用质谱如何确定化合物分子式

合集下载

(完整版)质谱分析图谱解析

(完整版)质谱分析图谱解析
※ 查表法 Beynon and Lederbey 制作了高分辨质谱法数据表, 可查出对应于某精确质量的分子式。
※ 计算机处理
3.3 有机质谱中的反应及其机理
M+ e
50-70 eV
+. M
+
2e
-. M
+
小于1%
+.
A +. + 中性分子或碎片
M
B + + R
A +.
B+
M+·→ A+·, B+, C +·, D+ ……
y = 154 32 12×8=26 不合理 设w=1 则 y = 154 321612×8=10
分子式为C8H10OS
查Beynon表法
C H N O m/z M+1 M+2 理论计算值,会出现不符合N律和不符合DBE的一般规律。
高分辨质谱法
精确质量,与分辨率有关 ※ 试误法
精确质量的尾数=0.007825y+0.003074z-0.005085w
DBE: Double Bond Equivalents UN: Unsaturated Number
计算式为:
=C+1-H/2
C—C原子数
H—H原子数
i) 分子中含有卤素原子(X)时,它的作用等价于氢原子;
ii) 二价原子数目不直接进入计算式;
iii) 化合物中若含有一个三价N原子,它相应的化合物比链状烷烃多3个H.
H2C OC2H5
例:① 烯:
R HH
C
CH2
H2C C
C R'
H2
② 酯:

质谱分析法知识汇总(全面)

质谱分析法知识汇总(全面)

质谱分析法知识汇总(全面)1.质谱法定义:是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。

依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。

2.质谱的作用:准确测定物质的分子量;质谱法是唯一可以确定分子式的方法;根据碎片特征进行化合物的结构分析。

3.质谱分析的基本原理:质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列收集成质谱。

根据质谱中的分子离子峰(M+)可以获得样品分子的相对分子质量信息;根据各离子峰(分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等)及其相对强度和氮数规则,可以确定化合物的分子式;根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析;根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。

4.质谱分析的过程:(1)进样,化合物通过汽化引入电离室;(2)离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子;(3)离子也可因撞击强烈而形成碎片离子;(4)荷正电离子被加速电压V加速,产生一定的速度v,与质量、电荷及加速电压有关;(5)加速正离子进入一个强度为B的磁场(质量分析器),发生偏转。

5.质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。

6.真空系统作用:是减少离子碰撞损失,若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。

7.进样系统目的:高效重复地将样品引入到离子源中并且不能造成真空度的降低;间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。

8.离子源或电离室:作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。

质谱分析课件用低分辨质谱推测可能分子式

质谱分析课件用低分辨质谱推测可能分子式

常见有机化合物的质谱裂解
1.肪醚
脂肪醚的分子离子峰较小; 断裂 脂肪醚的断裂可形成两种RO+=CH2,以失去较大烷基碎片占优势; i断裂 脂肪醚的i断裂形成碎片离子R+和R’+,当R和R’较大时i断裂占优势。
常见有机化合物的质谱裂解
1.环醚
脂环醚有较明显的分子离子峰; 容易失去OCH2,得到M30峰,该离子可进一步失去乙烯或甲基。 会发生断裂而开环,并进一步发生氢重排和i断裂得到[CH2=O+CH3]离子(m/z:45)。
常见有机化合物的质谱裂解
支链烷烃
分子离子峰的丰度随支化程度的增加而降低; 断裂发生在支链处,且失去的烷基越大反应趋势越强,生成稳定的仲碳或叔碳正离子,[CnH2n+1]+系列碎片离子的丰度分布也和直链烷烃不同,往往支链断裂形成的离子的丰度较大。
环烷烃
环烷烃的分子离子峰的丰度相对较大; 开环裂解时失去两个碳的碎片出现[M-C2H4]+和[CnH2n]+离子(m/z:42,56,70……),还伴随失去一个氢原子,出现[CnH2n-1]+碎片离子; 当环上有烷基取代时,较容易失去烷基取代基,生成丰度较大的碎片离子。
硫和硅元素的识别
硫的同位素 34S的相对丰度约为4.4%,硅的同位素30Si的相对丰度为3.35%,在没有氯、溴元素存在的情况下,当M+2处的相对丰度大于4.4%时可考虑有硫元素的存在,大于3.35%时可考虑有硅的存在。但由于硫和硅的同位素相对丰度相差不大且还存在测量误差,因此,要确定是硫还是硅需通过其他性质和信息来帮助判断。
mz
161.1
162.1
163.1
相对强度
100

高分辨质谱 计算分子式

高分辨质谱 计算分子式

高分辨质谱计算分子式
高分辨质谱是一种通过测量分子的离子质荷比(m/z)和相对丰度来分析化合物的方法。

根据高分辨质谱的分析结果,可以计算出化合物的分子式。

计算分子式的步骤如下:
1. 根据高分辨质谱的分析结果,确定化合物的主要峰(即相对丰度最高的峰)的m/z值。

2. 计算主要峰的分子离子质量(即主要峰的m/z减去氢原子的质量)。

一般情况下,主要峰的m/z减去1即可得到分子离子的质量。

3. 根据分子离子的质量,可以确定分子式的可能性。

根据化合物中的原子种类和数目,计算出分子离子可能对应的分子式。

4. 进一步通过其他分析方法(例如质谱碎片的分析)来确认分子式的准确性。

这些方法可以提供关于分子中各个原子之间的连接方式和相对位置的信息。

需要注意的是,高分辨质谱仅提供化合物分子式的初步推测,最终的确认需要结合其他分析方法和实验结果。

质谱数据解析

质谱数据解析

质谱数据解析
质谱数据解析是质谱分析中的一个重要步骤,它把得到的质谱数据转化为有用的信息,帮助分析师确定样品中存在的物质成分,鉴定分子结构和确定化合物的数量。

总的来说,质谱数据解析主要包括以下几个方面:
1. 分离峰的提取:在质谱图中,通常会出现多个峰,表示样品中可能存在多种物质。

分离峰的提取是把这些峰分开,以便分别进行分析。

2. 确定化合物的分子式:分离出的质谱图上的峰通常可以通过测定分子离子峰、裂解峰等特征峰来确定化合物的基本分子式。

3. 确定化合物的结构:分析样品的质谱数据,根据裂解片段、离子对和其他特征峰等信息确定化合物的分子结构和功能基团。

4. 确定化合物的浓度:质谱分析通常可以确定化合物的浓度,这对于定量分析非常重要。

上述过程中,质谱仪是不可或缺的工具。

质谱仪通过对物质分子进行电离、加速、分离和检测等过程,得到物质在质谱上的分布情况。

不同质谱仪的检测灵敏度、分辨率和分析速度都有差别,因此,合理选择、使用质谱仪是确保数据解析准确的关键。

长链羰基化合物的质谱裂解规律及其分子式的计算

长链羰基化合物的质谱裂解规律及其分子式的计算

长链羰基化合物的质谱裂解规律及其分子式的计算长链羰基化合物是一类含有羰基官能团的有机化合物,其分子中碳原子数量较多,通常大于10个。

由于长链羰基化合物的碳框架较长,质谱裂解规律相对较为复杂。

本文将从两个方面探讨长链羰基化合物的质谱裂解规律和分子式的计算。

一、长链羰基化合物的质谱裂解规律1.α-断裂:长链羰基化合物的质谱中常见的裂解方式是α-断裂,即在羰基中心的碳原子处发生断裂。

在α-断裂过程中,生成的离子中带正电荷的碳原子成为裂解质子,而带负电荷的碳原子成为负离子。

α-断裂路径主要是通过产生酮基离子([R-CO]+•)或羧酸酐离子([RCO-OH]-•)。

2.β-断裂:在长链羰基化合物中,β-断裂是指在羰基官能团的相邻碳原子上发生的断裂。

β-断裂产物通常是醇或羧酸。

3.边链骨架断裂:在长链羰基化合物中,还会出现边链骨架断裂。

这种断裂通常发生在侧链上,产生离子中的侧链辛基碳离子或酮离子。

4.串联反应:长链羰基化合物的质谱裂解中还可能发生串联反应。

串联反应是指离子的一个断裂会引起另一个断裂,生成多个碎片离子。

这种反应机制在长链羰基化合物的质谱中较为常见。

其次,通过观察质谱图中的裂解质子离子峰([M-H]+)和其他离子峰,可以推导出化合物分子中不同官能团的存在。

例如,通过观察[RCO-OH]-•离子可以推测出羧酸官能团的存在。

最后,计算长链羰基化合物的官能团数目,并结合已知的官能团的相对分子质量,可以计算出分子式。

例如,如果已知羟基的相对分子质量为17,羧酸官能团的相对分子质量为45,那么测得有3个羧酸官能团和2个羟基官能团的化合物的分子质量为3×45+2×17=149、通过推测出的分子中的碳原子数量和测得的分子质量,可以计算出其分子式。

综上所述,长链羰基化合物的质谱裂解规律相对复杂,常见的裂解方式有α-断裂、β-断裂、边链骨架断裂和串联反应。

通过质谱图中的峰值,可以推导出长链羰基化合物的分子式。

用质谱如何确定化合物分子式

用质谱如何确定化合物分子式
用质谱如何确定化合物分子 式
汇报人: 2023-12-13
目录
• 质谱基本原理 • 分子离子峰确定 • 碎片离子峰解析 • 同位素峰解析与元素组成推断 • 化合物分子式推断策略与技巧 • 实际案例分析与应用前景展望
01
质谱基本原理
质谱仪工作原理
离子源
通过电子轰击、化学电离或激 光解析等方法,使样品分子电
02
分子离子峰确定
分子离子峰识别
分子离子峰
在质谱图中,最大的峰通常被认 为是最稳定的分子离子峰,它代 表着分子的分子量。
碎片离子峰
除了分子离子峰外,质谱图中还 会出现其他较小的峰,这些峰被 称为碎片离子峰,它们代表着分 子被破碎后的片段。
分子离子峰计算方法
根据分子离子峰计算分子量
通过测量分子离子峰的质荷比(m/z),可以计算出分子的分子量。
推测分子结构
结合碎片离子峰和化合物 的其他信息,可以推测出 化合物的可能分子结构。
验证分子式
通过对比实验结果和理论 计算,可以验证化合物的 分子式是否正确。
04
同位素峰解析与元素组成推断
同位素峰识别与计算方法
同位素峰识别
通过比较实验测定的分子离子峰与理 论计算得到的同位素峰,确定同位素 峰的存在。
自由基碎片
自由基碎片是由于分子中某个键断裂而产生的, 可以通过其质量数和电荷数来确定其结构。
加合碎片
加合碎片是由两个或多个分子结合而形成的,可 以通过其质量数和电荷数来确定其结构。
重排碎片
重排碎片是由于分子重排而形成的,可以通过其 质量数和电荷数来确定其结构。
碎片离子峰与分子结构关系
确定官能团
通过分析碎片离子峰,可 以确定化合物中存在的官 能团类型。

刘辉——质谱分析中分子式的确定

刘辉——质谱分析中分子式的确定

3.判断分子式的合理性
(1)该式的式量等于分子量 (2)符合氮率 (3)不饱和度要合理
四.例子与练习
例1:化合物的质谱图如下,推导其分子式
m/z RI
85
49
86
3.2
87
0.11
164:166=1:1, 164-85 = 79 (Br) 分子中含有1个Br, 不含氮或含偶数氮
m/z: 85(49), 86(3.2), 87(0.11) x = 3.2/49×100/1.1≈6 设x = 6, 则 y =13, 可能的分子式 C6H13Br, Ω =0 合理
H2O HF
(3)判断其是否符合氮规则
2.分子离子峰不出现的情况
改用其它离解方式, 如: CI, FAB, ESI 等
(1)不同的电离方式, 其分子离子的RI不等 (2)不稳定的分子, 大分子, 其分子离子的RI较弱 (3)稳定的分子, 大共轭分子, 其分子离子的RI较强
二.分子式的推导
1.低分辨质谱数据(同位素相对丰度)
(3)含重同位素(如 Cl, Br)的样品 35Cl : 37Cl = 100 : 32.5 ≈3 : 1; 79Br : 81Br = 100 : 98≈1 : 1
当分子中含有两种或两种以上的不同的具有同位素 的元素时,可以用二项式展开的乘积来计算,(a + b)n
2.分子式的不饱和度 计算式为:
(1)对于C, H, N, O组成的化合物, 其通式:CxHyNzOw RI(M+1) / RI(M) ×100 = 1.1x + 0.37z ( 2H 0.016, 17O 0.04忽略 ) RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用质谱如何确定化合物分子式
孙兆林 学号:201302116
一、相对分子质量的确定
对于挥发性化合物相对分子质量的测定,是目前最好 的。它分析速度快,而且能够给出精确地相对分子质量。
样品的相对分子质量就是分子离子峰的质量数,因此 正确识别分子离子峰十分重要。除同位素峰外,分子离子 峰一定是质谱图中质量数最大的峰,即它位于质谱图的最 右端。但是,分子离子峰的强度与分子结构及类型等因素 有关。某些不稳定的化合物,被电子轰击后,全部成为碎 片离子在质谱图上看不到分子离子峰。另外,有些化合物 沸点较高,它们在气化时就被热分解,得到的只是热分解 产物的质谱图。
拜诺(Beynon)等人列出了不同数目C、H、O和N组 成的各种分子式的精密分子量表可进行核对,也可从 Merck Index第九版找到所有化合物的精密分子量核对。
(二)由同位素比求分子式
拜诺等人计算了相对分子质量500以下C、H、O、N 的化合物的M+2和M+1峰与分子离子峰M的相对强度,并 绘制表格,再求分子式时,只要质谱图上的分子离子峰足
后,就可以确定化合物的部分或整个化学式。利用质谱法 确定化合物的分子式有两种方法:用高分辨质谱仪确定分 子式;同位素比求分子式。
(一)用高分辨质谱仪确定
即使以12C的相对原子质量为12.000000作基准,许多 原子的原子量也不是整数。如:1H=1.007825; 14N=14.003074;16O=15.994915.......若要区别分子式 C11H20N6O5(300.143359)和C12H20N4O5(300.143359)(差 0.011233),只要一台高分辨本领(27000)的质谱仪进行 测定,就可将两种化合物区别开。
够强,其高度和M+1、M+2 同位素峰的高度都能准确测
拜诺表中M=102部分数据
定,根据拜诺表可确定分子
可能的经验式。ຫໍສະໝຸດ C5H10O2例如:若在M=102处有分子离子峰,M+1、
C5H12NO
M+1 5.64 6.02
M+2 0.53 0.35
M+2的相对强度为7.81%、0.35%,根据表, C5H14N2
6、在不能确定分子离子峰时,可逐渐降低轰击分子的电子 流能量,使分子离子的裂解减少,这时碎片离子的峰都会 减弱,而分子离子峰的相对强度会增加。碎片离子峰随电 子流能量不断降低而先消失,最后消失的即为分子离子峰。
7、对非挥发或热不稳定的化合物应采用软电离源离解方法, 以加大分子离子峰的强度。
二、分子式的确定 在确定了分子离子峰并知道了化合物的相对分子质量
分子离子峰的鉴别
1、分子离子峰的产生及相对强度大小与分子的稳定性有关 稳定性顺序:芳香化合物>共轭链烯>烯烃>脂环化合物>直链
烷烃>酮>胺>酯>醚>酸>支链烷烃>醇。 2、比分子离子峰小3-14个质量单位处不应有离子峰,否则就
不是分子离子峰。 3、N-律。如果出现分子中含N数与其分子量不符合N规则时,
3、质谱仪配有的高效计算机程序库搜索系统。
(二)若该化合物为未知物,按以下程序解析图谱 1、确定分子离子峰及同位素 2、相对分子质量的确定
3、分子式的确定
4、根据分子式计算化合物的不饱和度
5、注意分子离子峰相对于其他峰的强度,以此为化合物的 类型提供线索。
6、找出质谱图中所有重要的碎片离子,注意分子离子与高 质量碎片离子间的 m/z的差值,找到分子离子可能脱掉的 碎片或中性分子,根据碎片离子的特点和裂解规律,以此 推测断裂类型和分子结构。
7、按各种可能方式连接已知的结构碎片及剩余的结构片, 提供可能的结构式。
8、据上述研究,提供化合物的结构单元和可能的分子结构, 并利用标准谱图进行核对。还可根据未知化合物的来源、 物理化学性质以及由紫外、红外、核磁共振等获得的资料, 最后确定化合物的结构。
谢谢!
6.39
0.17
可能的分子式有C6H2N2 、C7H2O 、C7H4N 。
C6H2N2
根据氮律,排除C7H4N的可能,再根据其他信息 如红外,核磁的数据确定化合物的分子式。
C6H14O
7.28
0.23
6.75
0.39
C7H2O
7.64
0.45
C7H4N
8.01
0.28
C8H8
8.74
0.34
三、结构鉴定 (一)用质谱法鉴定已知有机化合物结构时,应首先与标准
该峰就不是分子离子峰。 4、当化合物含有氯或溴时,可以利用M与M+2峰的比例来确
认分子离子峰。通常分子中含有一个氯原子时,则M与 M+2峰的强度比为3:1;若分子中含有一个溴原子时,M与 M+2峰的强度比为1:1。
5、有时分子离子峰很弱或者不出现,而M+1或M-1的峰很强。 例如某些化合物(醚、酯、胺、酰胺等)形成的分子离子 峰不稳定,在离子源中能捕获一个H而形成较大的M+1峰; 而有些化合物如醛裂解出一个H而形成强度较大的M-1峰, 但M峰却不出现。
图谱进行对照,常用的图谱集有:
1、Registry of Mass Spectral Data,由John Wiley出版,共收 集两万多张图谱。
2、Eight Peak Index of Mass Spectra,由Mass Spectrometry Data Center出版,收集了近三万图谱。
相关文档
最新文档