锅炉给水调节系统

合集下载

锅炉汽包水位控制系统

锅炉汽包水位控制系统

摘要锅炉是典型的复杂热工系统,目前,中国各种类型的锅炉有几十万台,由于设备分散.管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。

锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工锅炉安全. 稳定运行的重要指标,保证水位控制在给定范围内,对于高蒸汽品质.减少设备损耗和运行损耗、确保整个网络安全运行具有要意义。

锅炉汽包水位髙度,是确保安全生产和提供优质蒸汽的重要参数,对现代工业生产来说尤其是这样。

因为现代锅炉的特点之一就是蒸发量显著提高,汽包容积相对变小,水位变化速度很快,稍不注意就容易造成汽包满水或者烧成干锅。

在现代锅炉操作中,即使是缺水事故,也是非常危险的,这是因为水位过低,就会影响自然循环的正常进行,严重时会使个别上水管形成自由水面,产生流动停滞,致使金属管壁局部过热而爆管。

无论满水或缺水都会造成事故,因此,必须严格控制水位在规定范围之内。

维持汽包水位在给定范围内是保证锅护和汽轮机安全运行的必要条件,也是锅炉正常运行的主要指标之一。

水位过高,会影响汽包内汽水分离效果,使汽包出口的饱和蒸汽带水增多,蒸汽带水会使汽轮机产生水冲击,引起轴封破损、叶片断裂等事故。

同时会使饱和蒸汽中含盐量增高,降低过热蒸汽品质,增加在过热器管壁和汽轮机叶片上的结垢。

水位过低,则可能破坏自然循环锅炉汽水循环系统中某些薄弱环节,以致局部水冷管壁被烧坏,严重时会造成爆炸事故。

这些后果都是十分严重的。

随着锅炉容量的增加,水位变化速度愈来愈快,人工操作愈来愈繁重,因此对汽包水位实现自动调节提出了迫切的要求。

汽包水位的控制是锅炉控制的一个难点,目前,对汽包水位控制大多采用常规PID 控制方式,传统的常规PID控制方式是根据控制对象的数学模型建立,由于锅炉水位系统存在非线性.不确定性时滞和负荷干扰.非最小相位特征等,其精确的数学模型往往无法获得而且常规PID控制的参数是固定不变的,难以适应各种扰动及对象变化,其控制效果往往难以满足要求,控制效果不理想。

直流锅炉给水调节系统分析(1)

直流锅炉给水调节系统分析(1)

直流锅炉给水调节系统分析(1)文章出处:黑龙江省电力科学研究院发布时间:2006-03-210 前言直流锅炉给水调节系统的主要任务应是以最快的速度满足汽机所需要的蒸汽量,保持汽水行程某中间点的焓值为给定值,保持蒸汽的参数为给定值,对主蒸汽温度进行粗调,维持锅炉一定的燃水比[1]。

现以俄罗斯500MW超临界机组的给水调节系统为例分析直流锅炉给水调节系统的控制特点。

该机组锅炉炉膛为T型结构,具有两个给水流程,对锅炉给水的控制比较复杂,具有一定的代表性。

该直流锅炉流程给水流量调节,是通过控制两个汽泵调速汽门或者通过执行机构控制电泵的液力耦合器以及调节给水调节阀来实现的。

给水系统结构见图1。

图1 给水系统结构图直流锅炉给水调节系统包括调节器设定值形成系统、给水流量分配调节系统(该系统在运行工况允许的情况下,最大限度打开给水调节阀,以保证给水流程中最小程度的节流损失)、电动泵、汽动泵效率调节系统、热量信号形成系统、调节器逻辑信号形成系统和温度校正调节系统。

1 调节器设定值形成系统给水定值信号形成结构见图2,在远程或自动工况下,对积分模块ИHT1.2的控制来实现对Ⅰ流程给水流量设定值的形成。

在自动工况中,积分模块由比例脉冲调节模块ИДС1.1控制。

在汽动泵调节器、电动泵效率调节器和给水调节器处于手动时,相应的定值器转换到跟踪“自身”流程给水流量的随动工况。

微分控制程序:直流锅炉在机组切断高压加热器时,如果锅炉燃料量保持不变,则应减小给水定值。

给水温度降低会使直流锅炉汽水分离面前移,汽水行程某中点的焓值降低,应减小给水流量;反之,给水温度升高时,则应增加给水流量。

图2 Ⅰ流程给水流量定值的形成2 给水调节器给水调节器主要包括流量分配控制模块和调节阀位置调节模块。

如果汽动泵和电动泵的两个效率调节器都被切除,则系统中Ⅰ流程和Ⅱ流程给水调节模块(ΠΠΠ2.4、ΠΠΠ2.8)控制自己的调节阀,按“设定——流量”系统独立工作。

锅炉 环路平差流量调节

锅炉 环路平差流量调节

锅炉环路平差流量调节锅炉环路平差流量调节是一种常见的锅炉控制方法,旨在通过调节流量来实现锅炉系统的平稳运行和热能的高效利用。

本文将介绍锅炉环路平差流量调节的原理、作用、调节方法以及其在工业生产中的应用。

锅炉是工业生产中常用的热能转换设备,其主要功能是将燃料燃烧产生的热能转化为蒸汽或热水,并将其用于供热或供应工业生产所需的蒸汽动力。

锅炉的运行状态直接影响着热能的利用效率和生产过程的稳定性。

而锅炉环路平差流量调节就是为了实现锅炉的稳定运行而采取的一种控制措施。

锅炉环路平差流量调节的原理是基于锅炉热力平衡的原理。

锅炉的热平衡是指锅炉燃烧热能的输入和热能的输出之间的平衡关系。

在锅炉的热平衡中,热量的输入主要来自燃料的燃烧,而热量的输出则体现在锅炉排放的废气、烟气和热水中。

锅炉环路平差流量调节的目的就是通过调节锅炉的流量,使得热量的输入和输出之间达到平衡,从而实现锅炉的稳定运行。

锅炉环路平差流量调节的作用是多方面的。

首先,它可以有效地控制燃烧过程,保证燃料的充分燃烧和热能的高效利用。

其次,它可以提高锅炉的热效率,减少能源的消耗,降低生产成本。

此外,锅炉环路平差流量调节还可以保证锅炉的稳定运行,避免因燃烧不完全或过热等问题而导致的锅炉故障和停产事故的发生。

锅炉环路平差流量调节的方法有多种,其中常用的方法包括调节阀的调节和反馈控制的调节。

调节阀的调节是通过调节锅炉的进水阀门或排烟阀门的开度来控制锅炉的流量。

当锅炉的流量过大时,可以适当降低阀门的开度,减少流量;当锅炉的流量过小时,则可以适当增大阀门的开度,增加流量。

反馈控制的调节是通过对锅炉的输入和输出进行测量,根据测量结果进行反馈控制,调节阀门的开度。

通过不断测量和调节,使得锅炉的流量始终保持在一个合适的范围内,实现平稳运行和热能的高效利用。

锅炉环路平差流量调节在工业生产中具有广泛的应用。

首先,它适用于各类锅炉系统,包括燃煤锅炉、燃气锅炉、燃油锅炉等。

其次,它适用于不同的工业生产过程,包括供热、发电、化工等领域。

锅炉主给水旁路系统工作原理

锅炉主给水旁路系统工作原理

锅炉主给水旁路系统工作原理一、旁路系统组成锅炉主给水旁路系统主要由以下几个部分组成:1. 高压泵:负责将除氧器内的水加压,通过高压管道送至旁路系统。

2. 旁路阀:控制进入锅炉的水流量,同时将高压水减压至适当的压力。

3. 温度传感器:监测进入锅炉的水温,确保水温在合适的范围内。

4. 压力传感器:监测进入锅炉的水压,确保水压在合适的范围内。

5. 控制柜:集中控制整个旁路系统的运行,接收传感器信号,并控制高压泵和旁路阀的工作。

二、旁路系统作用锅炉主给水旁路系统的主要作用是确保锅炉安全、稳定、高效地运行。

具体来说,旁路系统的作用包括:1. 调节水温:通过控制进入锅炉的水温,确保锅炉的燃烧效率。

2. 调节水压:通过控制进入锅炉的水压,确保锅炉的安全运行。

3. 流量控制:通过控制进入锅炉的水流量,保证锅炉的供热稳定。

4. 防止水锤:在高压管道中设置旁路,可以避免水锤现象对管道的破坏。

三、旁路系统工作流程旁路系统的工作流程如下:1. 除氧器中的水经过高压泵加压后,通过高压管道流入旁路系统。

2. 旁路阀根据控制系统的指令,调节进入锅炉的水流量和压力。

3. 温度传感器和压力传感器实时监测进入锅炉的水温和水压,并将信号反馈给控制系统。

4. 控制系统根据反馈的信号和预设参数,对高压泵和旁路阀进行调节,以保证水温、水压和流量在合适的范围内。

5. 通过旁路系统调节后的水,直接进入锅炉进行加热,或与主给水混合后进入锅炉进行加热。

四、旁路系统控制方式旁路系统的控制方式主要有以下几种:1. 手动控制:操作人员根据实际运行情况,手动调节旁路阀的开度,以控制进入锅炉的水流量和压力。

这种方式简单易行,但需要操作人员有丰富的经验和对系统的熟悉程度。

2. 自动控制:通过控制系统自动调节旁路阀的开度,以维持水温、水压和流量的稳定。

这种方式可以大大减轻操作人员的负担,提高系统的稳定性和可靠性。

控制系统可以通过PID调节算法等控制策略进行自动调节。

第六讲 直流炉给水控制系统(12页)

第六讲  直流炉给水控制系统(12页)

第四章直流炉给水控制系统直流锅炉给水调节系统具有多重控制任务:(1)维持中间点温度等于定值;(2)快速跟随燃料量,保证燃水比,共同满足负荷要求;(3)调整中间点温度,实现过热汽温粗调。

第一节直流炉给水系统的特点一、汽包炉给水系统特点在汽包锅炉中,汽包把整个锅炉的汽水流程分隔成三部分,即加热段(省煤器)、蒸发段(水冷壁)和过热段(过热器)。

这三段受热面面积的大小是固定不变的。

汽包除作为汽水的分离装置外,其中的存水和空间容积还作为燃水比失调的缓冲器。

当燃水比(给水跟踪燃料流量的比例关系)失调后,在一段相当长的时间里(非事故的范围内),并不改变原来那三段受热面面积的大小。

例如,增加给水流量,给水量的变化就破坏了原来的平衡状态,汽包水位升高了;但由于燃料流量没有变化,所以蒸发段的吸热量及其产生的蒸汽量可近似认为不变。

因为过热段的受热面是固定的,因此出口汽压、汽温都不会有什么变化,如同燃水比未失调一样。

如果燃料方面的变化破坏了原来的平衡状态,比如燃料量增加,蒸发段就会产生较多的蒸汽,但同时过热段也吸收了较多的热量,所以可使汽温变化不大,然而此时出口蒸汽压力和流量却都增加了。

由于给水流量没有改变,汽包中的部分水变成了多蒸发的那部分蒸汽,所以汽包水位降低了。

从以上所述可以看出,在汽包锅炉中,水位是燃水比是否失调的标志。

用给水流量调节水位,实质上起到了间接保持燃水比不变的作用。

二、直流炉给水系统特点直流炉的汽水流程中既没有汽包,又没有炉水小循环回路。

直流炉是由受热面以及连接这些受热面的管道所组成,图4-1是直流炉汽水流程示意图.给水泵图4-1直流炉汽水流程示意图给水泵强制一定流量的给水进入炉内,一次性流过加热段、蒸发段和过热段,然后去汽轮机。

它的循环倍率始终为1,与负荷无关。

给水泵出口水压通过上述三段受热面里的工质,直接影响出口汽压,所以直流炉的汽压是由给水压力、燃料流量和汽轮机调节汽门共同决定的。

直流炉汽水流程中的三段受热面没有固定的分界线。

锅炉启动过程中主给水切换操作

锅炉启动过程中主给水切换操作

361阀:调整储水罐水位。
用途:调整锅炉储水罐水位和水质不 合格时进行更换水时的排水阀。 特点: 1、361阀1投入自动时水位调节范围 为9—12m,361阀2投入自动时水位调 节范围为12—15m。 2、主要用于储水罐水位高的使用的调 整手段。
主给水80MW之 间进行主给水切换工作较为稳妥。 1、切换主给水具备条件:
(1)、原则上机组负荷在160—180MW之间; (2)、给水调节为旁路调节,给水旁路开度>70%以上, 给水调节站前后压差0.5Mpa以内; (3)、热负荷余量足够,切换完后,能继续升负荷至 200MW以上; (4)、燃烧稳定、水位、给水流量无大幅度波动; (5)、至少一台汽泵运行,电泵备用。 (6)、微开主给水电动门(脱离开位即可)
2、主给水切换操作及注意事项:
检查达到给水由旁路切 换至主路条件,检查给水 流量稳定,适当开启主给 水电动门。 监视给水流量的变化,若 给水流量上涨(上升50t/h 左右)。 应点击“停止”维持该门在 当前开度。 暂停给水电动门的操作, 调整汽泵调门,减少汽泵 出力,维持给水流量与蒸 汽流量匹配,控制储水罐 水位在12—15m,适当减 少给水流量,继续按照上 述方法开启主给水电动门, 根据这种方法逐渐将主给 水电动门全开。
(1)、切换操作:
(2)注意事项:
Ⅰ.给水操作平台前后压差大,切换时给水流量波动大。由于汽泵旋转备 用时,转速3000r/min,锅炉自动投入,再循环全开状态,出口压力有 8.4MPa左右,已接近可调范围的低限,在从旁路切换到主路时,应保证 主给水调节站前后压差<0.5Mpa,若切换过早,导致给水流量上升较快, 造成高水位事故,后续操作不当将造成给水流量大幅度波动,有可能引 发给水流量低低动作MFT。 Ⅱ.主给水电动门开启过程中开度不合适造成给水流量波动大。主给水电 动门开启时间约2分40秒。注意观察给水流量变化量,给水流量开始变化 时,可以将主给水电动门复位,如果给水流量增长速度还快,可以适当 减小汽泵调门,甚至关小主给水电动门,调整水位正常后再缓慢开启主 给水电动门。主给水电动门开启后,给水流量无明显变化,应立即确认 主给水电动门是否已经动作。 Ⅲ.切换时,减温水量波动大。在切换到主路时,首先汽温、负荷、主汽 压力稳定。 Ⅳ. 切换过程中参数监视不到位。切换时分离器水位可以维持低一点,在 整个切换过程中,监视给水流量、分离器水位变化,防止其大幅度波动, 造成分离器水位变化大。

锅炉给水调节系统

锅炉给水调节系统

锅炉给水调节系统汽包锅炉给水自动调节系统第一节给水调节任务与给水调节对象动态特性一、给水调节的任务汽包锅炉给水调节的任务是使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内。

汽包水位反映了汽包锅炉蒸汽负荷与给水量之间的平衡关系,是锅炉运行中一个非常重要的监控参数,保持汽包水位正常是保证锅炉和汽轮机安全运行的必要条件。

汽包水位过高,会影响汽包内汽水分离器的正常工作,造成出口蒸汽湿度过大(蒸汽带水)而使过热器管壁结垢,容易导致过热器烧坏。

同时,汽包出口蒸汽湿度过大(蒸汽带水)也会使过热汽温产生急剧变化,直接影响机组运行的经济性和安全性。

汽包水位过低,则可能破坏锅炉水循环,造成水冷壁管烧坏而破裂。

二、给水调节对象动态特性汽包水位是由汽包中的储水量和水面下的气泡容积所决定的,因此凡是引起汽包中储水量变化和水面下的气泡容积变化的各种因素都是给水调节的扰动。

(1)给水流量扰动。

这个扰动来自给水调节门的开度变化、省煤器可动喷嘴开关动作、给水压力变化、给水泵转速波动等引起锅炉给水量改变的一切因素。

(2)蒸汽负荷扰动。

这个扰动是指汽轮机负荷变化而引起的蒸汽流量的改变,它使水位发生变化。

(3)锅炉炉膛热负荷扰动。

这个扰动主要是由锅炉燃烧率的变化改变了蒸发强度而引起的,它影响锅炉的输出蒸汽流量和汽水容积中的气泡体积。

给水调节对象的动态特性是指由上述引起水位变化的扰动与汽包水位间的动态关系。

当给水流量扰动时,水位调节对象的动态特性表现为有惯性的无自平衡能力特征,也就是说,当给水流量改变后水位并不会立即变化。

给水流量增加,一方面使进入锅炉汽包的给水量增加;另一方面使温度较低的给水进入省煤器、汽包及水循环系统,吸收了原有饱和水中的一部分热量,致使水面下气泡体积减小。

当蒸汽流量扰动时,汽包水位将出现“虚假水位” 现象。

原因是在蒸汽负荷突然增加时,虽然锅炉的给水流量小于蒸发量,但开始阶段的水位不仅不下降,反而迅速上升(反之,当负荷突然减少时,水位反而先下降)。

如何调节锅炉给水中的pH值

如何调节锅炉给水中的pH值

如何调节锅炉给水中的pH值?
为了防止给水对锅炉系统金属的氢去极化作用而引起的腐蚀,以及防止金属表面的保护膜遭到腐蚀破坏,通常是在给水中加氨(或胺)来调节pH值,氨溶于水呈碱性的氨水(NH4OH)与水中的碳酸起中和反应:
如加入的氨量将H2CO3中和至NH4HCO3时,pH值约为7.9;如果中和至(NH4)2CO3时,水中pH值约为9.2。

由于给水pH调节值大致在8.8~9.3,因此加氨量稍多于第一步反应而接近第二步反应。

通常将NH4OH配成0.5%(质量分数)与N2H4一起加入除氧器的出口给水管中。

实际所需的加氨量,尚须通过运行过程的调试来决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锅炉给水调节系统 Modified by JACK on the afternoon of December 26, 2020汽包锅炉给水自动调节系统第一节给水调节任务与给水调节对象动态特性一、给水调节的任务汽包锅炉给水调节的任务是使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内。

汽包水位反映了汽包锅炉蒸汽负荷与给水量之间的平衡关系,是锅炉运行中一个非常重要的监控参数,保持汽包水位正常是保证锅炉和汽轮机安全运行的必要条件。

汽包水位过高,会影响汽包内汽水分离器的正常工作,造成出口蒸汽湿度过大(蒸汽带水)而使过热器管壁结垢,容易导致过热器烧坏。

同时,汽包出口蒸汽湿度过大(蒸汽带水)也会使过热汽温产生急剧变化,直接影响机组运行的经济性和安全性。

汽包水位过低,则可能破坏锅炉水循环,造成水冷壁管烧坏而破裂。

二、给水调节对象动态特性汽包水位是由汽包中的储水量和水面下的气泡容积所决定的,因此凡是引起汽包中储水量变化和水面下的气泡容积变化的各种因素都是给水调节的扰动。

(1)给水流量扰动。

这个扰动来自给水调节门的开度变化、省煤器可动喷嘴开关动作、给水压力变化、给水泵转速波动等引起锅炉给水量改变的一切因素。

(2)蒸汽负荷扰动。

这个扰动是指汽轮机负荷变化而引起的蒸汽流量的改变,它使水位发生变化。

(3)锅炉炉膛热负荷扰动。

这个扰动主要是由锅炉燃烧率的变化改变了蒸发强度而引起的,它影响锅炉的输出蒸汽流量和汽水容积中的气泡体积。

给水调节对象的动态特性是指由上述引起水位变化的扰动与汽包水位间的动态关系。

当给水流量扰动时,水位调节对象的动态特性表现为有惯性的无自平衡能力特征,也就是说,当给水流量改变后水位并不会立即变化。

给水流量增加,一方面使进入锅炉汽包的给水量增加;另一方面使温度较低的给水进入省煤器、汽包及水循环系统,吸收了原有饱和水中的一部分热量,致使水面下气泡体积减小。

当蒸汽流量扰动时,汽包水位将出现“虚假水位”现象。

原因是在蒸汽负荷突然增加时,虽然锅炉的给水流量小于蒸发量,但开始阶段的水位不仅不下降,反而迅速上升(反之,当负荷突然减少时,水位反而先下降)。

因为在负荷变化的初始阶段,水面下的气泡体积变化很快,对水位变化起着主要影响作用。

同时,改变汽轮机的用汽量引起的蒸汽流量的阶跃扰动,必定引起汽压的变化,汽压变化也会影响到水面下气泡的体积变化,所以实际的虚假水位现象会更严重些。

当燃料量扰动时,例如燃料量增加使炉膛热负荷增强,这时锅炉蒸发强度增大而使汽压升高,即使蒸汽流量调节设备(汽轮机调门)不动,蒸汽流量也会有所增加。

这样,蒸汽流量大于给水流量,水位应该下降。

但蒸发强度增大同样也使水面下气泡体积增大,因此也会出现虚假水位现象。

一般,给水流量变化作为维持水位的调节手段,称在给水流量扰动下的对象动态特性为内扰特性。

对蒸汽负荷和炉膛热负荷扰动下的对象动态特性则称为对象的外扰特性。

给水调节系统中,一般考虑采用以主要扰动(蒸汽流量)为前馈信号的前馈调节,以改善给水调节系统的调节质量。

负荷变化时出现的“虚假水位”现象,是锅炉运行中的必然现象,是无法通过调节给水流量来克服的。

如果在负荷扰动中,汽包虚假水位变化过大而超出了运行允许范围,则只有通过限制负荷的一次突变量和变负荷速度来减小。

第二节给水自动主调节方案(串级三冲量给水调节系统)给水调节器根据汽包水位、蒸汽流量和给水流量三个信号去调节给水流量。

其中水位是主信号,水位升高时减少给水流量,水位降低时增加给水流量。

蒸汽流量D和给水流量W是引起水位变化的原因(扰动信号),把它们作为水位调节的前馈信号。

当蒸汽流量D改变时,调节器立即动作适当地改变给水流量,而当给水流量自发地变化时,调节器也能立即动作使给水流量恢复到原来的数值,这样无疑会有效地控制水位的变化。

在水位H变化和蒸汽流量D 变化而引起调节器动作时,给水流量信号W又是调节器动作的反馈信号。

由于采用了蒸汽流量信号D,当负荷改变时就有一个使给水量与负荷同方向变化的信号,从而减少或抵消了由于“虚假水位”现象而使给水量向与负荷相反方向变化的趋势。

参见MCS1-图SH157。

汽包水位H简图:串级给水调节系统方框图主调节器采用PI调节规律,以保证汽包水位无静态偏差,主调节器的输出信号和给水、蒸汽流量信号都作用到副调节器上。

一般串级调节系统的副调节器可采用比例调节器,以保证副回路的快速性。

主要是因为副回路是具有近似比例特性的快速随动系统,以使副回路具有快速消除内扰及快速跟踪蒸汽流量的能力。

这样,串级系统主、副调节器的任务不同,副调节器的任务是用以消除因给水压力波动等因素引起的给水流量的自发扰动以及当蒸汽负荷改变时迅速调节给水流量,以保证给水流量和蒸汽流量平衡。

主调节器的任务是校正汽包水位偏差。

单冲量调节就是调节器仅仅根据汽包水位信号H去调节给水量。

这个时候要特别注意锅炉水位“虚假水位”现象。

只有电动给水泵具有单冲量自动调节功能,汽动给泵不具备条件。

在三冲量条件不成立时,汽动给泵控制强制手动方式。

第三节给水全程调节系统1/2U给水系统有三台给水泵,两台容量为50%的汽动给泵(由小机转速变化调节给水量)和一台容量为25%的电动给泵(用给水调节阀调节给水量)。

在给水泵的出口有再循环管,给水泵的出水可以通过此管路打回除氧器,以保证在低负荷时泵的最小流量。

简图锅炉给水系统对给水调节系统,要求在锅炉启、停过程、正常运行及事故处理中均能控制锅炉的进水量,保持汽包水位在允许范围内,实现全程自动调节。

在锅炉正常运行阶段给水调节采用三冲量调节方式,通过改变汽动给水泵转速来调节给水量;在锅炉起动、低负荷阶段或FCB等事故情况下,给水调节为单冲量方式。

在使用电动给水泵时调节电动泵出口给水调节阀开度来调节给水流量。

锅炉起动时的单冲量给水调节系统,一直工作到锅炉负荷升到20%额定负荷(根据主蒸汽量信号),汽动给泵投入并通过转速变化来调节给水量,给水调节系统即切换为三冲量方式。

当汽动给泵投入可靠后,并且给泵的流量控制手/自动开关已置于自动侧后,电动泵给水调节阀逐渐关闭,起动作用的电动给泵停运。

低负荷时的单冲量控制方式和正常负荷范围时的三冲量控制方式的切换是自动进行的。

一、信号的校正锅炉从启动到正常运行的过程中,蒸汽参数和负荷在很大范围内变化,这就使水位、给水流量和蒸汽流量的测量准确性受到影响。

为了实现全程调节,首先必须保证在各种工况下都能得到正确的水位信号、蒸汽流量信号和给水流量信号,所以需要对这些测量信号进行压力、温度变化的自动校正。

1)汽包水位的校正(参见MCS-1图SH154、155)。

对汽包锅炉通常利用压差原理来测量其水位。

锅炉从启、停到正常负荷的整个运行范围内,汽包压力变化很大,汽包内饱和蒸汽和饱和水密度的变化也很大,这样就不能直接用压差信号来代表水位,对大容量锅炉这个误差尤其严重,故必须根据汽包压力对所测量到的水位差信号进行修正,才能得到反映真实水位的信号。

水位H是差压和汽、水密度的函数。

H=(K1-K2Pd-ΔP)/f(Pd)2)蒸汽流量的校正(参见MCS-1图SH6)。

过热蒸汽流量通常采用标准节流装置进行测量,测量流量与装置输出差压间的关系表达:D=KΔPg,没有采用修正。

3)给水流量的校正。

对给水流量的测量只需采取温度校正。

若给水温度变化也不大的话,则可不必对给水流量进行校正。

系统没有采用。

二、给水单冲量调节方式在启、停及低负荷阶段采用单冲量、高负荷时采用三冲量的结构。

1、概述在正常工况下,给水调节采用三冲量调节方式,但在锅炉启停阶段,或者在机组发生局部事故需要转入低负荷运行时,给水流量和蒸汽流量的测量精确度很差,另外在机组启动过程中,由于暖管操作需要消耗一部分蒸汽,此时给水流量和蒸汽流量测量值已不能反映汽包输入与输出之间的物质平衡关系。

因此,在这些情况下都采用单冲量调节方式。

2、电泵给水调节阀门切换在以控制电动泵出口阀门开度来调节汽包水位的单冲量调节系统中,为了得到平滑的流量控制,所以在电动给泵出口设置了2只并联的调节阀(主阀和付阀)。

起动时,调节器控制通流能力较小的付阀,当给水量增大到一定值时,系统自动切换到通流能力较大的主阀的控制。

的流量通过,为使调节门切换时流量平稳,所以主阀与副阀切换时考虑有一定的重叠度(调节裕度)。

上述主阀与付阀的切换顺序是通过逻辑电路(图5-4-53)自动实现的:增加时:①付阀开度在90%②付阀开度在70%以下时,主阀处于强制关闭状态; ③当付阀开度>70%时,主阀开始强制开后,并保持20%助开度;④当付阀开度>90%时,保持此开度不变,主阀投入自动调节状态。

减小时:①付阀保持90%开度,主阀自动调节;②主阀开度<20%,付阀开度<90%时,增加指令由主阀接受,减小指令由付阀接受;③付阀开度<90%,主阀保持20%开度,付阀参予自动调节;④付阀开度<20%,主阀强制全关,付阀自动调节。

3、汽包压力对调节器参数的校正(参见MCS-1图SH160)在单冲量给水调节系统中还考虑了汽压变化时调节器参数校正的功能。

因为通过给水阀的流量W 不仅与开度有关,且与阀门两端压力有关,在同样的阀门开度时,汽包压力不同,给水流量就会不同。

所以需要考虑压力修正。

压力修正是通过改变调节器的比例增益来实现的。

当汽包压力降低时,为了保持住某一给水量W ,阀门开度应相应减小;汽包压力升高时,为了保持住某一给水量W ,阀门开度应该相应增大。

HW图 汽包压力对调节器参数的校正 主阀 图5-4-52汽包压力P B4、电泵给水调节强制手动条件(参见MCS-1图SH163)主阀全关副阀全关电泵停止汽包水位信号异常电泵给水调节强制手动汽包水位设定值与实际偏差大主阀指令与反馈偏差大副阀指令与反馈偏差大三、三冲量给水调节方式锅炉负荷增加到20%额定负荷(根据主蒸汽流量信号)时,给水调节系统自动地从单冲量方式切换为三冲量方式。

这是一个串级调节系统。

汽包水位是调节主信号,主蒸汽流量作为先行信号,代表与负荷相应的给水需求量,总给水量作为反馈信号,总给水流量W是进入锅炉的给水量和进入过热器减温的喷水流量相加而成。

水位信号加到给水调节器、它的输出与蒸汽流量信号D、给水流量信号W 叠加成为给水主指令,通过平衡模块分配后,分别加到三个平行的流量调节回路,调节各台给泵的流量。

1、流量调节回路(参见MCS-1图SH158、159、160)流量调节回路是具体实现给水流量调节的控制回路,它使给水量与主调节器输出的给水主指令相适应。

三个流量调节回路的结构是相似的,下面以A泵(汽动给泵)为例说明之。

A泵流量调节回路接受平衡模块输出的给水主指令,再附加给水偏置流量信号,再循环流量校正信号,经过函数器f(x)转换后,通过逻辑执行回路,作用到脉冲马达(已无脉冲马达),去控制汽动泵的转速。

相关文档
最新文档