差小、隔热性好等优点,但水泥混凝土路面同等平整度舒适性差,板体性强、对基层的抗冲刷性能要求高,反射易使眼睛疲劳,超载、板底脱空等很敏感,且受施工质量的影响大,一旦出现质量问题,破坏就会迅速发展,难以维修、维护,并且破坏后修复困难,维修费用很高。沥青混凝土路面具有可以分期修建、通车快,平整度易于得到保证、整体性好、行车舒适、易于修复、噪音小等优点,但沥青混凝土路面具有对水和温度比较敏感,在水文、气候条件较差及缺乏碱性集料的地区,易造成沥青路面的早期破坏,路面平整度保持性差,路面材料耐久性差,使用寿命较短,运行及养护维修成本较高、环保性能差等缺点。 综上所述,沥青混凝土路面和水泥混凝土路面各有其的优缺点。路面结/构设计就是合理设置路面各结构层的位置和层厚,充分发挥各层材料的特性,以抵抗车轮荷载和环境因素的作用,实现路面的设计使用寿命,同时,提供良好的服务质量。在设计路面结构时,采用何种结构类型不是简单的问题。很有必要从筑路地区气候环境、地质状况、交通量大小、材料种类及供给情况、施工技术水平等因素,两种路面的施工方法、使用性能、破坏状况、维护方式、养护费用等方面进行全面比较权衡,从道路等级、路用性能要求、经济、技术、社会、环境效益等方面进行综合分析,优选出较合理的路面结构类型。

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构, 设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃ ω=1.3;因此该路基(1月),年平均降水量685毫米。道路沿线土质路基稠度c Ⅱ区,根据【JTG 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C ' ——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

2017版沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

v4 路面结构设计

v4 路面结构设计

4 路面结构设计 4.1路面类型及结构层组合 路面设计应根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验。)在满足交通量和使用要求的前提下,应遵循因地制宜、合理取材、方便施工、利于养护、节约投资的原则,进行路面设计方案的技术经济比较,选择技术较先进、经济合理、安全可靠、有利于机械化的路面结构方案。 4.1.1路面类型的确定 目前,我国等级较高的公路一般采用沥青混凝土路面或水泥混凝土路面,两种路面类型各有优缺点,比较见表4.1 表4.1 路面类型比较表 比较项目沥青混凝土 路面 水泥混凝土 类型柔性刚性 接缝无有 噪音小大机械化施工容易较困难施工速度快慢 稳定性易老化水稳、热稳均 较好 养护维修方便困难

开放交通 快 慢 晴天反光情 况 无 稍大 强度 高 很高 行车舒适性 好 较好 由交通量的计算知本道路为中等交通,则路面要选择高等级路面。通过对两种不同类型路面的比较,另外结合当地材料来源及路面设计原则等各方面综合考虑,选用沥青混凝土路面类型。 4.1.2标准轴载及轴载换算 设计采用现行路面设计规范中规定的标准轴载BZZ-100KN ,p=0.7MPa ,δ=10.65cm ,设计使用年限为15年。 1)当以设计弯沉值为指标以及验算沥青层层底拉应力时 凡轴载大于25kN 的各级轴载(包括车辆的前、后轴)Pi 的作用次数ni ,按式(6-1)换算成标准轴载P 的当量作用次数N : 4.35 1,2,1 K i i i i i P N C C n P =?? = ? ??∑ (4-1) 式中:N ——标准轴载的当量轴次,次/d ; n i ——被换算车型的各级轴载作用次数,次/d ; P ——标准轴载,kN ; P i ——被换算车型各级(单根)轴载,kN ; C 1i ——被换算车型各级轴载的轴数系数。当轴间距大于3m 时, 按单独的一个轴计算,轴数系数即为轴数m ;当轴间距小于3m 时,按双轴或多轴计算,轴数系数为C 1i =1+1.2(m-1); C 2i ——被换算轴载的轮组系数,单轮组为6.4,双轮组为1.0,四 轮组为0.38。 2)当进行半刚性基层层底拉应力验算时 凡轴载大于50kN 的各级轴载(包括车辆的前、后轴)P i 的作用次数n i ,按式4-2换算成标准轴载P 的当量作用次数N :

市政道路路面结构及路基设计

市政道路路面结构及路基设计 发表时间:2019-09-18T09:21:01.060Z 来源:《防护工程》2019年11期作者:高翔 [导读] 最后对市政道路路面路基设计要点进行了探讨。希望能够为相关人员提供有益的参考和借鉴。 河北城兴市政设计院股份有限公司河北保定 071000 摘要:随着经济的长足发展以及交通运输业的不断进步,市政道路工程的建设全面改善了人们的生产生活质量,对交通运输业更是起到了积极的促进作用,极大地提高了整体经济水平。因此市政道路建设有着十分重要的保障性的作用,市政道路路基路面结构设计有着十分重要的意义,不但可以提高市政道路的整体质量,还为人们的日常使用提供了安全保障,而且良好的市政道路工程质量,节约了资本的投入,减少了工程因质量问题导致的维修、重建的问题,还增加了人们的视觉美观作用,同时能提高了城市的综合竞争力。因此积极的研究市政道路路面路基结构设计是十分必要的,也是社会发展的需要。本文首先阐述了市政道路规划应遵循的原则,接着分析市政道路路面结构设计要点,最后对市政道路路面路基设计要点进行了探讨。希望能够为相关人员提供有益的参考和借鉴。 关键词:市政道路;路面结构;路基设计 1 引言 市政道路的设计水平直接影响到工程质量以及成本控制的效果。在市政道路的路面结构设计中,选择合适的材料与结构厚度可以平衡成本与建设质量之间的作用关系,同时还可以通过多组合模拟的方式来借鉴成功的设计经验。在进行市政道路路面路基设计时,需要做好基本功能设计,同时配合排水系统、特殊区域进行设计,最大限度的发挥设计的功能性,达到预期的设计规划目标。 2 市政道路规划应遵循的原则 一般情况下来说,市政道路路面的施工包含了三个方面:道路的横、纵断面的设计,道路路面路基的工程,以及道路所配套的基础设施建设,这三个方面,其中,道路的路面路基建设是需要按照道路整体工程的规划原则来设计的,市政道路整体工程的规划原则大概有四点,以下我们将进行简单分析。第一、市政道路的设计首先需要满足城市总体规划,并在这一前提下科学合理的设立交通路网,。充分的将城市交通对土地开发强度的促进与制约作用发挥出来,提高整个城市的运转效能,对环境质量进行改善,并且为人们提供经济,安全,高效,可靠地交通。第二、对于道路的整体工程规划我们应该遵循市场的经济发展规律,与城市社会的发展水平进行充分结合,对于公交交通建设进行大力推广,形成一种个体交通与公共交通优势互补的多元化客运网络体系。第三、需要充分地为行动不便的人进行考虑,进行通道无障碍的设计,使社会效益,经济效益,环境效益得到充分结合。第四,需要将市政道路的建设与城市的主要交通情况相结合,与城市主干道之间进行相互融合。想要更好的进行道路的基础设施规划,需要保证交通环境的良好,视线的通畅,以及基础道路设施功能的完善与齐全,这样才能更好地对城市纵横延伸进行引导,促进城市空间的可持续发展。 3 市政道路路面结构设计要点 沥青路面的面层由于在使用过程当中会直接承受车辆的压力,也会因为各种各样的因素造成磨损,对于路面的要求也就变得格外的高,需要路面具备良好的承压性,耐损耗,高强度,耐久性等特点,所以,在我们实际进行市政道路路面改造时,一般都会采用粘结能力比较强的材料,以及强度比较高的材料来用作路面面层的使用材料。 3.1 沥青面层结构组合与优化设计 从大量道路改造的设计和实际效果来看,在道路交叉口和交通量方面,如果能满足技术要求,就城市支路而言,可以在设计结构上采用单层设计结构,而对城市二级及以上道路,性能较高的快速道路,则需要双层设计结构。对于车辆多,大流量的道路和主干道路,需要设计三层结构。以城市的主干路来说,有些设计人员在交通量要求相近,性能技术也相近的时候,会使用两层式得设计结构,而有些人员则会使用三层式的设计结构,两者之间大约相差三厘米以上的厚度,这就造成了道路工程结束后,道路路面要么是十分偏薄,极易造成道路路面的破损,要么十分偏厚,降低了工程整体的经济利益的水平。所以,设计人员在设计道路路面结构时应该充分结合道路工程的实际实施情况,与临近道路工程的经验,对沥青面层的结构进行严谨的优化设计,减少设计失误对道路带来的损害以及工程投资方面资金的浪费,同时减少安全隐患问题的发生。 3.2 重视路面最小的压实厚度 在对道路路面沥青层的厚度进行拟定时,我们所需要重视最小厚度为路面所带来而影响,以确保设计方案当中每一层沥青的混合材料在实际的施工当中,都可以形成稳定且比较均匀的层次结构,根据道路改造的相关标准以及规范我们可以得知,道路沥青路面每层所设计的厚度不可以少于三倍混合料工称的最大粒径,然而在实际进行设计的过程中,很少有人能够达到这个要求,所以,在我们对路面实际结构厚度的设计过程当中,需要严格的按照相应的规则来进行设计。 4 市政道路路面路基设计要点 4.1 路基设计基本要求 市政道路路面路基的设计需要考虑到强度、稳定性两个方面的因素,这个过程中要综合考虑到道路等级、水文以及资料等方面的情况,通过施工方案的设计、协调来确保上述因素达到预期设计标准。值得注意的是,应该尽可能的借鉴当地其他路段的设计经验,在投资成本有效控制的前提下达到路基设计的目的。在进行自然条件调查时也要尽可能做到详细、周密,严格控制好市政道路的路基,做好压实处理,同时也要对后续铺筑施工环节做好管理。 4.2 路基排水系统设计 路基排水系统的设计也是市政道路路面路基设计中的重要部分。一般来说排数可以通过设置纵向坡度的方式来解决。在做好设计规划后,雨水会随着排水沟进入到涵洞或者是河道当中,或者与填方路段并排项链,这样一来不但可以解决地下和路面排水问题,同样也可以提升系统的稳定性。 4.3 特殊路基设计 市政道路路面路基设计中难免会遇到一些特殊的情况。比如说面对山间土质很软的情况,需要选择一些碎石配合提升硬度与稳定性,在容易出现滑坡甚至崩塌的路段,则需要做好清除工作,选择抗滑挡墙或者滑桩来进行稳固处理,或者通过绿化以及优化排水系统进行改

相关文档
最新文档