MIM金属粉末注射成形

合集下载

金属粉末注射成型技术

金属粉末注射成型技术

技术应用领域
1.计算机及其辅助设施:如打印机零件、磁芯、撞针轴销、驱动零件; 2.工具:如钻头、刀头、喷嘴、枪钻、螺旋铣刀、冲头、套筒、扳手、电工工具,手工具等; 3.家用器具:如表壳、表链、电动牙刷、剪刀、风扇、高尔夫球头、珠宝链环、圆珠笔卡箍、刃具刀头等零 部件; 4.医疗机械用零件:如牙矫形架、剪刀、镊子; 5.军用零件:导弹尾翼、枪支零件、弹头、药型罩、引信用零件; 6.电器用零件:电子封装,微型马达、电子零件、传感器件; 7.机械用零件:如松棉机、纺织机、卷边机、办公机械等; 8.汽车船舶用零件:如离合器内环、拔叉套、分配器套、汽门导管、同步毂、安全气囊件等。
技术简介
其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射 成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终 产品。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工 程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。因此,国 际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术” 和“21世纪的成形技术”。
金属粉末注射成型技术
将现代塑料注射成型技术引入粉末冶金领域而形成的新 型粉末冶金近净形成型技术
01 技术简介
目录
02 历史与现状
03 术应用领域
06 未来发展方向
金属粉末注射成型技术(Metal Powder Injection Molding Technology,简称MIM)是将现代塑料注射成型 技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成型技术。

金属粉末的注射成型

金属粉末的注射成型

金属粉末的注射成型金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。

在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。

其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。

模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。

注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。

注射后,模具中的混合物开始固化,形成绿色零件。

最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。

相对于传统的金属加工方法,金属粉末注射成型具有以下优势:首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。

其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。

此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。

最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。

然而,金属粉末注射成型也存在应用范围的限制。

首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。

其次,较大的尺寸限制了MIM在制造大尺寸、高精度的零件上的应用。

此外,与其他成型方法相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。

尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。

随着制造技术的进步和材料属性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创新的解决方案。

2024年金属粉末注射成型技术市场分析现状

2024年金属粉末注射成型技术市场分析现状

2024年金属粉末注射成型技术市场分析现状概述金属粉末注射成型(Metal Powder Injection Molding, MIM)技术是一种将金属粉末与有机增塑剂混合,通过注塑成型和烧结工艺制备具有复杂形状的金属制品的高效方法。

随着制造技术的不断发展,MIM技术在各个领域中得到了广泛应用。

本文将对金属粉末注射成型技术市场现状进行分析。

市场规模在过去几年里,金属粉末注射成型技术市场呈现出快速增长的趋势。

根据市场研究公司的数据显示,2019年全球金属粉末注射成型技术市场规模已经达到了xx亿美元,预计到2025年将以xx%的年复合增长率增长至xx亿美元。

市场驱动因素金属粉末注射成型技术在市场中受到了诸多因素的驱动。

1. 快速生产周期和低成本相对于传统的金属加工方法,金属粉末注射成型技术具有更快的生产周期和更低的成本。

通过MIM技术,制造商可以在更短的时间内生产出复杂形状的金属零部件,且无需进行额外的加工。

这大大缩短了产品的上市时间,并降低了生产成本。

2. 设计自由度高金属粉末注射成型技术可以制造出具有较高设计自由度的金属制品。

MIM技术可以实现对金属粉末的高度精细控制,因此可以制造出复杂的形状、具有细节和微小尺寸的金属部件,在航空航天、汽车、医疗器械等领域中得到广泛应用。

3. 资源节约金属粉末注射成型技术使用金属粉末和有机增塑剂作为原材料,相对于传统的金属加工方法,节约了大量的原材料成本。

此外,金属粉末注射成型技术可以进行材料的混合使用,利用了废料和回收材料,提高了资源的利用效率。

市场应用金属粉末注射成型技术在许多领域中得到了广泛应用。

1. 汽车制造汽车制造业是金属粉末注射成型技术的重要应用领域之一。

MIM技术可以制造出具有复杂几何形状的零部件,如汽车引擎零部件、传动系统零部件等。

这不仅提高了汽车整体性能,同时也降低了汽车的重量,提高了燃油效率。

2. 医疗器械金属粉末注射成型技术在医疗器械领域中也得到了广泛应用。

MIM技术介绍

MIM技术介绍

MIM技术介绍MIM技术,即金属注射成型技术(Metal Injection Molding),是一种将金属粉末与高聚合物粉末相混合,通过注射成型后烧结制成零件的先进制造技术。

该技术的特点是将金属粉末颗粒与粘结剂混合,并在注射成型后通过烧结过程将粉末颗粒结合在一起形成致密的金属零件。

MIM技术是目前最流行的三维成型技术之一,它兼具了传统压力成型和金属烧结的优点。

在MIM技术中,首先将金属粉末与粘结剂按一定比例混合,形成MIM料浆。

然后,通过注射机将MIM料浆注射到金属模具中进行成型。

成型后的零件经过脱模,形成近净成型的未烧结零件。

最后,通过烧结过程,将未烧结零件在惰性气氛下加热至金属粉末的熔点以上进行烧结,粘结剂将烧结后残留物挥发,金属粉末颗粒结合在一起,形成致密的金属零件。

MIM技术的优点主要表现在以下几个方面。

首先,MIM技术可以制造形状复杂、精度高的零件,相比传统的金属加工方法更加灵活。

其次,MIM技术能够生产大批量的零件,并且具有高度的一致性,适用于需求量大的产品制造。

此外,MIM技术还可以制造超细或微型零件,满足现代微电子、医疗器械等领域对高精度零件的需求。

尽管MIM技术在低成本、高效率和高精度等方面具有明显优势,但也存在一些挑战。

首先,MIM技术对原料的要求较高,金属粉末的粒度和形状对成型效果有较大影响。

其次,粘结剂的选择和控制也是一项关键任务。

此外,由于烧结过程中需要控制温度和气氛等因素,烧结工艺相对复杂。

因此,MIM技术的成功应用需要综合考虑材料、工艺和设备等多个因素。

总的来说,MIM技术是一种高度灵活、高效率、高精度的金属成型方法,已在汽车、航空航天、电子、医疗器械等领域得到广泛应用。

随着材料科学和制造技术的不断发展,MIM技术将进一步完善和推广,为各个行业提供更多高质量的金属零件。

MIM技术作为一种金属粉末成型技术,具有独特的优势和特点,逐渐成为制造业中不可忽视的一种先进工艺。

2024年金属粉末注射成型(MIM)市场前景分析

2024年金属粉末注射成型(MIM)市场前景分析

金属粉末注射成型(MIM)市场前景分析概述金属粉末注射成型(Metal Injection Molding,简称MIM)是一种通过将金属粉末与聚合物混合,并注射到模具中形成所需形状的金属件的制造工艺。

MIM技术结合了传统的塑料注射成型和金属粉末冶金加工的优势,可以用于生产复杂形状和高精度的金属零件。

本文将对金属粉末注射成型市场的前景进行分析。

市场规模随着制造业的迅猛发展和对高质量金属零件的需求增加,金属粉末注射成型市场正在快速扩大。

根据市场研究公司的数据,2019年全球金属粉末注射成型市场规模达到XX亿美元,预计到2026年将达到XX亿美元。

北美和欧洲是金属粉末注射成型市场的主要地区,但亚太地区的市场份额正在快速增长。

主要应用领域金属粉末注射成型技术在各个行业中得到广泛应用。

其中,汽车工业是金属粉末注射成型市场的主要驱动因素之一。

MIM技术可以用于生产汽车零部件,如发动机组件、传动系统零件和底盘部件等。

此外,电子行业也是金属粉末注射成型的重要市场,用于生产各种电子设备中的金属连接器、传感器和高精密零件。

医疗行业也是金属粉末注射成型的潜在市场,因为MIM零件可以用于生产人工关节、牙科设备和外科手术工具等。

优势和挑战金属粉末注射成型技术具有许多优势。

首先,MIM技术能够生产复杂形状和高精度的金属零件,与传统的加工方法相比具有成本优势。

其次,MIM技术可以在一次注射成型中完成多个零件的生产,提高了生产效率。

此外,金属粉末注射成型技术还可以实现材料的高度可控性,满足客户对材料性能的特殊要求。

然而,金属粉末注射成型技术还面临一些挑战。

首先,MIM设备和模具的投资成本相对较高,对小型企业来说可能是一个限制因素。

其次,金属粉末注射成型过程相对较复杂,需要专业的工艺控制和技术人员的支持。

最后,对于一些大型和厚壁零件的生产,金属粉末注射成型技术可能无法满足要求,需要采用其他加工方法。

发展趋势金属粉末注射成型市场在未来几年有望继续保持较快的增长势头。

金属粉末的注射成型课件

金属粉末的注射成型课件

金属粉末的注射成型课件金属粉末注射成型(Metal Powder Injection Molding,简称MIM)是一种用于生产精密金属部件的先进制造技术。

它将金属粉末与聚合物结合,经过注射成型、脱蜡、烧结等多个工序,最终得到具有复杂形状和精确尺寸的金属零件。

以下是针对MIM的课件,详细介绍了其工艺流程、材料选择、应用领域等相关内容。

一、MIM工艺流程1.原料配比:根据零件的要求和性能指标,选取合适的金属粉末和粘结剂进行混合。

2.注射成型:将混合物注入金属注射机中,通过高压注射技术将混合物注入模具中,形成绿体。

3.脱蜡:将绿体在特定温度下进行脱蜡处理,去除粘结剂,得到蜡模复制体。

4.烧结:将蜡模复制体放入高温炉中进行烧结,使金属粉末颗粒结合,形成致密的金属零件。

5.后处理:包括去除余蜡、表面处理、热处理等工序,以提高零件的强度和耐磨性。

6.检测和质量控制:对成品进行尺寸、力学性能、表面质量等方面的检测,确保产品质量。

二、MIM材料选择1.金属粉末:常见的金属粉末有不锈钢、低合金钢、铜合金、钛合金等。

根据零件的应用环境和要求,选择合适的金属材料。

2.粘结剂:粘结剂在成型过程中起到连接金属粉末的作用,通常选择热融性较好的有机聚合物作为粘结剂。

常用的粘结剂有石蜡、聚苯乙烯、聚乙烯等。

3.添加剂:为了改善金属粉末的流动性、可压性和烧结性能,常在原料中添加一定量的添加剂,如润滑剂、增塑剂等。

三、MIM应用领域1.电子通讯领域:MIM技术可制造微型模块、连接器和天线等小型结构件,提高电子产品的性能和可靠性。

2.汽车工业:MIM技术可制造汽车部件,如汽车发动机的传感器、变速器的齿轮、刹车系统的活塞等,提高汽车的性能和安全性。

3.医疗器械领域:MIM技术可制造医疗器械部件,如植入式人工关节、牙科器械等,具有高精度、复杂形状和生物相容性的特点。

4.工具制造领域:MIM技术可制造锥度齿轮、刀具、模具等精密工具,应用于航空航天、模具制造等领域。

MIM金属注射成形工艺

MIM金属注射成形工艺

MIM金属注射成形工艺MIM(Metal Injection Molding)金属注射成形工艺是一种集粉末冶金和塑料注射成形技术于一体的先进制造工艺。

它能够将金属粉末与有机粘结剂混合后注射成形,再通过脱脂和烧结工艺将有机粘结剂去除,最终得到具有高密度和良好力学性能的金属零件。

MIM工艺是20世纪70年代初期由美国开发出来的,随后逐渐发展成为一种重要的中小型复杂金属部件加工方法。

MIM工艺具有以下几个特点:1.范围广泛:MIM工艺可以用于加工多种金属材料,如不锈钢、钨合金、硬质合金、软磁合金等,能够满足不同行业的各类零件加工需求。

2. 高精度:MIM工艺能够制造出极其复杂形状的零件,其尺寸精度可以达到0.01mm,能够满足不同行业对于精度要求较高的零件加工需求。

3.高密度:由于MIM工艺采用了高压注射成形和高温烧结工艺,所得金属零件具有较高的密度,接近于纯金属的密度,因此具有良好的力学性能。

4.成本低:相比于传统的加工方法,MIM工艺具有成本低、生产效率高的特点。

同时,由于MIM工艺能够实现零件的复合成形,使得原本需要多道工序制造的零件可以一次性完成,从而节约了生产成本。

MIM工艺的加工过程主要包括原料制备、注射成形、脱脂和烧结四个步骤:1.原料制备:首先需要将金属粉末和有机粘结剂按一定比例混合,得到可以流动注射的MIM料浆。

2.注射成形:将MIM料浆注入MIM注射机中,经过热筒和螺杆的作用,将MIM料浆注射到注射模具中,形成所需形状的零件。

3.脱脂:将注射成形后的零件进行脱脂处理。

脱脂是将有机粘结剂从注射件中去除的过程,通常通过热脱脂和溶剂脱脂两种方法进行。

4.烧结:脱脂后的注射件在高温环境下进行烧结处理。

烧结是将金属粉末粒子相互结合的过程,通过高温使金属粉末颗粒间形成颗粒间结合,从而得到具有高密度和良好力学性能的金属零件。

总结一下,MIM金属注射成形工艺通过将金属粉末与有机粘结剂混合注射成形,然后经过脱脂和烧结工艺,最终得到高密度和良好力学性能的金属零件。

金属粉末注射成型

金属粉末注射成型

金属粉末注射成型金属粉末注射成型(Metal Powder Injection Molding,简称MIM)是一种高效、精确和经济的金属加工技术。

它结合了传统的塑料注射成型和金属粉末冶金工艺,可以生产出复杂形状的金属部件。

MIM技术在汽车、医疗、航空航天等行业中得到广泛应用,本文将介绍MIM的工艺原理、材料选择和应用领域。

MIM工艺原理可以分为四个步骤:混合、注射、脱模和烧结。

首先,将金属粉末与聚合物粉末、脱模剂等混合,并将其加热到高温使其熔化。

然后,将熔融的混合物喷射到模具中,形成所需的部件形状。

接下来,通过在高温和高压下使部件凝固,并将其从模具中取出。

最后,在高温下进行烧结,以消除聚合物,并在金属颗粒之间形成冶金结合。

在MIM中,材料选择是关键。

常用的金属材料包括不锈钢、工具钢、硬质合金、钻石等。

不锈钢具有良好的韧性和耐腐蚀性,常用于制造医疗器械、手表零件等高精度部件。

工具钢具有高强度和耐磨性,常用于制造汽车零部件、工具等。

硬质合金具有高硬度和耐磨性,常用于制造切削工具、注射模具等。

钻石是一种具有超硬性和导热性的材料,常用于制造高性能刀具。

MIM技术具有许多优点。

首先,MIM可以生产出复杂形状的部件,减少了后续加工的需要。

其次,MIM可以实现批量生产,提高了生产效率。

再次,MIM可以生产出高密度的部件,具有良好的力学性能和表面质量。

此外,MIM工艺还可以减少材料的浪费,提高了资源利用率。

MIM技术在许多领域中得到了广泛的应用。

在汽车行业中,MIM可以制造各种复杂形状的汽车零部件,如发动机零件、制动系统零件等。

在医疗行业中,MIM可以制造高精度医疗器械,如人工关节、牙科器械等。

在航空航天行业中,MIM可以制造轻量化部件,提高了飞机的燃油效率。

此外,MIM还可以应用于电子、军工等领域。

总之,金属粉末注射成型是一种高效、精确和经济的金属加工技术。

通过在MIM中选择合适的材料和工艺参数,可以生产出各种复杂形状的金属部件,并在汽车、医疗、航空航天等行业中得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)MIM可以成型三维形状复杂的各种金属材料零件(只要这种材料能被制成细粉)。零件各部位的密度和性能 一致,既各向同性。为零件设计提供了较大的自由度。
(2)MIM能最大限度制得接近最终形状的零件,尺寸精度较高。
(3)即使是固相烧结,MIM制品的相对密度可达95%以上,其性能可与锻造材料相媲美。特别是动力学性能优良。
流动的载体。因此,粘接剂的选择是整个粉末注射成型的关键。对有机粘接剂要求:①用量少,即用较少的粘接剂 能使混合料产生较好的流变性;②不反应,在去除粘接剂的过程中与金属粉末不起任何化学反应;③易去除,在制 品内不残留碳。
2.2.3 混炼与制粒 混炼时把金属粉末与有机粘接剂均匀掺混在一起,将其流变性调整到适于注射成型状态的作用,混合料的均匀
程度直接影响其流动性,因而影响注射成型工艺参数乃至最终材料的密度及其它性能,注射成型过程中产生的下角 料、废品都可重新破碎、制粒,回收再用。
2.3.4 注射成型
本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。在注射成型过程中,混合 料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。注射成型的 毛坯的密度在微观上应均匀一致,从而使制品在烧结过程中均匀收缩。控制注射温度、模具温度、注射压力、保压 时间等成型参数对获得稳定的生坯重量至关重要。要防止注射料中各组分的分离和偏析,否则将导致尺寸失控和畸 变而报废。
3.1.2 MIM与精密铸造的比较
在金属成型工艺中,压铸和精密铸造是可以成型三维复杂形状的零件,但压铸仅限于低熔点金属,而精密铸造 (IC)限于合金钢、不锈钢、高温合金等高熔点金属及有色金属,对于难熔合金如硬质合金、高密度合金、金属陶 瓷等却无能为力,这是IC的本质局限性,而且IC对于很小、很薄、大批量的零件生产是十分困难或不可行的。IC产 业化已成熟,发展的潜力有限。MIM是新兴的工艺,将挤入IC大批量小零件的市场。
(4)粉末冶金(PM)的自动模压机的价格比注射成型机要高数倍。MIM可方便地采用一模多腔模具,成型效率高, 模具使用寿命长,更换调整模具方便快捷。
(5)注射料可反复使用,材料利用率达98%以上。
(6)产品转向快。生产灵活性大,新产品从设计到投产时间短。
(7)MIM特别适合于大批量生产,产品性能一致性好。如果生产的零件选择适当,数量大,可取得较高的经济效 益。
MIM金属粉末 注射成形 工艺技术
一、技术概念
金属(陶瓷)粉末注射成型技术(Metal Injection Molding,简称MIM技术)是集塑料成型工艺学、高分子化学、 粉末冶金工艺学和金属材料学等多学科相互渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密 度、高精度、三维复杂形状的结构零件,能够快速准确的将设计思想物化为具有一定结构、功能特性的制品并可直 接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切 削、经济效益高等优点,而且克服了传统粉末冶金工艺制品密度低、材质不均匀、机械性能低、不易成型薄壁、复 杂结构的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。
2、MIM工艺过程 2.1 工艺流程
2.2 过程简介
2.2.1 金属粉末 MIM工艺所用金属粉末颗粒尺寸一般在0.5~20μm,从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。
而传统的粉末冶金工艺则采用大于40μm的较粗的粉末。
2.2.2 有机胶粘剂 有机粘接剂作用是粘接金属粉末颗粒,使混合料在注射机料筒中加热具有流变性和润滑性,也就是说带动粉末
(8)MIM所用材料范围宽,应用领域广阔。可用于注射成型的材料非常广泛,如碳钢、合金钢、工具钢、难熔合 金、硬质合金、高比重合金等。MIM制品的应用领域已经遍及国民经济各领域。
选择何种金属成型工艺,零件的复杂性和生产产量是两个主要决定因素。MIM工艺在零件生产量大和复杂程度 高时独占优势。对于零件设计者,应着重设计三维形状复杂的生产量大的零件,以充分发挥MIM工艺的特点,取得 降低生产成本和提高产品性能的效果。
MIM技术弥补了传统加工方法在技术上的不足或无法制作的缺憾,并非只与传统加工方法竞争,MIM技术可以 在传统加工方法无法制作的零件领域发挥其特长。
其工艺特点与其它工艺的比较如下图:
3.2 MIM的优点
从MIM的工艺本质分析,是目前最适合于大批量生产高熔点材料,高强度、复杂形状零件的工艺,其优点可归 纳如下:
2.2.7 后处理
对于尺寸要求较为精密及有特殊性能要求的零件,需要进行必要的后处理。本工序与常规金属制品的热处理工 序相同。
3、MIM工艺特点3.1 MIM工艺与其它加 Nhomakorabea工艺的对比
3.1.1 MIM与传统的粉末冶金(PM)的比较
MIM使用的原料粉末粒径在2—15μm,而传统粉末冶金的原料粉末粒径大多在50—100μm。MIM工艺的成品密 度高,原因是使用微细粉末。形状上自由度高是传统粉末冶金所不能达到的,表1为两工艺的比较。
2.2.5 脱粘
成型毛坯在烧结前必须去除毛坯内所含有的有机粘接剂,该过程称为脱粘。脱粘工艺必须保证粘接剂从毛坯的 不同部位沿着颗粒之间的微小通道逐渐地排出,而不降低毛坯的强度。溶剂萃取部分粘接剂后,还要经过热脱粘除 去剩余的粘接剂。脱粘时要控制坯件中的碳含量和减少氧含量。
2.2.6 烧结
烧结是在通有可控气氛的烧结炉中进行的。MIM零件的高密度化是通过高的烧结温度和长的烧结时间来达到的, 从而大大提高和改善零件材料的力学性能。
3.1.3 MIM与传统机械加工的比较
传统机械加工法,近来靠自动化而提升其加工能力,在效率和精度上有极大的进步,但是基本的程序上仍脱不 开逐步加工(车削、刨、铣、磨、钻孔、抛光等)完成零件形状的方式。机械加工方法的加工精度远优于其他加工 方法,但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具,有些零件无法用机械加工完成。相反的, MIM可以有效利用材料,形状自由度不受限制。对于小型、高难度形状的精密零件的制造,MIM工艺比较机械加工 而言,其成本较低且效率高,具有很强的竞争力。
相关文档
最新文档