2015年全国中考数学试题分类汇编

合集下载

2015年全国中考数学试卷解析分类汇编专题1_有理数

2015年全国中考数学试卷解析分类汇编专题1_有理数

有理数选择题1.(2015湖南岳阳第1题3分)实数﹣2015的绝对值是()A.2015 B.﹣2015 C. ±2015 D.考点:绝对值..分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2015|=2015,故选:A.点评:本题考查了绝对值,解决本题的关键是熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2015湖北荆州第1题3分)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.3.(2015湖北鄂州第1题3分)的倒数是()A.B.3 C.D.【答案】C.考点:倒数.4.(2015•福建泉州第1题3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.(2015湖南邵阳第1题3分)计算(﹣3)+(﹣9)的结果是()A.﹣12 B.﹣6 C. +6 D. 12考点:有理数的加法..分析:根据有理数的加法运算法则计算即可得解.解答:解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.6.(2015湖北鄂州第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学计数法表示(结果保留2个有效数字)应为()A.3.9×10 4B.3.94×10 4C.39.4×10 3D.4.0×10 4【答案】A.考点:1.科学记数法---表示较大的数;2.有效数字.7.(2015湖南邵阳第3题3分)2011年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的是()A.0.5×10﹣9米B. 5×10﹣8米C. 5×10﹣9米D. 5×10﹣7米考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 05米用科学记数法表示为5×10﹣8米.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8. (2015辽宁大连,1,3分)﹣2的绝对值是()A. 2B.-2C.D.-【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A.9. (2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。

2015中考数学真题分类汇编:规律型(图形的变化类)

2015中考数学真题分类汇编:规律型(图形的变化类)

2015中考数学真题分类汇编:规律型(图形的变化类)一.选择题(共7小题)1.(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒2.(2015•宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A.231πB.210πC.190πD.171π3.(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 21 B.24 C.27 D. 304.(2015•十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A. 222 B.280 C.286 D. 2925.(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A. 32 B.29 C.28 D. 266.(2015•广西)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A. 160 B.161 C.162 D. 1637.(2015•绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14 B.15 C.16 D. 17二.填空题(共14小题)8.(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)9.(2015•莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是.10.(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒根.11.(2015•福建)观察下列图形的构成规律,依照此规律,第10个图形中共有个“•”.12.(2015•聊城)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.13.(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.14.(2015•舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=.15.(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.16.(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有根小棒.17.(2015•山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)18.(2015•安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.(2015•桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有个点.20.(2015•随州)观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.21.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.三.解答题(共2小题)22.(2015•自贡)观察下表:序号 1 2 3 …图形x xyx x x x xy yx xy yx x xx x x xy y yx xy y yx xy y yx x x x …我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,求x,y的值.23.(2015•六盘水)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:名称及图形几何点数层数三角形数正方形数五边形数六边形数第一层几何点数 1 1 1 1第二层几何点数 2 3 4 5第三层几何点数 3 5 7 9……………第六层几何点数……………第n层几何点数请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.2015中考数学真题分类汇编:规律型(图形的变化类)参考答案与试题解析一.选择题(共7小题)1.(2015•义乌市)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走()A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒考点:规律型:图形的变化类.分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项.解答:解:仔细观察图形发现:第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.2.(2015•宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A.231πB.210πC.190πD.171π考点:规律型:图形的变化类.分析:根据题意分别表示出各圆环的面积,进而求出它们的和即可.解答:解:由题意可得:阴影部分的面积和为:π(22﹣12)+π(42﹣32)+π(62﹣52)+…+π(202﹣192)=3π+7π+11π+15π+ (39)=5(3π+39π)=210π.故选:B.点评:此题主要考查了图形的变化类以及圆的面积求法,分别表示出各圆环面积面积是解题关键.3.(2015•重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 21 B.24 C.27 D. 30考点:规律型:图形的变化类.分析:仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.解答:解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大.4.(2015•十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A. 222 B.280 C.286 D. 292考点:规律型:图形的变化类.分析:设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解解答:解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.点评:本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.5.(2015•重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A. 32 B.29 C.28 D. 26考点:规律型:图形的变化类.分析:仔细观察图形,找到图形的个数与黑色正方形的个数的通项公式后代入n=11后即可求解.解答:解:观察图形发现:图①中有2个黑色正方形,图②中有2+3×(2﹣1)=5个黑色正方形,图③中有2+3(3﹣1)=8个黑色正方形,图④中有2+3(4﹣1)=11个黑色正方形,…,图n中有2+3(n﹣1)=3n﹣1个黑色的正方形,当n=10时,2+3×(10﹣1)=29,故选B.点评:本题是对图形变化规律的考查,难点在于利用求和公式求出第n个图形的黑色正方形的数目的通项表达式.6.(2015•广西)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A. 160 B.161 C.162 D. 163考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中由角上的3个三角形加上中间1个小三角形再加上外围1个大三角形共有5个正三角形;下一个图形的三个角上的部分是上一个图形的全部,另外加上中间一个小的三角形和外围的一个大三角形,所以第二个图形中有5×3+1+1=17个正三角形,第三个图形中有17×3+1+1=53个正三角形,第四个图形中有53×3+1+1=161个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故选B.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题是解答此题的关键.7.(2015•绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14 B.15 C.16 D. 17考点:规律型:图形的变化类.分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.二.填空题(共14小题)8.(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.(2015•莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是.考点:规律型:图形的变化类.分析:根据题意,每次挖去等边三角形的面积的,剩下的阴影部分面积等于原阴影部分面积的,然后根据有理数的乘方列式计算即可得解.解答:解:图2阴影部分面积=1﹣=,图3阴影部分面积=×=()2,图4阴影部分面积=×()2=()3,图5阴影部分面积=×()3=()4=.故答案为:.点评:本题是对图形变化规律的考查,观察出每次挖出后剩下的阴影部分面积等于原阴影部分面积的是解题的关键.10.(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒29根.考点:规律型:图形的变化类.分析:根据已知图形得出数字变化规律,进而求出答案.解答:解:如图所示:第1个图形有3+2=5根火柴棒,第2个图形有3×2+2=8根火柴棒,第3个图形有3×3+2=11根火柴棒,故第n个图形有3n+2根火柴棒,则第9个“H”需用火柴棒:3×9+2=29(根).故答案为:29.点评:此题主要考查了图形变化类,根据题意得出火柴棒的变化规律是解题关键.11.(2015•福建)观察下列图形的构成规律,依照此规律,第10个图形中共有111个“•”.考点:规律型:图形的变化类.分析:观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n(n+1)+1]个“•”.再将n=10代入计算即可.解答:解:由图形可知:n=1时,“•”的个数为:1×2+1=3,n=2时,“•”的个数为:2×3+1=7,n=3时,“•”的个数为:3×4+1=13,n=4时,“•”的个数为:4×5+1=21,所以n=n时,“•”的个数为:n(n+1)+1,n=10时,“•”的个数为:10×11+1=111.故答案为111.点评:本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,难度适中.12.(2015•聊城)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成3+2(n﹣1)个互不重叠的小三角形.考点:规律型:图形的变化类.分析:利用图形得到,△ABC的三个顶点和它内部的点P1,把△ABC分成互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成互不重叠的小三角形的个数=3+2×2,即分成的互不重叠的小三角形的个数为3加上P点的个数与1的差的2倍,从而得到△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数.解答:解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1).故答案为3+2(n﹣1).点评:本题考查了规律型:图形的变化类:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后通过分析找到各部分的变化规律后直接利用规律求解.13.(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.考点:规律型:图形的变化类.分析:由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.解答:解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.点评:此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.14.(2015•舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=82﹣2a(用含a的代数式表示).(2)设该格点多边形外的格点数为c,则c﹣a=118.考点:规律型:图形的变化类.分析:(1)将S=40代入S=a+b﹣1后用含a的代数式表示即可;(2)首先用a表示出c,然后可求得c﹣a的值.解答:解:(1)∵S=a+b﹣1,且S=40,∴a+b﹣1=40,整理得:b=82﹣2a;(2)∵a是多边形内的格点数,b是多边形边界上的格点数,总格点数为200,∴边界上的格点数与多边形内的格点数的和为b+a=82﹣2a+a=82﹣a,∴多边形外的格点数c=200﹣(82﹣a)=118+a,∴c﹣a=118+a﹣a=118,故答案为:82﹣2a,118.点评:本题考查了图形的变化类问题,解决本题的关键是根据题意表示出b,难度不大.15.(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是13.考点:规律型:图形的变化类;数轴.分析:序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.解答:解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为:13.点评:本题考查了规律型,认真观察、仔细思考,找出点表示的数的变化规律是解决本题的关键.16.(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有5n+1根小棒.考点:规律型:图形的变化类.分析:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.解答:解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.点评:此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.17.(2015•山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1个三角形(用含n的代数式表示)考点:规律型:图形的变化类.分析:由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有3n+1个三角形.解答:解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…∴第n个图案有3n+1个三角形.故答案为:3n+1.点评:此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.18.(2015•安顺)如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).考点:规律型:图形的变化类.分析:先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.解答:解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.点评:此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.19.(2015•桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有3•2n ﹣1﹣1个点.考点:规律型:图形的变化类.分析:根据前四行的点数分别是2=3•21﹣1﹣1,5=3•22﹣1﹣1,11=3•23﹣1﹣1,23=3•24﹣1﹣1,…,可得第n行有3•2n﹣1﹣1个点,据此解答即可.解答:解:∵2=3•21﹣1﹣1,5=3•22﹣1﹣1,11=3•23﹣1﹣1,23=3•24﹣1﹣1,…,∴第n行有3•2n﹣1﹣1个点.故答案为:3•2n﹣1﹣1.点评:此题主要考查了图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.20.(2015•随州)观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.考点:规律型:图形的变化类.分析:首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.解答:解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.点评:此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.21.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是a,并运用这个公式求得图2中多边形的面积是17.5.考点:规律型:图形的变化类.分析:分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.解答:解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.点评:本题考查了图形的变化类问题,解题的关键是能够仔细读题,找到图形内和图形外格点的数目,难度不大.三.解答题(共2小题)22.(2015•自贡)观察下表:序号 1 2 3 …图形x xyx x x x xy yx xy yx x xx x x xy y yx xy y yx xy y yx x x x …我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,求x,y的值.考点:规律型:图形的变化类.分析:(1)仔细观察每格的特征多项式的特点,找到规律,利用规律求得答案即可;(2)根据题意列出二元一次方程组,求得x、y的值即可.解答:解:(1)观察图形发现:第1格的“特征多项式”为4x+y,第2格的“特征多项式”为8x+4y,第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,。

2015年中考数学真题分类汇编 因式分解

2015年中考数学真题分类汇编 因式分解

因式分解一.选择题(共18小题)1.(2015•连云港)下列运算正确的是()A.235 B. 5A﹣23A C.A2•A36D.()222考点:同底数幂的乘法;合并同类项;完全平方公式.分析:根据同类项、同底数幂的乘法和完全平方公式计算即可.解答:解:A、2A与3B不能合并,错误;B、5A﹣23A,正确;C、A2•A35,错误;D、()22+22,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.2.(2015•营口)下列计算正确的是()A.|﹣2﹣2 B.A2•A36C.(﹣3)﹣2=D.=3考点:同底数幂的乘法;绝对值;算术平方根;负整数指数幂.分析:分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.解答:解:A、原式=2≠﹣2,故本选项错误;B、原式5≠A6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.点评:本题考查的是同底数幂的乘法,熟知绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则是解答此题的关键.3.(2015•包头)下列计算结果正确的是()A.2A33=3A6B.(﹣A)2•A3=﹣A6C.(﹣)﹣2=4 D.(﹣2)0=﹣1考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、2A33=3A3,故错误;B、(﹣A)2•A35,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.4.(2015•宿迁)计算(﹣A3)2的结果是()A.﹣A5B.A5C.﹣A6D.A6考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:(﹣A3)26,故选D点评:此题考查幂的乘方问题,关键是根据法则进行计算.5.(2015•潍坊)下列运算正确的是()A.B.3x2y﹣x23C.D.(A2B)36B3考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵,∴选项A不正确;∵3x2y﹣x22x2y,∴选项B不正确;∵,∴选项C不正确;∵(A2B)36B3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①()(m,n是正整数);②()(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.6.(2015•荆州)下列运算正确的是()A.=±2 B.x2•x36C.D.(x2)36考点:幂的乘方与积的乘方;实数的运算;同底数幂的乘法.分析:根据算术平方根的定义对A进行判断;根据同底数幂的乘法对B进行运算;根据同类二次根式的定义对C进行判断;根据幂的乘方对D进行运算.解答:解:2,所以A错误;B.x2•x35,所以B错误;不是同类二次根式,不能合并;D.(x2)36,所以D正确.故选D.点评:本题考查实数的综合运算能力,综合运用各种运算法则是解答此题的关键.7.(2015•哈尔滨)下列运算正确的是()A.(A2)57B.A2•A46C.3A2B﹣32=0 D.()2=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(A2)510,错误;B、A2•A46,正确;C、3A2B与32不能合并,错误;D、()2=,错误;故选B.点评:此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.8.(2015•株洲)下列等式中,正确的是()A.3A﹣21 B.A2•A35C.(﹣2A3)2=﹣4A6D.(A﹣B)22﹣B2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.解答:解:A、3A﹣2,原式计算错误,故本选项错误;B、A2•A35,原式计算正确,故本选项正确;C、(﹣2A3)2=4A6,原式计算错误,故本选项错误;D、(A﹣B)22﹣22,原式计算错误,故本选项错误.故选B.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等知识,掌握运算法则是解答本题关键.9.(2015•潜江)计算(﹣2A2B)3的结果是()A.﹣6A6B3B.﹣8A6B3C.8A6B3D.﹣8A5B3考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2A2B)3=﹣8A6B3.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.10.(2015•湖北)下列运算中正确的是()A.A3﹣A2B.A3•A412C.A6÷A23D.(﹣A2)3=﹣A6考点同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.:分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.11.(2015•梅州)下列计算正确的是()A.23B.x2•x36C.(x3)26D.x9÷x33考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式5,错误;C、原式6,正确;D、原式6,错误.故选C.点评:此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.12.(2015•淮安)计算A×3A的结果是()A.A2B.3A2C.3A D.4A 考点:单项式乘单项式.分析:根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:A×33A2,故选:B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.13.(2015•黄石)下列运算正确的是()A.4m﹣3 B.2m2•m3=2m5C.(﹣m3)29D.﹣(2n)=﹣2n考点:单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.解答:解:A、4m﹣3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)26,故此选项错误;D、﹣(2n)=﹣m﹣2n,故此选项错误;故选:B.点评:此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则等知识,正确掌握运算法则是解题关键.14.(2015•铜仁市)下列计算正确的是()A.A22=2A4B.2A2×A3=2A6C.3A﹣21 D.(A2)36考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为A22=2A2,故本选项错误;B、应为2A2×A3=2A5,故本选项错误;C、应为3A﹣21,故本选项错误;D、(A2)36,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.15.(2015•黔东南州)下列运算正确的是()A.(A﹣B)22﹣B2B.3﹣2 C.A(A2﹣A)2D.考点:单项式乘多项式;立方根;合并同类项;完全平方公式.分析:根据完全平方公式,合并同类项,单项式乘多项式,立方根的法则进行解答.解答:解:A、应为(A﹣B)22﹣22,故本选项错误;B、3﹣2,正确;C、应为A(A2﹣A)3﹣A2,故本选项错误;D、应为=2,故本选项错误.故选:B.点评:本题考查了完全平方公式,合并同类项,单项式乘多项式,立方根,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.(2015•佛山)若(2)(x﹣1)2,则()A. 1 B.﹣2 C.﹣1 D. 2考点:多项式乘多项式.分析:依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.解答:解:∵原式2﹣22,∴1,﹣2.∴1﹣2=﹣1.故选:C.点评:本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.17.(2015•酒泉)下列运算正确的是()A.x224B.(A﹣B)22﹣B2C.(﹣A2)3=﹣A6D.3A2•2A3=6A6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x22=2x2,错误;B、(A﹣B)22﹣22,错误;C、(﹣A2)3=﹣A6,正确;D、3A2•2A3=6A5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.18.(2015•常德)下列等式恒成立的是()A.()222B.()22B2C.A426D.A224考点:完全平方公式;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式22+2,错误;B、原式2B2,正确;C、原式不能合并,错误;D、原式=2A2,错误,故选B.点评:此题考查了完全平方公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则及公式是解本题的关键.二.填空题(共12小题)19.(2015•苏州)计算:A•A2= A3.考点:同底数幂的乘法.专题:计算题.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即•计算即可.解答:解:A•A21+23.故答案为:A3.点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.20.(2015•天津)计算;x2•x5的结果等于x7.考点:同底数幂的乘法.分析:根据同底数幂的乘法,可得答案.解答:解:x2•x52+57,故答案为:x7.点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.21.(2015•柳州)计算:A×A2.考点:同底数幂的乘法.分析:根据同底数幂的乘法计算即可.解答:解:A×2.故答案为:A2.点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法法则计算.22.(2015•安顺)计算:= 9 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法,可得(﹣3)2011•(﹣3)2,再根据积的乘方,可得计算结果.解答:解:(﹣3)2013•(﹣)2011=(﹣3)2•(﹣3)2011•(﹣)2011=(﹣3)2•{,﹣3×(﹣),}2011=(﹣3)2=9,故答案为:9.点评:本体考查了幂的乘方与积的乘方,先根据同底数幂的乘法计算,再根据积的乘方计算.23.(2015•大庆)若A25,B216,则().考点:幂的乘方与积的乘方.分析:根据幂的乘方与即的乘方,即可解答.解答:解:∵A25,B216,∴()2=5,()2=16,∴,∴,故答案为:.点评:本题考查了幂的乘方与即的乘方,解决本题的关键是注意公式的逆运用.24.(2015•黔东南州)A6÷A2= A4.考点:同底数幂的除法.分析:根据同底数幂的除法,可得答案.解答:解:A6÷A24.故答案为:A4.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.25.(2015•宝应县一模)已知103,102,则102m﹣n的值为.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.解答:解:10232=9,102m﹣102m÷10,故答案为:.点评:本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.26.(2015•漳州)计算:2A2•A4= 2A6.。

2015年中考数学试卷解析分类汇编(第1期)专题40_动态问题-推荐下载

2015年中考数学试卷解析分类汇编(第1期)专题40_动态问题-推荐下载

解答:解:由题意可得 BQ=x.
①0≤x≤1 时,P 点在 BC 边上,BP=3x,
则△BPQ 的面积= BP•BQ, 解 y= •3x•x= x2;故 A 选项错误;
第 2 页 共 46 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2015年全国各地中考数学试题分类汇总--综合题

2015年全国各地中考数学试题分类汇总--综合题

2015中考数学专题压轴题第 1 页安徽省2015年23.按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。

(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求; 【解】(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。

(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程) 【解】2015年常德市26.如图11,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FGAB BG=成立(考生不必证明). (1)探究:如图12,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(5分) (2)计算:若菱形ABCD 中660AB ADC ==o ,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长.(7分) (3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FGAB BG=还成立吗?(1分)图11图12第 3 页郴州市2015年27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线AC 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重合时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积. (1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.xN MQ PHGFED CBA图11QPN M HGFEDCB A 图10德州市二〇〇七年23.(本题满分10分)已知:如图14,在ABC △中,D 为AB 边上一点,36A ∠=o ,AC BC =,2AC AB AD =g .(1)试说明:ADC △和BDC △都是等腰三角形;(2)若1AB =,求AC 的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)D 图14第 5 页2015年龙岩市25.(14分)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.已知:矩形纸片ABCD 中,26AB =厘米,18.5BC =厘米,点E 在AD 上,且6AE =厘米,点P 是AB 边上一动点.按如下操作:步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图1所示); 步骤二,过点P 作PT AB ⊥,交MN 所在的直线于点Q ,连接QE (如图2所示) (1)无论点P 在AB 边上任何位置,都有PQ QE (填“>”、“=”、“<”号); (2)如图3所示,将纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点11Q Q ,点的坐标是( , ); ②当6PA =厘米时,PT 与MN 交于点22Q Q ,点的坐标是( , );③当12PA =厘米时,在图3中画出MN PT ,(不要求写画法),并求出MN 与PT 的交点3Q 的坐标; (3)点P 在运动过程,PT 与MN 形成一系列的交点123Q Q Q ,,,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.C B图1图3CE 图2第 7 页如图①,②,在平面直角坐标系xOy 中,点A 的坐标为(4,0),以点A 为圆心,4为半径的圆与x 轴交于O ,B 两点,OC 为弦,60AOC ∠=o ,P 是x 轴上的一动点,连结CP .(1)求OAC ∠的度数;(2分)(2)如图①,当CP 与A e 相切时,求PO 的长;(3分)(3)如图②,当点P 在直径OB 上时,CP 的延长线与A e 相交于点Q ,问PO 为何值时,OCQ △是等腰三角形?(7分)如图12,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连结AC交NP于Q,连结MQ.(1)点(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S 的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,说明理由.图12第 9 页如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为90o 的扇形.(1)求这个扇形的面积(结果保留π).(3分)(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分) (3)当O e 的半径(0)R R >为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分)图14B在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。

2015年全国中考数学试卷解析分类汇编

2015年全国中考数学试卷解析分类汇编

二次函数一、选择题1. (2014•上海,第3题4分)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的2. (2014•四川巴中,第10题3分)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c 考点:二次函数的图象和符号特征.分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解答:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a ﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3. (2014•山东威海,第11题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()该抛物线的对称轴是:的x、y的部分对应值如下表:=5. (2014•山东烟台,第11题3分)二次函数y=ax+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数的图象与性质.解答:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x 的增大而减小.解答:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b =﹣4a ,∴a +4a +c =0,即c =﹣5a ,∴8a +7b +2c =8a ﹣28a ﹣10a =﹣30a , ∵抛物线开口向下,∴a <0,∴8a +7b +2c >0,所以③正确; ∵对称轴为直线x =2,∴当﹣1<x <2时,y 的值随x 值的增大而增大,当x >2时,y 随x 的增大而减小,所以④错误.故选B .点评:本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.(2014山东济南,第15题,3分)二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤,即81<≤-t ,故选C .7. (2014•山东聊城,第12题,3分)如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )=8.(2014年贵州黔东南9.(3分))已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.9. (2014年贵州黔东南9.(4分))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.11. (2014•江苏苏州,第8题3分)二次函数y=ax+bx﹣1(a≠0)的图象经过点(1,1),则12. (2014•年山东东营,第9题3分)若函数y=mx+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数时一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.13.(2014•山东临沂,第14题3分)在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为14.(2014•山东淄博,第8题4分)如图,二次函数y=x+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.15.(2014•山东淄博,第12题4分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A (0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.16.(2014•四川南充,第10题,3分)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.17.(2014•甘肃白银、临夏,第9题3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()19.(2014•甘肃兰州,第11题4分)把抛物线y=﹣2x先向右平移1个单位长度,再向上平轴是直线x=1,则下列四个结论错误的是(),得二、填空题1. (2014•浙江杭州,第15题,4分)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.=x=2. *(2014年河南9.(4分))已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.答案:8.解析:根据点A到对称轴x=2的距离是4,又点A、点B关于x=2对称,∴AB=8.3. (2014年湖北咸宁15.(3分))科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4 ﹣2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1℃.考点:二次函数的应用.分析:首先利用待定系数法求二次函数解析式解析式,在利用二次函数最值公式求法得出即可.解答:解:设y=ax2+bx+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以y与x之间的二次函数解析式为:y=﹣x2﹣2x+49,当x=﹣=﹣1时,y有最大值50,即说明最适合这种植物生长的温度是﹣1℃.故答案为:﹣1.点评:此题主要考查了二次函数的应用以及待定系数法求二次函数解析式,得出二次函数解析式是解题关键.3.4.5.6.7.8.三、解答题1. (2014•上海,第24题12分)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x 轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.,B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.=.×==,.,,=的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;,,解得,5. (2014•山东潍坊,第24题13分)如图,抛物线y=ax+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。

2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。

如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。

【打包全套42份】2015年全国各地中考数学试卷分类汇编

【全套42份】2015年全国各地中考数学试卷分类汇编目录有理数 (2)实数 (34)整式与因式分解 (49)一元一次方程及其应用 (73)二元一次方程(组)及其应用 (81)不等式(组) (102)分式与分式方程 (144)二次根式 (183)一元二次方程及其应用 (205)平面直角坐标系与点的坐标 (246)函数与一次函数 (259)反比例函数 (352)二次函数 (450)统计 (630)频数与频率 (721)概率 (729)点线面角 (783)图形的展开与叠折 (789)相交线与平行线 (815)三角形的边与角 (838)全等三角形 (855)等腰三角形 (906)直角三角形与勾股定理 (933)多边形与平行四边形 (955)矩形菱形与正方形 (1000)图形的相似与位似 (1098)锐角三角函数与特殊角 (1212)解直角三角形 (1231)平移旋转与对称 (1283)圆的有关性质 (1362)点直线与圆的位置关系 (1417)正多边形与圆 (1496)弧长与扇形面积 (1505)投影与视图 (1532)尺规作图 (1563)规律探索 (1585)操作探究 (1615)方案设计 (1635)开放性问题 (1642)动态问题 (1649)阅读理解、图表信息 (1697)综合性问题 (1728)有理数选择题1.(2015湖南岳阳第1题3分)实数﹣2015的绝对值是()A.2015 B.﹣2015 C. ±2015 D.考点:绝对值..分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【详细分析】解:|﹣2015|=2015,故选:A.点评:本题考查了绝对值,解决本题的关键是熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2015湖北荆州第1题3分)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【详细分析】解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.3.(2015湖北鄂州第1题3分)的倒数是()A.B.3 C.D.【答案】C.考点:倒数.4.(2015•福建泉州第1题3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.(2015湖南邵阳第1题3分)计算(﹣3)+(﹣9)的结果是()A.﹣12 B.﹣6 C. +6 D. 12考点:有理数的加法..分析:根据有理数的加法运算法则计算即可得解.【详细分析】解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.6.(2015湖北鄂州第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学计数法表示(结果保留2个有效数字)应为()A.3.9×10 4B.3.94×10 4C.39.4×10 3D.4.0×10 4【答案】A.考点:1.科学记数法---表示较大的数;2.有效数字.7.(2015湖南邵阳第3题3分)2011年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的是()A.0.5×10﹣9米B. 5×10﹣8米C. 5×10﹣9米D. 5×10﹣7米考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详细分析】解:0.000 000 05米用科学记数法表示为5×10﹣8米.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8. (2015辽宁大连,1,3分)﹣2的绝对值是()A. 2B.-2C.D.-【答案】A【详细分析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A.9. (2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【详细分析】解:根据一切正数大于负数,故答案为>。

【9份】2015年全国各地中考数学试题(真题)分类汇编(精品推荐)

A.2B.3C. D.
二、填空题
1.(2015•南京)若式子 在实数范围内有意义,则x的取值范围是.
2.(2015•南京)计算 的结果是.
3.(2015•四川自贡)化简: =.
考点:绝对值、无理数、二次根式
分析:本题关键是判断出 值得正负,再根据绝对值的意义化简.
略解:∵ ∴ ∴ ;故应填 .
4.(2015•四川自贡)若两个连续整数 满足 ,则 的值是.
A.x≤2 B. x≥2 C. x<2 D.x>2
6.(2015•浙江杭州)若 k<<k+1(k是整数),则k=( )
A. 6B.7C. 8D. 9
【答案】D.
【考点】估计无理数的大小.
【分析】∵ ,
∴k=9. B. C. D.
8.(2015•重庆B)计算 的值是()
考点:无理数、二次根式、求代数式的值.
分析:本题关键是判断出 值是在哪两个连续整数之间.
略解:∵ ∴ ∴ ∴ ;故应填7.
5.(2015•四川资阳)已知: ,则 的值为_________.
三.解答题
1.(2015•江苏苏州)计算: .
【考点分析】考察实数计算,中考必考题型。难度很小。
【详细分析】解:原式=3+5-1=7.
涉及的公式为:金额=单价×数量
金额
单价
数量
乒乓球
1.5×20=30
1.5
20
球拍
22
将相关数据代入①即可解得:
解:设购买球拍 个,依题意得:
解之得:
由于 取整数,故 的最大值为7。
6.(山东菏泽)13.不等式组 的解集是__________-1≤x<3
7.(云南)已知不等式组 ,其解集在数轴上表示正确的是( )

2015年中考数学试卷真题与答案汇编一(不同省份31份)

为方便广大师生备战中考,特整理2015年全国中考全部真题及答案解析,由于文本较大,本套分为了五个系列共计182套真题与答案解析欢迎进入空间分别下载。

2015年福建省福州市中考数学试卷真题一、选择题(共10小题,每小题3分,满分30分) .. . . D .3.(3分)(2015•福州)不等式组的解集在数轴上表示正确的是( ).B ..D .77﹣17.(3分)(2015•福州)如图,在3×3的正方形网格中由四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )8.(3分)(2015•福州)如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()9.(3分)(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值10.(3分)(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x二、填空题(共6小题,满分24分)11.(4分)(2015•福州)分解因式a2﹣9的结果是.12.(4分)(2015•福州)计算(x﹣1)(x+2)的结果是.13.(4分)(2015•福州)一个反比例函数图象过点A(﹣2,﹣3),则这个反比例函数的解析式是.14.(4分)(2015•福州)一组数据:2015,2015,2015,2015,2015,2015的方差是.15.(4分)(2015•福州)一个工件,外部是圆柱体,内部凹槽是正方体,如图所示,其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.16.(4分)(2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.三、解答题(共10小题,满分96分)17.(7分)(2015•福州)计算:(﹣1)2015+sin30°+(2﹣)(2+).18.(7分)(2015•福州)化简:﹣.19.(8分)(2015•福州)如图,∠1=∠2,∠3=∠4,求证:AC=AD.20.(8分)(2015•福州)已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.21.(9分)(2015•福州)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?22.(9分)(2015•福州)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.23.(10分)(2015•福州)如图,Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C,分别交AC,BC于点D,E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.24.(12分)(2015•福州)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=.∴BF=.∴BC:BF=1:=:1.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是,tan∠HBC的值是;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是.25.(13分)(2015•福州)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.26.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.2015年福建省福州市中考数学试卷真题参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)....D.3.(3分)(2015•福州)不等式组的解集在数轴上表示正确的是().B..D.的解集是﹣后在数轴上表示出不等式组的解集是:∴不等式组的解集在数轴上表示为:.77﹣17.(3分)(2015•福州)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()8.(3分)(2015•福州)如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()9.(3分)(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值10.(3分)(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x由题意得,,解得,y=,二、填空题(共6小题,满分24分)11.(4分)(2015•福州)分解因式a2﹣9的结果是(a+3)(a﹣3).12.(4分)(2015•福州)计算(x﹣1)(x+2)的结果是x2+x﹣2.13.(4分)(2015•福州)一个反比例函数图象过点A(﹣2,﹣3),则这个反比例函数的解析式是.y==..14.(4分)(2015•福州)一组数据:2015,2015,2015,2015,2015,2015的方差是0.15.(4分)(2015•福州)一个工件,外部是圆柱体,内部凹槽是正方体,如图所示,其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为2cm3.AB=,),.16.(4分)(2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.BO=BM=BO+OM=1+AB=BC=BO=BM=BO+OM=1+,.三、解答题(共10小题,满分96分)17.(7分)(2015•福州)计算:(﹣1)2015+sin30°+(2﹣)(2+).,结合平方差公式进行计算,即可解1+.18.(7分)(2015•福州)化简:﹣.﹣19.(8分)(2015•福州)如图,∠1=∠2,∠3=∠4,求证:AC=AD.中,20.(8分)(2015•福州)已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.﹣21.(9分)(2015•福州)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.问:篮球、排球队各有多少支?解得:22.(9分)(2015•福州)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是2;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率..23.(10分)(2015•福州)如图,Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C,分别交AC,BC于点D,E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.,再利用勾股定理计算出=,BC=2AC=2AB==5CH ACCH=×﹣24.(12分)(2015•福州)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G 处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为矩形.证明:设正方形ABCD的边长为1,则BD==.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.∴∠A=∠BFE.∴EF∥AD.∴=,即=.∴BF=.∴BC:BF=1:=:1.∴四边形BCEF为矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是GH、DG,tan∠HBC的值是﹣1;(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是6.x矩形沿用“矩形沿用(“矩形沿“xDC=DH+CH=x=HBC==.;,BE===,即×=BN==矩形沿用(矩形矩形沿用(矩形矩形沿用(矩形中的“25.(13分)(2015•福州)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.26.(13分)(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是2,直线PQ与x轴所夹锐角的度数是45°;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.PH=PM,设﹣﹣a=),得出S=,==,OB=OA=2=SPH=PM6,+6)a=32015年福建省龙岩市中考数学试卷真题一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求)...的值比8大5.(4分)(2015•龙岩)如图所示几何体的主视图是(). .6.(4分)(2015•龙岩)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S 甲2=0.80,S 乙2=1.31,S 丙2=1.72,S 丁2=0.42,则成绩最稳定的同学8.(4分)(2015•龙岩)如图,在边长为的等边三角形ABC 中,过点C 垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为( ). . 9.(4分)(2015•龙岩)已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=( ).10.(4分)(2015•龙岩)如图,菱形ABCD 的周长为16,∠ABC=120°,则AC 的长为( )二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2015•龙岩)2015年6月14日是第12个“世界献血者日”,据国家相关部委公布,2014年全国献血人数达到约130 000 000人次,将数据130 000 000用科学记数法表示为.12.(3分)(2015•龙岩)分解因式:a2+2a=.13.(3分)(2015•龙岩)若4a﹣2b=2π,则2a﹣b+π=.14.(3分)(2015•龙岩)圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是°.15.(3分)(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.16.(3分)(2015•龙岩)我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有个.三、解答题(本大题共9小题,共92分)17.(6分)(2015•龙岩)计算:|﹣|+20150﹣2sin30°+﹣9×.18.(6分)(2015•龙岩)先化简,再求值:(x+1)(x﹣1)+x(2﹣x)+(x﹣1)2,其中x=2.19.(8分)(2015•龙岩)解方程:1+=.20.(10分)(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.21.(11分)(2015•龙岩)某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双?22.(12分)(2015•龙岩)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.会实践活动,设租用A型客车x辆,根据要求回答下列问题:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.24.(13分)(2015•龙岩)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.25.(14分)(2015•龙岩)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.(1)写出点D的坐标并求出抛物线的解析式;(2)证明∠ACO=∠OBC;(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.2015年福建省龙岩市中考数学试卷真题参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,每小题的四个选项中,只有一项符合题目要求)...的值比8大的值比5.(4分)(2015•龙岩)如图所示几何体的主视图是()..解:几何体的主视图为6.(4分)(2015•龙岩)若甲、乙、丙、丁四位同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,则成绩最稳定的同学8.(4分)(2015•龙岩)如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()..=1PBC==19.(4分)(2015•龙岩)已知点P(a,b)是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则+=().y=图象上异于点(﹣+=+==10.(4分)(2015•龙岩)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()×=2,.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2015•龙岩)2015年6月14日是第12个“世界献血者日”,据国家相关部委公布,2014年全国献血人数达到约130 000 000人次,将数据130 000 000用科学记数法表示为 1.3×108.12.(3分)(2015•龙岩)分解因式:a2+2a=a(a+2).13.(3分)(2015•龙岩)若4a﹣2b=2π,则2a﹣b+π=2π.14.(3分)(2015•龙岩)圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是90°.15.(3分)(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣3.16.(3分)(2015•龙岩)我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有9个.三、解答题(本大题共9小题,共92分)17.(6分)(2015•龙岩)计算:|﹣|+20150﹣2sin30°+﹣9×.+1×+218.(6分)(2015•龙岩)先化简,再求值:(x+1)(x﹣1)+x(2﹣x)+(x﹣1)2,其中x=2.x=2219.(8分)(2015•龙岩)解方程:1+=.20.(10分)(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.,AE=DC=AB=CD=,即())21.(11分)(2015•龙岩)某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双?×100%=25%,即b=25;22.(12分)(2015•龙岩)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.==4会实践活动,设租用A型客车x辆,根据要求回答下列问题:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.,424.(13分)(2015•龙岩)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.MD=AD DN=AC=3AC=3cosA==,=,解得cosA==,即=,AM=,AD=t=2AM=,时,25.(14分)(2015•龙岩)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.(1)写出点D的坐标并求出抛物线的解析式;(2)证明∠ACO=∠OBC;(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.ACO==,CBO==,即可得出∠,t﹣y=(,=3,x﹣ACO==,CBO==,x+4,t+4,x+4+4==4+224+2﹣211+),x+4•+4==4+2,4+2),,x+4•+4=,4+2),4+2),11+4+2﹣)4+2﹣23+2015年福建省莆田市中考数学试卷真题一、选择题(共10小题,每小题4分,满分40分)3.(4分)(2015•莆田)右边几何体的俯视图是( )....5.(4分)(2015•莆田)不等式组的解集在数轴上可表示为( )..6.(4分)(2015•莆田)如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )7.(4分)(2015•莆田)在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8.(4分)(2015•莆田)如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()9.(4分)(2015•莆田)命题“关于x的一元二次方程x2+bx+1=0,必有实数解.”是假命题.则10.(4分)(2015•莆田)数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是()二、细心填一填(共6小题,每小题4分,满分24分)11.(4分)(2015•莆田)要了解一批炮弹的杀伤力情况,适宜采取(选填“全面调查”或“抽样调查”).12.(4分)(2015•莆田)八边形的外角和是.13.(4分)(2015•莆田)中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.14.(4分)(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.15.(4分)(2015•莆田)如图,AB切⊙O于点B,OA=2,∠BAO=60°,弦BC∥OA,则的长为(结果保留π).16.(4分)(2015•莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是.三、耐心做一做(共10小题,满分86分)17.(7分)(2015•莆田)计算:|2﹣|﹣+(﹣1)0.18.(7分)(2015•莆田)解分式方程:=.19.(8分)(2015•莆田)先化简,再求值:﹣,其中a=1+,b=﹣1+.20.(10分)(2015•莆田)为建设”书香校园“,某校开展读书月活动,现随机抽取了一部分学生的日人均阅读时间x(单位:小时)进行统计,统计结果分为四个等级,分别记为A,B,C,D,其中:A:0≤x<0.5,B:0.5≤x<1,C:1≤x<1.5,D:1.5≤x<2,根据统计结果绘制了如图两个尚不完整的统计图.(1)本次统计共随机抽取了名学生;(2)扇形统计图中等级B所占的圆心角是;(3)从参加统计的学生中,随机抽取一个人,则抽到“日人均阅读时间大于或等于1小时”的学生的概率是;(4)若该校有1200名学生,请估计“日人均阅读时间大于或等于0.5小时”的学生共有人.21.(8分)(2015•莆田)如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长.22.(8分)(2015•莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.23.(8分)(2015•莆田)某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的变化趋势如图1,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图2中所确定抛物线的解析式;(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?24.(8分)(2015•莆田)如图,矩形OABC,点A,C分别在x轴,y轴正半轴上,直线y=﹣x+6交边BC于点M(m,n)(m<n),并把矩形OABC分成面积相等的两部分,过点M的双曲线y=(x>0)交边AB于点N.若△OAN的面积是4,求△OMN的面积.25.(10分)(2015•莆田)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c 为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q 为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.26.(12分)(2015•莆田)在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF 的中点,连接PC,PE.特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕着点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B C2015年全国中考数学试题分类汇编————压轴题1.在平面直角坐标系xOy中,抛物线的解析式是y =241x+1,点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.(1) 写出点M的坐标;(2) 当四边形CMQP是以MQ,PC为腰的梯形时.①求t关于x的函数解析式和自变量x的取值范围;②当梯形CMQP的两底的长度之比为1:2时,求t的值.2. 如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连结PC,过点P作PE⊥PC交AB于E(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.3.如图,已知抛物线y=-12x2+x+4交x轴的正半轴于点A,交y轴于点B.(1)求A、B两点的坐标,并求直线AB的解析式;(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ 为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.4.如图,P 为正方形ABCD 的对称中心,A (0,3),B (1,0),直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以2个单位每秒速度运动,运动时间为t 。

求:(1)C 的坐标为 ; (2)当t 为何值时,△ANO 与△DMR 相似? (3)△HCR 面积S 与t 的函数关系式;并求以A 、B 、C 、R 为顶点的四边形是梯形 时t 的值及S 的最大值。

5.(2010年浙江金华)如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A,B 两点坐标分别为(3,0)和(0,.动点P 从A 点开始沿折线AO-OB-BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为1 2 (长度单位/秒)﹒一直尺的上边缘l 从x 轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB ,AB 交于E ,F 两点﹒设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动.请解答下列问题: (1)过A ,B 两点的直线解析式是 ;(2)当t ﹦4时,点P 的坐标为 ;当t ﹦ ,点P 与点E 重合;(3)① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为菱形,则t 的值是多少?② 当t ﹦2时,是否存在着点Q ,使得△FEQ ∽△BEP ?若存在, 求出点Q 的坐标;若不存在,请说明理由.6.如图1、在平面直角坐标系中,O 是坐标原点,□ABCD 的顶点A 的坐标为(-2,0),点D 的坐标为(0,32),点B 在x 轴的正半轴上,点E 为线段AD 的中点,过点E 的直线l 与x 轴交于点F ,与射线DC 交于点G 。

(1)求DCB ∠的度数;(2)连结OE ,以OE 所在直线为对称轴,△OEF 经轴对称变换后得到△F OE ',记直线F E '与射线DC 的交点为H 。

①如图2,当点G 在点H 的左侧时,求证:△DEG∽△DHE; ②若△EHG 的面积为33,请直接写出点F 的坐标。

7.△ABC 中,∠A =∠B =30°,AB =ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(图1)(图2)(图3)(1) 当点BB 的横坐标; (2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你 探究:①当a =12b =-,c =A ,B 两点是否都 在这条抛物线上?并说明理由;② 设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.8.如图,设抛物线C 1:()512-+=x a y , C 2:()512+--=x a y ,C 1与C 2的交点为A , B ,点A的坐标是)4,2(,点B 的横坐标是-2. (1)求a 的值及点B 的坐标;(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作正三角形DHG . 记过C 2顶点M的 直线为l ,且l 与x 轴交于点N .① 若l 过△DHG 的顶点G ,点D 的坐标为 (1, 2),求点N 的横坐标;② 若l 与△DHG 的边DG 相交,求点N 的横坐标的取值范围.9.如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP=AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点, HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y . (1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式并求y 的最大值; (3)当x 为何值时,△HDE 为等腰三角形?10.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB l ∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF 上AC 交射线BB 1于F ,G 是EF 中点,连结DG .设点D 运动的时间为t 秒. (1)当t 为何值时,AD=AB ,并求出此时DE 的长度; (2)当△DEG 与△AC B 相似时,求t 的值;(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后的图形为A ′C ′. ①当t>53时,连结C ′C ,设四边形ACC ′A ′的面积为S ,求S 关于t 的函数关系式;②当线段A ′C ′与射线BB l ,有公共点时,求t 的取值范围(写出答案即可).H11.如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示2x -1x ,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴...围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.12.如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒 (1)当点P 在线段AO 上运动时. ①请用含x 的代数式表示OP 的长度;②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.13.如图,已知△ABC ∽△111C B A ,相似比为k (1>k ),且△ABC 的三边长分别为a 、b 、c (c b a >>),△111C B A 的三边长分别为1a 、1b 、1c 。

⑴若1a c =,求证:kc a =;⑵若1a c =,试给出符合条件的一对△ABC 和△111C B A ,使得a 、b 、c 和1a 、1b 、1c 进都是正整数,并加以说明;⑶若1a b =,1b c =,是否存在△ABC 和△111C B A 使得2=k ?请说明理由。

14.如图,在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、B (-33,1)、C (-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (-433,0)的直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C ′. (1)求折痕所在直线EF 的解析式;AC(2)一抛物线经过B 、E 、B ′三点,求此二次函数解析式;(3)能否在直线EF 上求一点P ,使得△PBC 周长最小?如能,求出点P 的坐标;若不能,说明理由. 解:15. 问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内的一点,且AD =CD ,BD =BA 。

探究∠DBC 与∠ABC 度数的比值。

请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。

(1) 当∠BAC =90︒时,依问题中的条件补全右图。

观察图形,AB 与AC 的数量关系为 ;当推出∠DAC =15︒时,可进一步推出∠DBC 的度数为 ; 可得到∠DBC 与∠ABC 度数的比值为 ;(2) 当∠BAC ≠90︒时,请你画出图形,研究∠DBC 与∠ABC 度数的比值 是否与(1)中的结论相同,写出你的猜想并加以证明。

16.如图所示,已知抛物线k x x y +-=241的图象与y 轴相交于点)1,0(B ,点(,)C m n 在该抛物线图象上,且以BC 为直径的⊙M 恰好经过顶点A . (1)求k 的值; (2)求点C 的坐标;(3)若点P 的纵坐标为t ,且点P 在该抛物线的对称轴l 上运动,试探 索:①当12S S S <<时,求t 的取值范围(其中:S 为△PAB 的面积,1S 为△OAB 的面积,2S 为四边形OACB 的面积);②当t 取何值时,点P 在⊙M 上.(写出t 的值即可)17.如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =1,OC =2,点D 在边OC 上且54OD =. (1)求直线AC 的解析式;(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得DMC △为等腰三角形?若存在,直接写出....所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线2y x =-经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且ODE △沿DE 折叠后点O 落在边AB 上O ′处?18.如图1,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示).① 当t=25时,判断点P 是否在直线ME 上,并说明理由;② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.19.如图1A ,OA=5。

相关文档
最新文档