电子设备结构设计与制造工艺
电子设备结构与工艺6σ

6σ管理的发展
继摩托罗拉、德仪、联信/霍尼维尔、通用电气等先 驱之后,几乎所有的财富500强的制造型企业都陆续 开始实施六西格玛管理战略。值得注意的是,一直 在质量领域领先全球的日本企业也在九十年代后期 纷纷加入实施六西格玛的行列,这其中包括索尼、 东芝、本田等。韩国的三星、LG也开始了向六西格 玛进军的旅程。
6σ是什么?
σ是希腊字母,音Sigma(中文译名‘西格玛’),是统 计学家用于衡量工艺流程中的变化性而使用的代码。
统计学上用σ来表示“标准偏差”,即数据的分散程度。
6σ即意为“6倍标准偏差”。
偏差的常用指标包括:
不良数
差错率(DPM)=
×100%
抽样总数×造成不良机会数
百万机会缺陷数(DPMO)=DP源自×106σ水平与百万机会缺陷数(DPMO)对比
σ水平
1σ 2σ 3σ 4σ 5σ 6σ 7σ
DPMO(单位:ppm)
697700 308770 66811 6211 233 3.4 0.019
在质量上,6σ表示每百万个产品的不良品率(PPM) 不大于3.4,意味着每一百万个产品中最多只有3.4个 不合格品,即合格率是99.99966%。在整个企业流程 中,6σ是指每百万个机会当中缺陷率或失误率不大于 3.4,这些缺陷或失误包括产品本身以及采购、研发、 产品生产的流程、检验、包装、库存、运输、交货期、 维修、系统故障、服务、市场、财务、人事、不可抗 力……等等。
六个西格玛的管理方法重点是将所有的工作作为一种 流程,采用量化的方法分析流程中影响质量的因素, 找出最关键的因素加以改进从而达到更高的客户满意 度。
实施六西格玛对于一个企业来说,不仅仅只是一系列 的训练。它意味着整个企业文化从防护性的标准化管 理到放开思想改革创新的突破性理念。
电子产品制造总体工艺流程

电子产品制造总体工艺流程
1.产品研制:研发出具备市场竞争力的、符合客户要求的电子产品,
实现产品需求分析、设计、模拟、试验、修改等步骤。
2.设备准备:根据产品的特点及工艺条件,选择和调试相应的生产装备,确保设备的正常运行并达到生产要求。
3.材料准备:根据产品的要求,选用满足条件的材料并准备起来,检
查原材料的物料及质量,确保具有良好的中间材料。
4.电子元件装配:将研制好的电子元器件装入印刷电路板上,一般采
用自动化生产装配线,实现批量生产。
5.电路测试:检查电路板装配的准确性和正确性,利用特定仪器或设备,对电路的电气特性进行测试,确保电路在正常电气特性的设定范围内。
6.机械加工:根据产品结构和要求,运用机械加工设备对机壳和配件
进行加工,生产出满足产品要求的机械零件。
7.机械装配:将机械零件、电子元器件及电路板组装拼接在一起,组
装成一个完整的电子产品。
8.质量检测:对已经组装完成的产品表面、外形、尺寸和功能进行全
面而准确的检测,确保产品质量达标。
9.包装发货:将检测合格的产品按照客户要求或制定的标准进行包装,在规定时间内发货。
电子产品整机装配和调试

2004年12月18日
电子产品(设备)结构设计与制造工艺
第八章 电子产品整机装配与调试
2. 调试仪器布局 • 仪器的布置应安全稳定,操作调节方便,观测视差小。 • 仪器仪表在测试台上的布局,应避免相互干扰;仪器仪表与被调试整机之间
2004年12月18日
电子产品(设备)结构设计与制造工艺
第八章 电子产品整机装配与调试
8.2电子设备的整机装配 一、电子设备整机装配原则
电子设备整机结构的基本要求是:结构布局科学合理,工作性能稳定可 靠;体积小,重量轻,结构紧凑,便于运输;外形美观,操作方便,便于 维修;工艺性能良好,适宜于自动化生产或大批量生产。 二、整机装配的工艺流程
的连接线应尽量短而整齐,且必须共地线,以避免产生相互感应和耦合。 • 为了避免产生地线电阻耦合,整机输入端所有跨接的仪表地线端应连在一起
,与整机输入端地线相连,整机输出端所有跨接的仪表地线端连在一起,与 整机输出端地线相连。 三、整机调试程序和方法
整机调试是在单元部件调试的基础上进行的。单元部件调试的一般工艺 流程为:外观检查→静态调试(测试调整电路各级静态工作点)→动态调试 (加输入信号或给定信号,再测试调整各调试点的电压、电流、波形、频率 或频率特性,使其达到技术指标要求)→性能指标综合调试(对整个单元部 件的性能指标要求进行综合调试)。
量所要求的精度,并应有定期计量检定合格证。
• 应根据需要选择相应的测量范围和灵敏度的仪器。 • 测试仪器输入阻抗的选择,要求在接入被测电路后,产生的测量误差在允
许范围内,或不改变被测电路的工作状态。
电子计算机硬件的制造技术

电子计算机硬件的制造技术计算机是现代社会重要的工具,它的普及与广泛应用离不开硬件制造技术的不断创新与进步。
电子计算机硬件主要包含中央处理器(CPU)、内存、主板、电源、硬盘、显卡等设备,这些硬件通过制造工艺,结构设计和材料选择等方面不断升级和改善,使计算机的性能更加优越,功能更加强大。
下面将会从这几个方面来详细地介绍电子计算机的硬件制造技术。
1. 制造工艺计算机硬件制造工艺主要指制造流程和生产设备的技术内容。
目前,主流的制造工艺有三种,分别为微电子制造工艺、工业自动化制造工艺和微机结构制造工艺。
微电子制造工艺适用于集成电路和片上系统的制造,能够实现更高的集成度和稳定性。
工业自动化制造工艺适用于大规模、精细的生产线,能够大幅度降低成本和提高生产效率。
微机结构制造工艺适用于高性能、高稳定的计算机制造,能够提高计算机的运算速度和稳定性。
2. 结构设计计算机硬件结构设计是一项非常重要的技术,它涉及到计算机的性能、功能和可靠性等方面。
仅仅依靠单一的工艺无法保证计算机硬件结构的实现,必须经过计算机工程师的精心设计。
目前,计算机硬件结构设计主要遵循单层、双层和多层设计原则。
单层结构适用于基础型计算机,主要结构有主板、内存、处理器等。
双层结构适用于高阶型计算机,主要特点为分布式结构,通过互联技术相互连接。
多层结构适用于高级计算机、并行计算机等领域,这种结构具有不同等级的处理器,能够处理更加庞大、复杂的数据。
3. 材料选择材料是制造计算机硬件的最基本要素,选择合适的材料可以大幅度提升计算机的性能和可靠性。
主要的硬件材料有高温超导材料、高次谐波材料、高硬度材料等。
高温超导材料主要应用于高端服务器系统、云计算和平板电视等领域,这种材料具有超导电性和抗磁性的特点,能够节能和降温。
高次谐波材料主要应用于高频设备,有着良好的声学特性和电荷特性。
高硬度材料主要适用于计算机外壳等配件。
总结随着计算机技术的不断变革与创新,计算机硬件制造技术也在不断发展和完善。
电子产品结构设计和制造工艺设计

第一章概述1.1电子设备结构设计与制造工艺1.1.1现代电子设备的特点当前,电子技术广泛地应用于国防、国民经济各部门以及人民生活等各个领域。
由于生产和科学技术的发展,新工艺和新材料应用,超小型化元器件和中大规模、超大规模集成电路的研制和推广,使电子设备在电路上和结构上产生巨大的变化。
小型化、超小型化、微型化结构的出现,使得一些传统的设计方法逐渐被机电结合、光点结合等新技术所取代,再加上电子设备要适应更加广泛的用途和恶劣苛刻的工作环境,就使当代电子设备具有不同于过去的特点。
这些特点可归纳为以下几方面:1.设备组成较复杂,组装密度大现代电子设备要求具有多种功能,设备组成较复杂,元器件、零部件数量多,且设备体积要小,组装密度大。
尤其是超大规模集成电路及其衍生的各种功能模块的出现,使电子设备的组装密度较过去提高了很多。
2.设备使用范围广,所处的工作环境条件复杂。
现代电子设备往往要在恶劣而苛刻的环境条件下工作。
有时要承受高温、低温和巨大温差变化;高湿度和低气压;强烈的冲击和振动;外界的电磁干扰等。
这些都会对电子设备的正常工作产生影响。
3.设备可靠性要求高、寿命长现代电子设备要求具有较高的可靠性和足够的工作寿命。
可靠性低的电子设备将失去使用价值。
高可靠性的电子设备,不仅元器件质量要求高,在电路设计和结构设计中都要作出较大的努力。
4.设备要求高精度、多功能和自动化现代电子设备往往要求高精度、多功能和自动化,有的还引入了计算机系统,因而其控制系统较为复杂。
精密机械广泛地应用于电子设备是现代电子设备的一大特点。
自控技术、遥控遥测技术、计算机数据处理技术和精密机械的紧密结合,有的电子设备要求有智能实现人机交流,使电子设备的精度和自动化程度达到了相当高的水平。
上述电子设备的特点,只是对整体而言,具体到某种设备又各具自己的特点。
由于当代电子设备具有上述特点,对电路设计和结构设计的要求更高了,设计、生产人员充分了解电子设备的特点,对于确保电子设备的性能满足使用要求十分必要的。
电子设备制造工艺——电子产品制造工艺

2 装联工艺过程
2.1 装联过程的组成单元 1.工序 产品的装联过程是由一系列工序组成,工序是 产品加工全过程所经历的按一定顺序排列的各种 工艺过程,每个工序都由一个或一组工人在某一 工作地(区域),负责完成同一类型的作业内容。
工艺装备的分类
1. 按用途分类 主要有下列五类: 各种生产设备(如传送生产线、焊接设备
等); 各种调试、检测用的仪器仪表; 各种装配及调试用的夹具; 存放各种材料、半成品及成品的容器及
车辆; 各工位操作用的工具。
2. 按适用性分类 通用工装: 又称标准的工艺装备,它适用
于制造不同产品。这些通用工装是由专业生产 工具的企业制造的,企业可按需订购;
工装管理
工艺装备是保证实施工艺的必要装备的总称,是 企业实施工艺的重要保证,是保证产品质量,提高 劳动效率、改善劳动条件的重要手段。
古人说:“工欲善其事,必先利其器”,这个 “器”就是指工具,到现代则发展为系统的工艺装 备。
先进的工艺总是与先进的工艺装备紧密联系在 一起的,任何一种先进的工艺,如果没有先进的工 艺装备作手段,就不可能在现代工业化大生产中发 挥,因此合理的组织工装的设计、制造、发放、保 管和维修工作,是工艺管理的主要任务之一。
超声焊
超声焊是利用超声波发生器产生的能量,通过 换能器在超高频的磁场感应下,迅速伸缩而产生弹 性振动,使劈刀相应振动,同时在劈刀上施加一定 的压力于是劈刀在这两种力的共同作用下,带动AI 丝在被焊区的金属化层如(AI膜)表面迅速摩擦, 使AI丝和AI膜表面产生塑性变形,这种形变也破坏 了AI层界面的氧化屋,使两个纯净的金属表面紧密 接触达到原子间的结合从而形成焊接。主要焊接材 料为铝(AI)线,焊头一般为楔形 。
工装定额管理
电子产品结构工艺

电子产品结构工艺电子产品的结构工艺是指设计和制造电子产品的过程中所涉及的物理结构和制造工艺。
电子产品的结构工艺不仅涉及到原材料的选择和加工,还包括产品的设计、装配和测试等环节。
本文将介绍电子产品结构工艺的一些重要内容。
首先,电子产品的结构工艺要考虑材料的选择。
因为电子产品通常需要具备轻薄、高强度和高导电性等特性,因此常用的材料有金属、塑料和玻璃等。
金属通常用于制作外壳和导电器件,塑料用于制作键盘和其他外部部件,而玻璃则用于制作显示屏等部件。
其次,电子产品的设计也是结构工艺中的关键环节。
设计师需要考虑产品的功能需求、外形美观以及工程性能等因素。
在设计过程中,常用的软件工具有CAD和CAM等,它们可以帮助设计师制作三维模型、进行模拟分析和优化设计。
此外,设计师还需要考虑产品的用户友好性,如按键的布局、触摸屏的设计等。
接下来是电子产品的装配工艺。
装配工艺包括元件的焊接、固定和连接等环节。
电子产品的焊接常用的方法有手工焊接和自动化焊接。
手工焊接适用于小批量生产,但效率较低;自动化焊接则适用于大规模生产,但需要投入较高的设备和人力资源。
固定和连接的方法包括槽孔、螺纹、粘接以及机械连接等。
在完成装配后,电子产品还需要进行测试。
测试的目的是验证产品的性能和质量,并对可能存在的问题进行修复。
常用的测试方法有可靠性测试、环境测试和功能测试等。
可靠性测试可以模拟产品在长时间使用过程中可能遇到的环境和工况,如高温、湿度和震动等。
功能测试则是通过模拟用户操作来检查产品是否能正常工作。
最后,电子产品的结构工艺还需要考虑制造工艺的可靠性和经济性。
可靠性是指产品在设计寿命内能够保证性能稳定和故障率低。
经济性是指制造成本和制造周期的控制。
为了提高制造工艺的可靠性和经济性,可以采用先进的生产设备和生产管理系统,并加强对员工的培训和监督。
综上所述,电子产品的结构工艺是一个复杂的过程,需要综合考虑材料选择、设计、装配和测试等多个环节。
航空电子设备的设计与制造

航空电子设备的设计与制造1.导言随着航空事业的不断发展和技术的不断革新,航空电子设备的设计和制造已成为了一个必不可少的领域。
在当前的技术革新浪潮中,电子技术愈发成熟和完善,而其在航空领域的应用也愈加广泛。
航空设备的性能和质量不仅影响着航空行业的安全和效率性,也涉及着国家利益及形象。
在繁重的任务压力和科技的竞争中,如何高效地完成航空电子设备的设计和制造,是业内人士正在面对的重要问题之一。
2.航空电子设备的设计2.1 设计原则和重要性电子设备的设计是航空电子工程中的第一步,也是整个工艺的基础。
优秀的设计不仅可以为电子设备的制造带来很好的基础和条件,而且可以在设备使用及维护过程中实现最佳性能和最大功效。
在设计过程中,需要对航空环境的特点和航空设备的使用场景有很好的理解和把握,将航空电子设备的特性完全融合到整个设计中去。
设计的原则一般包括:- 合理性原则。
设计过程中,要根据航空设备的使用领域和任务、技术水平以及成本等多方面因素进行综合分析和考虑,保证设计的确切性和可靠性。
- 安全性原则。
在设计中应该具有从安全和可靠性的角度分析问题的能力,将用户的安全和机体的安全置于重要位置。
- 实用性原则。
设计应具有良好的实用性,既要考虑其性能及功能达标,又要便于维护和后期升级。
- 可维护性原则。
对于电子设备的设计,必须考虑设备在使用过程中的易损部件以及故障点,并做好维护方案和技术规范。
2.2 设计流程在电子设备设计中,常用的设计流程一般包括研究、开发、制造、评估和维护等步骤。
- 研究。
在设计之前,要首先研究并分析好产品的功能结构和技术特点,以及产品所处的市场环境和竞争状况。
- 开发。
根据研究结果,进行产品需求分析和功能设计,确定产品的基本结构和技术路线。
- 制造。
执行开发完成后采购合适的材料、器件和设备,通过各种工艺和制造技术将设计制造提现。
- 评估。
在整个设计制造过程中,要进行全面的品质和性能检测,对产品进行合格评测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1电子设备结构设计与制造工艺
1.1.1现代电子设备的特点
当前,电子技术广泛地应用于国防、国民经济各部门以及人民生活等各个领域。
由于生产和科学技术的发展,新工艺和新材料应用,超小型化元器件和中大规模、超大规模集成电路的研制和推广,使电子设备在电路上和结构上产生巨大的变化。
小型化、超小型化、微型化结构的出现,使得一些传统的设计方法逐渐被机电结合、光点结合等新技术所取代,再加上电子设备要适应更加广泛的用途和恶劣苛刻的工作环境,就使当代电子设备具有不同于过去的特点。
这些特点可归纳为以下几方面:1.设备组成较复杂,组装密度大
现代电子设备要求具有多种功能,设备组成较复杂,元器件、零部件数量多,且设备体积要小,组装密度大。
尤其是超大规模集成电路及其衍生的各种功能模块的出现,使电子设备的组装密度较过去提高了很多。
2.设备使用范围广,所处的工作环境条件复杂。
现代电子设备往往要在恶劣而苛刻的环境条件下工作。
有时要承受高温、低温和巨大温差变化;高湿度和低气压;强烈的冲击和振动;外界的电磁干扰等。
这些都会对电子设备的正常工作产生影响。
.
3.设备可靠性要求高、寿命长
现代电子设备要求具有较高的可靠性和足够的工作寿命。
可靠性低的电子设备将失去使用价值。
高可靠性的电子设备,不仅元器件质量要求高,在电路设计和结构设计中都要作出较大的努力。
4.设备要求高精度、多功能和自动化
现代电子设备往往要求高精度、多功能和自动化,有的还引入了计算机系统,因而其控制系统较为复杂。
精密机械广泛地应用于电子设备是现代电子设备的一大特点。
自控技术、遥控遥测技术、计算机数据处理技术和精密机械的紧密结合,有的电子设备要求有智能实现人机交流,使电子设备的精度和自动化程度达到了相当高的水平。
上述电子设备的特点,只是对整体而言,具体到某种设备又各具自己的特点。
由于当代电子设备具有上述特点,对电路设计和结构设计的要求更高了,设计、生产人员充分了解电子设备的特点,对于确保电子设备的性能满足使用要求十分必要的。
1.1.2 电子设备的制造工艺和结构设计
工艺工作是企业生产技术的中心环节,是组织生产和指导生产的一种重要手段。
在产品的设计阶段,它的内容是确定产品的制造方案并完善生产前的技术准备工作;在产品的生产制造阶段,它的主要内容是组织指导符合设计要求的加.
工生产,直至出厂为止而采取的必要的技术和管理措施。
工艺工作按内容可分为工艺技术和工艺管理,前者是生产实践劳动技能和应用科学研究成果的积累和总结,是工艺工作的核心;后者是对工艺工作的计划、组织、协调与实施,是保证工艺技术在生产中贯彻和发展的管理科学。
工艺技术的实现和发展是由科学的工艺管理工作来保证和实现的。
工艺工作将各个部门、各个生产环节联系起来成为一个完整的整体。
它的着眼点就是促进每项工作操作简单、流畅、高效率、低强度。
设计和制造电子设备,除满足工作性能的要求外,还必须满足加工制造的要求,电路性能指标的实现,要通过具体的产品结构体现出来。
电子设备是随着电子技术的发展而发展的,其结构和构成形式也随之发生变化。
初期的设备较简陋,考虑的主要问题是电路设计。
到二十世纪四十年代,出现了将复杂设备分为若干部件,树立起结构级别的先进想法;为防止气候影响,研制出密封外壳;为防止机械过载而研制出减振器,设备结构功能进一步完善,结构设计成为电子设备设计的内容。
随后,由于军用电子技术的发展和野战的需要,结构设计的内容逐步丰富起来。
目前,结构设计在电子设备的设计中占有较大的比重,直接关系到电子设备的性能和技术指标(条件)的实现。
电子设备结构设计和生产工艺的任务就是以结构设计为手段,保证所设计的电子设备.
在既定的工作环境条件和使用要求下,达到技术条件所规定的各项指标,并能稳定可靠地完成预期的功能,即保证电子设备的可靠性。
1.1.3 《电子设备结构设计与制造工艺》课程内容
《电子设备结构与工艺》包含了力学、机械学、材料学、热学、电学、化学、美学、环境科学等多门基础学科的内容,是一门综合性的应用型边缘学科,作为一门课程,它的内容只能涉及电子设备机构与工艺的最基本内容,具体包括以下内容:
1.电子设备的工作环境及其对设备的要求;
2.可靠性及提高可靠性的方法;
3.电子产品常用材料的防腐蚀措施;
4.温度对电子设备的影响及散热方法;
5.减振缓冲原理及常用减振器的选用;
6.电磁干扰及其屏蔽,接地技术;
7.电子设备元器件布局与装配;
8.印制电路板的结构设计与制造工艺;
9.电子设备整机装配与调试;
10.电子产品的微型化结构及整机结构。