定积分在高考中的常见题型
高中高考考点难点常见题型(带答案解析) 定积分与微积分的基本定理(解析版)

简单已测:424次正确率:91.8 %1.定积的值是( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:D 解析:,故选:.⼀般已测:3296次正确率:69.9 %2.计算( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的概念、定积分的⼏何意义答案:B解析:选⼀般已测:4642次正确率:87.5 %3.若,,则,,的⼤⼩关系为( )A.B.C.D.考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的基本性质、定积分的常⽤结论答案:B解析:由于,,,且,所以,故选.⼀般已测:3883次正确率:75.3 %4.若,则( )2xdx ∫0212342xdx =x =4∫202∣∣∣∣20D (1−cos x )dx =∫− 2π2ππ+2π−2π−2(1−cos x )dx=(x −sin x )∫− 2π2π =π−2.∣∣∣∣ 2π− 2πB .S = x dx 1∫122S = dx 2∫12x 1S =e dx 3∫12x S 1S 2S 3S <S <S 123S <S <S 213S <S <S 231S <S <S321S = x dx = x ∣ = − = 1∫12231312383137S = dx =lnx ∣ =ln 22∫12x 112S = e dx =e ∣ =e −e 3∫12x x 122ln 2< <e −e 372S <S <S 213B f (x )=x +2 f (x )dx 2∫01 f (x )dx=∫01A.B.C.D.考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:被积函数的原函数、微积分基本定理答案:B解析:令(常数),则,所以,解得,故选:.中等已测:4750次正确率:71.2 %5.在如图所⽰平⾯直⻆坐标系中,正⽅形的边⻓为,曲线是函数图象位于正⽅形内的部分,直线恰好是函数在处的切线,现从正⽅形内任取⼀点,那么点取⾃阴影部分的概率等于( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:曲边梯形的⾯积、定积分的⼏何意义答案:D解析:正⽅形的边⻓为,由函数,得,则,得.⼜当时,,可得,曲线的解析式为,阴影部分⾯积.点取⾃阴影部分的概率等于.故选:.−1−31 311f (x )dx =m ∫01f (x )=x +2m 2m = f (x )dx =( x +2mx ) = +2m ∫01313∣∣0131m =− 31B OABC 1m y =a (x −1)+b 2AC y=a (x −1)+b 2x =0P P1213141 61∵OABC 1,∴S =1正方形OABC y =a (x −1)+b 2y =2a (x −1)′y ∣ =−2a =−1′x =0a =21x=0y =a +b =1b = 21∴m y = (x −1)+ 21221∴S = [ (x −1)+ −(−x +1)]dx = x dx = x ∣=∫0121221∫012126130161∴P 61D⼀般已测:4665次正确率:92.6 %6.已知,则⼆项式的展开式中的系数为( )A.B.C.D.考点:利⽤定积分的性质解题、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:C 解析:,的展开式的通项公式为,令得,,展开式中的系数为.⼀般已测:2948次正确率:92.5 %7.实数使得复数是纯虚数,则的⼤⼩关系是( )A.B.C.D.考点:⽤定义求定积分、⽤所求定积分的⼏何意义求定积分知识点:定积分的概念、复数的概念答案:C解析:,它为纯虚数,所以,表⽰单位圆的四分之⼀的⾯积为,所以,应选.中等已测:3726次正确率:56.3 %8.若,则=( )A.B.a = dx ∫ e 1e x1(1− )x a 5x −316080−80−160∵a= dx =lne −ln =2∫ e 1e x 1e 1∴(1−)=(1−)xa 5x25T=C (−2)x r +15r r −r −r=−3r =3∴x −3C (−2)=−80533a1−i a +i b = xdx ,c= dx ∫01∫011−x 2a ,b ,c a <b <c a <c <b b <c <a c <b <a= = 1−i a +i1−i 1+i ()()a +i 1+i ()()2a −1+a +1i ()a =1,b = xdx = ∣ = ,c = dx ∫012x 20121∫011−x 2 4πb <c <a C f x + f x dx =x ()∫01() f x dx ∫01()41 21C.D.考点:⽤定义求定积分、利⽤定积分的性质解题知识点:定积分的基本性质、基本积分公式答案:A 解析:由,则,则,,则,故选A .⼀般已测:2708次正确率:72.5 %9.⼀个⼈骑⻋以⽶/秒的速度匀速追赶停在交通信号灯前的汽⻋,当他离汽⻋⽶时,交通信号灯由红变绿,汽⻋开始做变速直线⾏驶(汽⻋与⼈的前进⽅向相同),若汽⻋在时刻的速度⽶/秒,那么此⼈( ).A.可在秒内追上汽⻋B.不能追上汽⻋,但其间最近距离为⽶C.不能追上汽⻋,但其间最近距离为⽶D.不能追上汽⻋,但其间最近距离为⽶考点:⼆次函数的单调性、利⽤定积分的⼏何意义解题知识点:微积分基本定理、基本积分公式答案:D解析:设该⼈骑⻋⾏驶距离和汽⻋⾏驶距离的差为,则,所以,所以该⼈不能追上汽⻋,但其间最近距离为⽶⼀般已测:391次正确率:82.7 %10.甲、⼄两⼈从同⼀起点出发按同⼀⽅向⾏⾛,已知甲、⼄⾏⾛的速度与⾏⾛的时间分别为,(如图),当甲⼄⾏⾛的速度相同(不为零)时刻( )A.甲⼄两⼈再次相遇B.甲⼄两⼈加速度相同12fx +f x dx =x ()∫01()f x =x − f x dx ()∫01() fx dx = x − f x dx dx∫01()∫01(∫01())= xdx − f x dx dx = − f x dx ∫01∫01[∫01()]21∫01()∴ f x dx = − f x dx ∫01()21∫01() f x dx =∫01()41625t v (t )=t 716147S (t )S (t )= 6−t dt =6t −t ∫0t()212S (t ) =S (6)=36−18=18max 7v =甲t v =t 乙2C.甲在⼄前⽅D.⼄在甲前⽅考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:定积分的物理意义、变速运动问题答案:C解析:由,得,解得(舍),或.由..所以当甲⼄⾏⾛的速度相同(不为零)时刻甲在⼄前⽅.故选:.中等已测:1818次正确率:73.8 %11.已知,若函数满⾜,则称为区间上的⼀组``等积分''函数,给出四组函数:①②;③;④函数分别是定义在上的奇函数且积分值存在.其中为区间上的“等积分”函数的组数是( )A.B.C.D.考点:利⽤定积分的⼏何意义解题、微积分基本定理求定积分知识点:定积分的基本性质、微积分基本定理答案:C解析:本题是新定义问题,主要考查对定义的理解和定积分的计算.对于①,⽽,所以①是⼀组“等积分”函数;对于②,,⽽,所以②不是⼀组``等积分''函数;对于③,函数的图像是以原点为圆⼼,为半径的半圆,故,⽽,所以③是⼀组``等积分''函数;对于④,由于函数分别是定义在上的奇函数且积分值存在,利⽤奇函数的图像关于原点对称和定积分的⼏何意义,可以求得函数的定积分,所以④是⼀组``等积分''函数.故选.简单已测:3293次正确率:86.3 %12..v =v 甲乙 =t t 2t =0t =1 dt = t ∣ = ∫01t 32 230132 t dt = t ∣= ∫0123130131C a <b f (x ),g (x ) f (x )dx = g (x )dx ∫a b∫a bf (x ),g (x )[a ,b ]f (x )=2∣x ∣,g (x )=x +1;f (x )=sinx ,g (x )=cosx f (x )=,g (x )= πx 1−x 2432f (x ),g (x )[−1,1][−1,1]1234f x dx = 2x dx = 2−x dx + 2xdx =2,∫−11()∫−11∣∣∫−10()∫01g x dx = x +x ∣ =2∫−11()(212)−11 f (x )dx = sinxdx =0∫−11∫−11 g x dx = cos xdx =2sin 1≠0∫−11()∫−11f (x )1 f x dx = dx = ∫−11()∫−111−x 22πg x dx = πx ∣ = ∫−11()413−112πf (x ),g (x )[−1,1] f (x )dx = g x dx =0∫−11∫−11()C (sinx +cosx )dx =∫− 2π2π考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、被积函数的原函数答案:解析:;故填.⼀般已测:4543次正确率:94.5 %13..考点:利⽤定积分的⼏何意义解题知识点:定积分的概念、定积分的⼏何意义答案:解析:函数即:,表⽰以为圆⼼,为半径的圆在轴上⽅横坐标从到的部分,即四分之⼀圆,结合定积分的⼏何意义可得.故答案为.⼀般已测:2478次正确率:65.4 %14.⼀辆汽⻋在⾏驶中由于遇到紧急情况⽽刹⻋,以速度⾏驶⾄停⽌,在此期间汽⻋继续⾏驶的距离是.考点:定积分在求⾯积中的应⽤、微积分基本定理求定积分知识点:定积分的物理意义、基本积分公式答案:解析:本题考查定积分的概念.令,化为,⼜,解得.汽⻋继续⾏驶的距离.⼀般已测:4698次正确率:91.6 %15.若正实数满⾜,则的最⼩值为.考点:利⽤基本不等式求最值、利⽤公式求定积分知识点:定积分的基本性质、基本积分公式答案:解析:由题意得;即,所以(当且仅当时等号成⽴).所以,即的最⼩值为.简单已测:1192次正确率:87.8 %16.有⼀⾮均匀分布的细棒,已知其线密度为,棒⻓为,则细棒的质量.考点:⽤定义求定积分、微积分基本定理求定积分2(sinx +cosx )dx =−cosx +sinx ∣ ∫− 2π 2π()−2π2π=1+1=22 ( )dx ∫121−(x −1)2=4πy=1−(x −1)2(x −1)+y =1(x ≥1,y ≥0)22(1,0)1x 12 ( )dx = ×π×1=∫121−(x −1)24124π 4πv (t )=7−3t +1+t 254+25ln 5v (t )=7−3t + =01+t253t −4t −32=02t >0t =4S = (7−3t + )dt =(7t − t +25ln (1+t ))∣ =4+25ln 5∫041+t 2523204m ,n + = (x +)dx m 2n 1∫−22π14−x 2log (m +2n )22(x + )dx = dx = × π×2=2∫−22π14−x 2π1∫−224−x 2π1212 + =2m 2n 1m +2n =(m +2n )( + )= + +2≥2 +2=4m 12n 1m 2n 2n m × m 2n 2n m m =2n log m +2n ≥log 4=22()2log (m +2n )22ρx =x ()32M =(1)(2)知识点:定积分的物理意义、定积分的常⽤结论答案:解析:依题意有:.⼀般已测:3051次正确率:65.2 %17.在区间上给定曲线.试在此区间内确定点的值,使图中的阴影部分的⾯积与之和最⼩,并求最⼩值.考点:导数在最⼤值、最⼩值问题中的应⽤、定积分在求⾯积中的应⽤知识点:利⽤导数求函数的最值、微积分基本定理答案:时,最⼩,且最⼩值为解析:⾯积等于边⻓分别为与的矩形⾯积去掉曲线与轴、直线所围成的⾯积,即.的⾯积等于曲线与轴,,围成的⾯积去掉矩形边⻓分别为,⾯积,即.所以阴影部分的⾯积.令,得或.时,;时,;时,.所以当时,最⼩,且最⼩值为.⼀般已测:401次正确率:92.8 %18.已知.求的单调区间;求函数在上的最值.考点:利⽤导数研究函数的单调性、利⽤导数求闭区间上函数的最值知识点:函数单调性和导数的关系、利⽤导数求函数的最值(1)答案:单调调增区间是,单调递减区间是.解析:依题意得,,定义域是.,令,得或; 令得,且函数定义域是,函数的单调增区间是,单调递减区间是.(2)答案:最⼤值是,最⼩值是.解析:由(1)知函数在区间上为减函数,区间上为增函数, 且,在上的最⼤值是,最⼩值是.4x dx= ∣ =4∫0234x 402[0,1]y =x 2t S 1S 2t=21S (t )41S 1t t 2y =x 2x x =t S =t ⋅t − x dx = t 12∫0t 2323S 2y =x 2x x =t x =1t 21−t S = x dx −t (1−t )= t −t + 2∫t 122323231S (t )=S +S = t −t + (0≤t ≤1)12343231S (t )=4t −2t =4t (t − )=0′221t =0t = 21t =0S (t )= 31t = 21S (t )= 41t =1S (t )= 32t = 21S (t )41F (x )= (t +2t −8)dt ,(x >0)∫0x2F (x )F (x )[1,3](2,+∞)(0,2)F (x )= (t +2t −8)dt =( t +t−8t )∣ = x +x −8x ∫0x 231320x 3132(0,+∞)(1)F (x )=x +2x −8′2F (x )>0′x >2x <−4F (x )<0,′−4<x <2(0,+∞)∴F (x )(2,+∞)(0,2)F (3)=−6F (2)=− 328F (x )(0,2)(2,3)F (1)=− ,F (2)=− ,F (3)=−6320328∴F (x )[1,3]F (3)=−6F (2)=− 328(1)(2)中等已测:3275次正确率:52.7 %19.已知⼆次函数,直线,直线(其中,为常数),若直线,与函数的图象以及,、轴与函数的图象所围成的封闭图形(阴影部分)如图所⽰.求,,的值;求阴影⾯积关于的函数的解析式.考点:求函数解析式的常⽤⽅法、利⽤定积分的⼏何意义解题知识点:⼆次函数的解析式、⼆次函数的图象(1)答案:, , 解析:由图形可知⼆次函数的图象过点,,并且的最⼤值为,则解得,函数的解析式为.(2)答案:解析:由得,,,,直线与的图象的交点坐标为由定积分的⼏何意义知:.f (x )=ax +bx +c 2l :x =21l :y =−t +8t 220≤t ≤2t l 1l 2f (x )l 1l 2y f (x )a b c S t S (t )a=−1b =8c =0(0,0)(8,0)f (x )16 ⎩⎨⎧c =0,a ⋅8+b ⋅8+c =02=164a 4ac −b 2 ⎩⎨⎧a =−1b =8c =0∴f (x )f (x )=−x +8x 2S (t )=− t +10t −16t + 3432340{ y =−t +8t 2y =−x +8x2x −8x −t (t −8)=02∴x =t 1x =8−t 2∵0≤t ≤2∴l 2f (x )(t ,−t +8t )2S (t )= −t +8t −−x +8x dx + [(−x +8x )−(−t +8t )]dx ∫0t [(2)(2)]∫t 222=[(−t +8t )x −(− +4x )]∣ +[(− +4x )−(−t +8t )x ]∣ 23x 320t 3x 322t 2=− t +10t −16t + 3432340。
word完整版定积分在高考中的常见题型

定积分在高考中的常见题型解法贵州省印江一中(555200) 王代鸿定积分作为导数的后续课程,与导数运算互为逆运算,也是微积分基本概念之一,同时为大学数学分析打下基础。
从高考题中来看,定积分是高考命题的一种新方向,在高考复习中要求学生了解定积分的定义,几何意义,掌握解决问题的方法。
一、利用微积分基本定理求定积分1、微积分基本定理:一般地,如果f(x)是区间a,b上的连续函数,并且F (x) f (x),那么bf(x)dx F(a) F(b).这个结论叫做微积分基本a定理(又叫牛顿-莱布尼兹公式)。
2、例题讲义e1例1、计算1(- 2x)dx1x解:因为(In x x2) 12xxe1所以j (一2x)dx =(|nx x2) I:(In e e2) (In 1 12) e21x【解题关键】:计算b f(X)dx的关键是找到满足F(x) f(x)的函数aF(x)。
跟踪训练:1计算02 (e x cosx)dx二、利用定积分的几何意义求定积分。
1、定积分的几何意义:设函数y=f(x)在a,b上y=f(x)非负、连续,由直线x=a,x=b,y=0及曲线y=f(x) 所围成的曲边梯形面积bS= a f (X)dx2、例题讲义:【解题关键】:将曲边梯形进行分割成几个容易求面积的图形,再求面积和4 |例3、求0 . 4(X 2)2dx的值解:令y 4 (x 2)2(y 0)则有y2 4 (x 2)2(y 0)及(x 2)2 y24(y 0)右图所以1-(x 2)2dx - S a A 2 o / 2【解题关键】:将被积函数转化为熟悉的曲线方程,利用曲线图形的特点求其定积分_83(lx+2)2^y2=2,,…y 丄及x 轴所围图形的面积为( ) 2 x A. 15 B. 17 C.如 2 4 4 2 三、利用变换被积函数求定积分1从积分变量x 分割的几何图形较多,不容易求其定积分时,就 变换被积函数求其定积分。
(整理版)高考中的定积分

高考中的定积分定积分是微积分根本概念之一,应掌握其概念、几何意义、微积分根本定理以及简单应用.下面例析在高考中的考查方式.一、计算型是指给出定积分表达式,求其值,通常解法有:定义法,几何意义法,根本定理法及性质法等.例1计算以下定积分: ⑴2211(2)x dx x -⎰;⑵30(sin sin 2)x x dx π-⎰. 分析:直接运用定义,找到一个原函数.解:⑴函数y =212x x -的一个原函数是y =32ln 3x x -. 所以2211(2)x dx x -⎰=3212(ln )|3x x -=162ln 233--=14ln 23-. ⑵函数y =sin x -sin2x 的一个原函数为y =-cos x +12cos2x . 所以30(sin sin 2)x x dx π-⎰=(-cos x +12cos2x )30|π=(-12-14)-(-1+12)=-14. 评注:利用微积分根本定理求定积分,其关键是求出被积函数的原函数.对于被积函数是绝对值或分段函数时,应充分利用性质()()()bc ba a c f x dx f x dx f x dx =+⎰⎰⎰,根据定义域,将积分区间分成假设干局部,分别求出积分值,再相加.练习:计算以下定积分:⑴322dx ⎰;⑵21|32|x dx -⎰. (答案:⑴39ln22+;⑵12). 二、逆向型 主要定积分的值,求定积分中参数.例2设函数2()(0)f x ax c a =+≠,假设100()()f x dx f x =⎰,001x ≤≤,那么0x 的值为 . 分析:此题是逆向思维题,可用求积分的一般方法来解决.解:112310001()()()3f x dx ax c dx ax cx =+=+⎰⎰ 203a c ax c =+=+. 033x =∴. 评注:常用方程思想加以解决.练习:a >0,且2aa x dx -•⎰=18,求a 的值.(答案:3)三、应用型主要指求围成的平面图形的面积及旋转体的体积.例3由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积为〔 〕A .154B .174C .1ln 22D .2ln 2分析:可先画出图象,找出范围,用积分表示,再求积分即.解:如图,面积22112211ln |ln 2ln 2ln 22S x x ===-=⎰,应选(D).评注:用积分求围成面积,常常分四步:①画草图;②解方程组求出交点;③确定积分的上下限;④计算.练习:求由曲线y 2=x , y =x 2所转成的面积.(答案:13).。
高考数学专题14定积分求值问题黄金解题模板

专题14 定积分求值问题【高考地位】定积分的求值在高考中多以选择题、填空题类型考查,属于中低档题,其试题难度考查相对较小,重点考查定积分的几何意义、基本性质和微积分基本定理,注重定积分与其他知识的结合如三角函数、立体几何、解析几何等. 【方法点评】类型一 利用微积分基本定理求定积分使用情景:一般函数类型解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 求方程'()0f x =的根;第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值.例1 0sin xdx π⎰的值为( )A .2πB .πC .1D .2 【答案】D【变式演练1】下列计算错误的是 ( ) A .ππsin 0xdx -=⎰ B .23xdx =⎰C .ππ22π02cos 2cos xdx xdx -=⎰⎰D .π2πsin 0xdx -=⎰【答案】D 【解析】试题分析:A 选项,()sin cos 0xdx x ππππ--=-=⎰,所以A 正确;B 选项,1312002233xdx x ⎛⎫== ⎪⎝⎭⎰,所以B正确;C 选项,根据偶函数图象及定积分运算性质可知,C 正确;D 选项错误。
考点:定积分的计算。
【变式演练2】若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<【答案】B 【解析】 试题分析:3222211213117|,ln |ln 2,|33x S x S x S e e e ======-∴213S S S << 考点:定积分运算 【变式演练3】2231111dx x xx ⎛⎫++= ⎪⎝⎭⎰( )A .7ln 28+B .7ln 22-C .5ln 28-D .17ln 28- 【答案】A考点:定积分的应用. 【变式演练4】若11(2)3ln 2(1)ax dx a x+=+>⎰,则a 的值是___________.【答案】2a = 【解析】 试题分析:由22111(2)(ln )|ln 13ln 2aa x dx x x a a x +=+=+-=+⎰,得213ln ln 2a a ⎧-=⎨=⎩,所以2a =. 考点:定积分的运算. 【变式演练5】⎰-=+221)(sin dx x _____________.【答案】4 【解析】试题分析:由题意得2222(sin 1)(cos )|(cos 22)[cos(2)2]4x dx x x --+=+=+---=⎰.考点:定积分的计算.【变式演练6】设20lg 0()30ax x f x x t dt x>⎧⎪=⎨+⎪⎩⎰若((1))1f f =,则a= .【答案】1考点:1.函数的表示;2.定积分运算.【变式演练7】如图,阴影部分的面积是( )A .23.53 C .323 D .353【答案】C 【解析】试题分析:面积为()312213332323|33x x x dx x x --⎛⎫--=--+= ⎪⎝⎭⎰. 考点:定积分.类型二 利用定积分的几何意义求定积分使用情景:被积函数的原函数不易求出 解题模板:第一步 画出被积函数的图像;第二步 作出直线计算函数,,0x a x b y ===所围成的图形; 第三步 求曲边梯形的面积的代数和的方法求定积分.例2 计算定积分dx x ⎰-124.【答案】233+π. 考点:定积分的计算.【变式演练8】设[]221,[1,1)()1,1,2x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则21()f x dx -⎰的值为( )A .4+23πB .32π+C .443π+D .34π+【答案】A 【解析】 试题分析:2122223211111()1(1)1()|23f x dx x dx x dx x x π--=-+-=⨯+-=⎰⎰⎰4+23π,故选A .考点:定积分. 【变式演练9】定积分209x dx -⎰的值为( )A .9πB .3πC .94πD .92π 【答案】C 【解析】试题分析:令t x sin 3=,则]2,0[,cos 3,cos 392π∈==-t t dx t x ,则222099cos x dx tdt π-=⎰⎰201cos 29199sin 22222240t dt t ππππ⎛⎫+ ⎪==+= ⎪ ⎪⎝⎭⎰,故应选C .考点:定积分及运算.【变式演练10】=++-⎰dx x x x )1(312______.【答案】43+π【解析】试题分析:因为11330)()x x dx x x dx +=++⎰⎰⎰,130()x x dx +⎰2410113|244x x ⎛⎫=+= ⎪⎝⎭,⎰dx 等于以原点为圆心,以1为半径的圆的面积的四分之一,即为4π,所以=++-⎰dx x x x )1(31243+π,故答案为43+π.考点:1、定积分的应用;2、定积分的几何意义.【变式演练11】已知0>a ,6)x-展开式的常数项为15,则2(a ax x dx -+=⎰___________【答案】2233π++【解析】试题分析:由6)x-的展开式的通项公式为()3662161r r r rr T C a x --+=-, 令3602r -=,求得r=2,故常数项为44615C a =,可得a=1,因此原式为((11221022233x x dx x dx π-++==+⎰⎰考点:二项式定理;微积分基本定理【变式演练12】已知数列{}n a 为等差数列,且201320150a a +=⎰,则()20142012201420162a a a a ++的值为( )A .πB .2πC .2πD .24π 【答案】考点:等差数列性质及定积分.类型三 导数与定积分的综合应用例 3 如图所示,抛物线21y x =-与x 轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD 作为工业用地,其中A 、B 在抛物线上,C 、D 在x 轴上.已知工业用地每单位面积价值为3a 元(0)a >,其它的三个边角地块每单位面积价值a 元. (1)求等待开垦土地的面积;(2)如何确定点C 的位置,才能使得整块土地总价值最大.【答案】(1)43;(2)点C 的坐标为)0,33(.考点:1.定积分;2.函数的最值.【变式演练13】给定可导函数()y f x =,如果存在0[,]x a b ∈,使得0()()baf x dx f x b a=-⎰成立,则称0x 为函数()f x 在区间[,]a b 上的“平均值点”.(1)函数3()3f x x x =-在区间[2,2]-上的平均值点为; (2)如果函数在区间[1,1]-上有两个“平均值点”,则实数m 的取值范围是.【答案】(1)1;(2),44ππ⎡⎤-⎢⎥⎣⎦结合图像不难得到,44m ππ⎡⎤∈-⎢⎥⎣⎦. 考点:新定义、定积分的运用、直线与圆的位置关系 【变式演练14】已知函数()ln f x x =(0)x ≠,函数1()()(0)()g x af x x f x '=+≠' (1)当0x ≠时,求函数()y g x =的表达式;(2)若0a >,函数()y g x =在(0,)+∞上的最小值是2 ,求a 的值;(3)在(2)的条件下,求直线2736y x =+与函数()y g x =的图象所围成图形的面积. 【答案】(1)()a y g x x x ==+;(2)1a =;(3)2ln 23ln 247-+.(2)∵由(1)知当0x >时,()a g x x x=+, ∴当0,0a x >>时, ()2≥g x a x a =.∴函数()y g x =在(0,)+∞上的最小值是a , ∴依题意得22a =∴1a =.(3)由27361y x y x x ⎧=+⎪⎪⎨⎪=+⎪⎩解得2121322,51326x x y y ⎧==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩∴直线2736y x =+与函数()y g x =的图象所围成图形的面积 232271()()36S x x dx x ⎡⎤=+-+⎢⎥⎣⎦⎰=2ln 23ln 247-+ 考点:导数及函数单调性、定积分的应用.【变式演练15】如下图,过曲线C :xy e =上一点0(0,1)P 作曲线C 的切线0l 交x 轴于点11(,0)Q x ,又过1Q 作 x 轴的垂线交曲线C 于点111(,)P x y ,然后再过111(,)P x y 作曲线C 的切线1l 交x 轴于点22(,0)Q x ,又过2Q 作x 轴的垂线交曲线C 于点222(,)P x y ,,以此类推,过点n P 的切线n l 与x 轴相交于点11(,0)n n Q x ++,再过点1n Q +作x 轴的垂线交曲线C 于点111(,)n n n P x y +++(n ∈N *).(1) 求1x 、2x 及数列{}n x 的通项公式;(2) 设曲线C 与切线n l 及直线11n n P Q ++所围成的图形面积为n S ,求n S 的表达式; (3) 在满足(2)的条件下, 若数列{}n S 的前n 项和为n T,求证:11n n n nT x T x ++<(n ∈N *).【答案】(1) 11x =-,22x =-,n x n =-;(2)212ne e e -⋅;(3)见解析.证法1:(数学归纳法)①当1n =时,显然222(1)021(1)e e e e e e ->⇔>-⇔>-+成立; ②假设n k =时,1(1)k ee k e +>-+成立,则当1n k =+时,21[(1)]k k e e e e e k e ++=>-+,而2[(1)][(1)(1)](1)(1)0e e k e e k e e k -+--++=-+>,(1)(1)(1)e e k e e k e ∴-+>-++,2(1)(1)k e e k e +∴>-++,1n k =+时,也成立,由①②知不等式11n n n nT x T x ++<对一切*n N ∈都成立. 证法2:110111111[1(1)](1)(1)n n n n n n n ee C C e C e +++++++=+-=+-++- 0111(1)1(1)(1)(1)n n C C e n e e n e ++>+-=++-=-+.所以不等式11n n n nT x T x ++<对一切*n N ∈都成立. 证法3:令()()11x f x e e x e +=---,则()()'11x f x e e +=--, 当0x >时, ()()'11x f x e e +=--()110e e >--=>,∴函数()f x 在()0,+∞上单调递增. ∴当0x >时, ()()00f x f >=. ∵n ∈N *, ∴()0f n >, 即()110n e e n e +--->.∴()11n e e n e +>-+.∴不等式11n n n nT x T x ++<对一切n ∈N *都成立. 考点:1、利用导数求切线方程;2、数列的运算;3、定积分计算图形面积. 【高考再现】1.【2015高考湖南,理11】20(1)x dx ⎰-= .【答案】0.2.【2015高考天津,理11】曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 【答案】16【解析】在同一坐标系内作出两个函数的图象,解议程组2y x y x⎧=⎨=⎩得两曲线的交点坐标为(0,0),(1,1),由图可知峡谷曲线所围成的封闭图形的面积()1122300111236S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰.21.510.50.511.522.543211234【考点定位】定积分几何意义与定积分运算.【名师点睛】本题主要考查定积分几何意义与运算能力.定积分的几何意义体现数形结合的典型示范,既考查微积分的基本思想又考查了学生的作图、识图能力以及运算能力.3.【2015高考陕西,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2【考点定位】1、定积分;2、抛物线的方程;3、定积分的几何意义.【名师点晴】本题主要考查的是定积分、抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积是()baf x dx ⎰.【反馈练习】1.【安徽省阜阳市临泉县第一中学2018届高三上学期第二次模拟数学(理)试题】若,,,则的大小关系( )A. B. C. D.【答案】D2.【2018届江西省高三年级阶段性检测考试(二)理科数学】( )A. 7B.C.D. 4【答案】C【解析】.故选:C3.【西藏自治区林芝市2016-2017学年高二下学期期末考试数学(理)试题】如图所示,正弦曲线sin y x =,余弦曲线cos y x =与两直线0x =, x π=所围成的阴影部分的面积为( )2 C. 2 D. 22【答案】D 【解析】()()44cos sin sin cos xx x x d x x d πππ-+-⎰⎰ ()()sin cos cos sin 404x x x x πππ=++-- 21+1222=-+= ,选D.4.【贵州省铜仁市第四中学2017年高三适应性测试(理)数学试题】已知等比数列,且,则的值为( )A. B. C.D.【答案】D【解析】由定积分的几何意义,表示圆 在第一象限的部分与坐标轴所围成的扇形的面积,即=4 ,所以.又因为为等比数列,所以.故选D.5.【陕西省西安市长安区2018届高三上学期质量检测大联考(一)数学理试题】曲线12y x=+,直线1,x x e ==和x 轴所围成的区域的面积是____________【答案】2e ﹣1.6.【2018届江西省高三年级阶段性检测考试(二)理科数学】由曲线所围成图形的面积是,则__________.【答案】1【解析】由,得图象的交点坐标为,所以曲线所围成图形的面积是,所以故答案为:1点睛:用定积分处理面积问题的方法:牛顿-莱布尼茨定理,几何意义,奇偶性.7.【河北省武邑中学2018届高三上学期第二次调研数学(理)试题】已知函数()[](]2213,3,03{ 9,0,3x x f x x x -+∈-=-∈,则()33f x dx -=⎰__________.【答案】964π+【解析】由题意结合定积分的法则可得:()()()33333023113|39496.4f x dx f x dx f x dxx x ππ---=+⎛⎫=-++⨯⨯ ⎪⎝⎭=+⎰⎰⎰. 8.【2017—2018学年河北省石家庄二中八月高三模拟数学(理科)】()321112x dx x ⎛⎫+--= ⎪⎝⎭⎰__________. 【答案】ln32π+9.【江西省赣州市2017届高三第二次模拟考试理科数学试题】如图所示,由直线,1(0)x a x a a ==+>,2y x =及x 轴围成的曲边梯形的面积介于小矩形与大矩形的面积之间,即()12221a aa x dx a +<<+⎰.类比之,若对n N +∀∈,不等式14122k kk n n n n +++<++ 121k k kn n n <++++-恒成立,则实数k 等于__________.【答案】2。
定积分高考题

定积分复习题1. 下列等于1的积分是( ) A .dx x ⎰10 B .dx x ⎰+10)1( C .dx ⎰101 D .dx ⎰1021 2. dx e e x x ⎰-+10)(= ( )A .ee 1+ B .2e C .e 2 D .e e 1- 3. 曲线]23,0[,cos π∈=x x y 与坐标轴围成的面积 ( )A .4B .2C .25D .3 4、由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、5、由曲线y=x 2,y=x 3围成的封闭图形面积为( )A 、B 、C 、D 、6、由曲线xy=1,直线y=x ,y=3所围成的平面图形的面积为( )A 、B 、2﹣ln3C 、4+ln3D 、4﹣ln37、从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为( )A 、B 、C 、D 、 8、⎰+10)2(dx x e x 等于( ) A 、1B 、e ﹣1C 、eD 、e 2+1 9、dx x ⎰421等于( )A 、﹣2ln2B 、2ln2C 、﹣ln2D 、ln2 A 、π B 、2C 、π﹣2D 、π+2 10、已知则⎰-a a xdx cos =)0(21>a ,则⎰a xdx 0cos =( ) A 、2 B 、1 C 、 D 、11、曲线y=x 2+2与直线y=3x 所围成的平面图形的面积为( )A 、B 、C 、D 、112、下列计算错误的是( )A 、0sin =⎰-ππxdx B 、3210=⎰dx xC 、⎰⎰=-2022cos 2cos πππxdx xdx D 、0sin 2=⎰-ππxdx 13、计算⎰-2024dx x 的结果是( )A 、4πB 、2πC 、πD 、14、若0)32(02=-⎰dx x x k,则k 等于( )A 、0B 、1C 、0或1D 、以上均不对15、曲线y=x 2和曲线y=围成一个叶形图(阴影部分),其面积是( )A 、1B 、C 、D 、16、在113)23(x x -的展开式中任取一项,设所取项为有理项的概率为p ,则dx x p ⎰10=( ) A 1 B 76 C 67 D 131117. 计算dx x ⎰-+22)cos 1(ππ的值为( )A .πB .2C .2π-D .2π+18、已知1220()(2)f a ax a x dx =⎰-,则()f a 的最大值是A .23 B .29 C .43 D .4919. 由直线1x =,x=2,曲线sin y x =及x 轴所围图形的面积为A .πB .sin 2sin1-C .sin1(2cos11)-D .21cos12cos 1+-20. 22-⎰的值是A .2πB .πC .2πD .4π21. 给出下列四个结论:①⎰=π200sin xdx ;②命题“2,0"x R x x ∃∈->的否定是“2,0x R x x ∀∈-≤”;③“若22,am bm < 则a b <”的逆命题为真;④集合}1)(|{},014|{2<-=<--=a x x B x x x A ,则“)3,2(∈a ”是“A B ⊆”充要条件. 则其中正确结论的序号为A.①③ B.①② C.②③④ D.①②④22. 设函数()m f x x ax =+的导函数'()21f x x =+,则21()f x dx -⎰的值等于( )A.56B.12C.23D.1623、如图中阴影部分的面积是( )A 、B 、C 、D 、24、由曲线x y =,直线2-=x y 及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、625、设)(x f y =为区间[0,1]上的连续函数,且恒有1)(0≤≤x f ,可以用随机模拟方法近似计算积分⎰10)(dx x f ,先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…x N 和y 1,y 2,…y N ,由此得到N 个点(x i ,y i )(i=1,2,…,N ),再数出其中满足)(i i x f y ≤(i=1,2,…,N )的点数N 1,那么由随机模拟方案可得积分⎰10)(dx x f 的近似值为 .26、如图所示,计算图中由曲线22x y =与直线2=x 及x 轴所围成的阴影部分的面积S= .27、由曲线和直线y=x ﹣4,x=1,x=2围成的曲边梯形的面积是 .28、从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分部分的概率为 .29、设函数f (x )=ax 2+c (a≠0),若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为 .30、由三条曲线y=x 2,4y=x 2,y=1 所围图形的面积 .31、由曲线y 2=2x 和直线y=x ﹣4所围成的图形的面积为 .。
高考定积分知识点总结

高考定积分知识点总结定积分是高等数学中的重要内容之一,也是高考数学考试中常见的题型。
本文将对高考中常见的定积分知识点进行总结和归纳,以帮助同学们更好地准备考试。
一、定积分的基本概念定积分是对一个区间上的函数进行求和的过程。
区间可以是有限区间,也可以是无限区间。
定积分的计算可以看作是曲线下的面积,也可以理解为函数的反导数。
二、定积分的性质定积分具有一些重要的性质,包括线性性质、区间可加性、保号性等。
这些性质在定积分的计算和性质分析中起到了重要作用。
三、定积分的计算方法在高考中,求定积分通常通过几种基本的计算方法来完成,包括换元法、分部积分法、定积分的性质等。
不同的计算方法适用于不同的函数和题目类型,需要根据具体情况选择合适的方法。
四、定积分的应用定积分在数学中有广泛的应用。
在高考中,常见的应用包括计算面积、求曲线的弧长、求平均值等。
理解和掌握这些应用可以帮助我们更好地解决与定积分相关的题目。
五、典型题目解析以下是一些高考中常见的定积分题目及其解析,供同学们参考和练习:例题一:计算定积分∫(0 to 1) x^2 dx解析:根据定积分的计算公式,我们有∫(0 to 1) x^2 dx = [x^3/3] (0 to 1) = 1/3例题二:计算不定积分∫(2 to 5) (2x+1) dx解析:根据定积分的计算公式,我们有∫(2 to 5) (2x+1) dx = [x^2+x] (2 to 5) = (5^2+5) - (2^2+2) = 24例题三:求函数f(x)=2x在区间[0,3]上的平均值。
解析:函数的平均值可以通过定积分来计算,平均值=1/(b-a) * ∫(a to b) f(x) dx = 1/(3-0) * ∫(0 to 3) 2x d x = 1/3 * [x^2] (0 to 3) = 1/3 * (3^2-0^2) = 3通过以上例题解析,我们可以看到定积分的计算方法和应用的具体过程,希望同学们通过练习更加熟练掌握这些知识点。
高考数学新课标定积分应用例题、习题及详解

图3定积分应用1、直角坐标系下平面图形面积的计算①连续曲线()(()0),y f x f x x a x b =≥==及及x 轴所围成的平面图形面积为()baA f x dx =⎰②设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为: dx x f x f S ba ⎰-=)]()([下上.③连续曲线()(()0),x y y c y d φφ=≥==及y 及y轴所围成的平面图形面积为()d cA y dy φ=⎰④由方程1()x y φ=与2()x y φ=以及,y c y d==所围成的平面图形面积为12[()()]dcA y y dy φφ=-⎰ 12()φφ>例1 计算两条抛物线2x y =与2y x =所围成的面积.解 求解面积问题,一般需要先画一草图(图3),我们要求的是阴影部分的面积.需要先找出交点坐标以便确定积分限,为此解方程组:⎩⎨⎧==22y x x y得交点(0,0)和(1,1).选取x 为积分变量,则积分区间为]1,0[,根据公式(1) ,所求的面积为31)3132()(103102=-=-=⎰x x x dx x x S .一般地,求解面积问题的步骤为:(1) 作草图,求曲线的交点,确定积分变量和积分限. (2) 写出积分公式. (3) 计算定积分.例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3 求在区间[21,2 ]上连续曲线 y=ln x ,x 轴及二直线 x =21,与x = 2所围成平面区域(如图2)的面积 。
高考定积分练习题

高考定积分应用常见题型大全含答案一.选择题共21小题1.2012福建如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率 CA.B.C.D.解答:解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01﹣xdx=﹣|01=, 则正方形OABC中任取一点P,点P 取自阴影部分的概率为=;2.2010山东由曲线y=x2,y=x3围成的封闭图形面积为 AA.B.C.D.解答:解:由题意得,两曲线的交点坐标是1,1,0,0故积分区间是0,1 所求封闭图形的面积为∫01x2﹣x3dx═,3.设fx=,函数图象与x轴围成封闭区域的面积为A.B.C.D.解答:根据定积分,得所围成的封闭区域的面积S=故选C4.定积分的值为A.B.3+ln2 C.3﹣ln2 D.6+ln2 解答:解:=x2+lnx|12=22+ln2﹣12+ln1=3+ln2 故选B.5.如图所示,曲线y=x2和曲线y=围成一个叶形图阴影部分,其面积是A.1B.C.D.解答:解:联立得,解得或,设曲线与直线围成的面积为S, 则S=∫01﹣x2dx=故选:C6.=A.πB.2C.﹣πD.4解答:解:∵ x2++sinx′=x+cosx,∴x+cosxdx= x2+sinx=2.故答案为:B7.若a=,b=,则a与b的关系是A.a<b B.a>b C.a=b D.a+b=0解答:解:∵a==﹣cosx=﹣cos2﹣﹣cos=﹣cos2≈﹣°=°, b==sinx=sin1﹣sin0=sin1≈°,∴b>a.故选A.8.的值是A.B.C.D.解答:解;积分所表示的几何意义是以1,0为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.即=﹣=﹣=故选A 9.若fx=e为自然对数的底数,则=A.+e2﹣e B.+e C.﹣e2+e D.﹣+e2﹣e解答:解:===故选C.10.已知fx=2﹣|x|,则A.3B.4C.D.解答:解:由题意,=+=2﹣+4﹣2=故选C.11.设fx=3﹣|x﹣1|,则∫﹣22fxdx=A.7B.8C.D.解答:解:∫﹣22fxdx=∫﹣223﹣|x﹣1|dx=∫﹣212+xdx+∫124﹣xdx=2x+x2|﹣21+ 4x﹣x2|12=7 故选A.12.积分=A.B.C.πa2D.2πa2解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.13.已知函数的图象与x轴所围成图形的面积为A.1/2 B.1C.2D.3/2解答:解:由题意图象与x轴所围成图形的面积为=﹣|01+sinx=+1=故选D.14.由函数y=cosx0≤x≤2π的图象与直线及y=1所围成的一个封闭图形的面积是A.4B.C.D.2π解答:解:由函数y=cosx0≤x≤2π的图象与直线及y=1所围成的一个封闭图形的面积, 就是:∫01﹣cosxdx=x﹣sinx|0=.故选B.15.曲线y=x3在点1,1处的切线与x轴及直线x=1所围成的三角形的面积为A.B.C.D.解答:解:∵y=x3,∴y'=3x2,当x=1时,y'=3得切线的斜率为3,所以k=3;所以曲线在点1,1处的切线方程为:y﹣1=3×x﹣1,即3x﹣y﹣2=0.令y=o得:x=,∴切线与x轴、直线x=1所围成的三角形的面积为:S=×1﹣×1=故选B.16.图中,阴影部分的面积是A.16 B.18 C.20 D.22解答:解:从图象中知抛物线与直线的交点坐标分别为2,﹣2,8,4.过2,﹣2作x轴的垂线把阴影部分分为S1,S2两部分,分别求出它们的面积A1,A2:A1=∫02dx=2 dx=,A2=∫28dx=所以阴影部分的面积A=A1+A2==18 故选B.17.如图中阴影部分的面积是A.B.C.D.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为﹣3,﹣6和1,2抛物线y=3﹣x2与x轴负半轴交点﹣,0设阴影部分面积为s,则==所以阴影部分的面积为, 故选C.18.曲线与坐标轴围成的面积是A.B.C.D.解答:解:先根据题意画出图形,得到积分上限为,积分下限为0曲线与坐标轴围成的面积是:S=∫0﹣dx+∫dx=∴围成的面积是故选D.19.如图,点P3a,a是反比例函y=k>0与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为A.y=B.y=C.y=D.y=解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P3a,a是反比例函y=k>0与⊙O的一个交点.∴3a2=k且=r∴a2=×22=4.∴k=3×4=12,则反比例函数的解析式是:y=.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分在高考中得常见题型解法
贵州省印江一中(555200) 王代鸿
定积分作为导数得后续课程,与导数运算互为逆运算,也就是微积分基本概念之一,同时为大学数学分析打下基础。
从高考题中来瞧,定积分就是高考命题得一种新方向,在高考复习中要求学生了解定积分得定义,几何意义,掌握解决问题得方法。
一、利用微积分基本定理求定积分
1、微积分基本定理:一般地,如果就是区间上得连续函数,并且,那么、这个结论叫做微积分基本定理(又叫牛顿-莱布尼兹公式)。
2、例题讲义
例1、计算
解:因为
所以=
【解题关键】:计算得关键就是找到满足得函数。
跟踪训练:1计算
二、利用定积分得几何意义求定积分。
1、定积分得几何意义:设函数y=f(x)在
上y=f(x)非负、连续,由直线x=a,x=b,
y=0及曲线y=f(x) 所围成得曲边梯形面积
S=
2、例题讲义:
例2、求由曲线,直线2
=-及轴所围成得图形得面积S等于=__
y x
_________
ﻩ解: 联立方程组(如图所示)
解得
S =
=
=
=
【解题关键】:将曲边梯形进行分割成几个容易求面积得图形,再求面积与
例3、求得值
解:令
则有
及
右图所以
【解题关键】:将被积函数转化为熟悉得曲线方程,利用曲线图形得特点求其定积分。
练习:由直线,x=2,曲线及x轴所围图形得面积为( )
A、ﻩB、C、D、
三、利用变换被积函数求定积分
1、从积分变量x分割得几何图形较多,不容易求其定积分时,就变换被积函数求其定积分。
2、例题讲义
例4、求抛物线与直线所围成得图形得面积。
解:方法1分割如右图
如图所示联立方程组
解得
=18
方法2:由得,
由得
所以S=
【解题关键】:改变被积函数求面积比分割求面积简单
四、定积分与几何概型知识得交叉应用
例5、如图,四边形OACB就是AB=1,A D=得矩形,阴影部分就是由直线x=1与抛物线围成得区域,在矩形ABCD内(含边界)任意取点,则这点取自阴影部分(含边界)得概率就是多少?
解:如图所示本题就是古典概型
【解题关键】:求曲边梯形OACBD 面积
练习:设区区域,在区域D内任取一点,则此点落在区域内得概率就是多少?
参考文献
1、《人教版数学选修2-2》
2、《新教材完全解读2-2》
3、《历年高考试题》。