样本量的确定
市场调研中的样本选择与样本量确定方法

市场调研中的样本选择与样本量确定方法在市场调研过程中,样本选择和样本量确定是非常重要的步骤。
合理的样本选择和样本量确定方法可以确保调研数据具有代表性和可信度。
本文将介绍市场调研中常用的样本选择和样本量确定方法,并对其优缺点进行详细分析。
一、样本选择方法1. 简单随机抽样简单随机抽样是指从总体中按照相同的概率独立地随机选择样本的方法。
这种方法能够确保每个样本的选择机会相等,具有代表性。
但是,在实际应用中,可能会存在抽取样本不完全随机的情况,导致样本选择的偏倚。
2. 系统抽样系统抽样是按照一定的规律从总体中选择样本的方法,例如每隔固定的间隔选择一个样本。
这种方法相对简便,但可能会引入一定的抽样偏倚。
3. 分层抽样分层抽样方法是将总体划分为若干个互不重叠的子总体,然后从每个子总体中进行抽样。
这种方法可以保证每个子总体的代表性,适用于样本选择上具有多个明显特征的总体。
4. 整群抽样整群抽样是指将总体分成若干个互不重叠的群体,然后从中随机选择若干个群体作为样本。
这种方法适用于总体具有自然形成的群体,例如某个地区的消费者群体。
二、样本量确定方法1. 经验法经验法是根据研究者的经验和专业知识来确定样本量。
这种方法操作简单,但容易受主观因素的影响,不够科学准确。
2. 公式法公式法是根据统计学原理和抽样误差要求来确定样本量。
常用的公式包括通过总体标准差来计算样本量的公式和通过总体比例来计算样本量的公式。
这种方法相对科学准确,但需要掌握一定的统计学知识。
3. 置信度和置信水平法置信度和置信水平法是根据置信度和置信水平来确定样本量。
研究者可以根据不同的置信度和置信水平来确定合适的样本量。
这种方法能够更好地控制研究结果的可靠性。
4. 功效分析法功效分析法是通过设定研究效应值和研究检验的显著性水平,来确定样本量。
这种方法可以帮助研究者评估样本量对研究结论的影响,并给出具体的样本量要求。
在确定样本量时,还需要考虑研究的目的、资源限制和可行性。
毕业论文中的样本选择和样本量确定

毕业论文中的样本选择和样本量确定样本选择和样本量确定在毕业论文中是非常重要的步骤。
本文将从样本选择的原则、样本量的确定方法以及在毕业论文中如何合理应用这些方法等方面进行探讨。
1. 样本选择的原则在毕业论文中,样本选择要遵循一定的原则,以保证样本的代表性和可靠性。
以下是几个常用的样本选择原则:(1)随机抽样原则:通过使用随机数表或随机数发生器,从目标总体中等概率地抽取样本,以排除主观因素对样本的影响,从而提高样本的代表性。
(2)分层抽样原则:当总体可以分为若干个互相独立的子总体时,可以先按照某种特征将总体划分为若干个层次,然后在各个层次上进行简单随机抽样,以保证样本在各个层次上的分布与总体相似。
(3)滚动抽样原则:在研究进行过程中,根据实际情况逐步增加或调整样本量,以使样本更具代表性,并能反映研究对象的变化趋势。
2. 样本量的确定方法合理确定样本量是保证研究结果可靠性的重要环节。
以下是几种常用的样本量确定方法:(1)经验公式法:根据经验公式确定样本量,例如当总体容量较大时,可使用经验公式n = Z^2 * P * (1-P) / E^2来估算样本量,其中Z表示显著性水平对应的Z值,P表示总体比例,E表示误差容忍度。
(2)专家判断法:根据经验或领域专家的判断确定样本量,考虑研究内容的特殊性和独特性,综合考虑相关因素。
(3)统计学方法:通过统计学方法进行样本量的计算,根据研究设计、假设检验的力和效应大小等因素进行样本量计算,以保证研究结果的准确性。
3. 在毕业论文中的应用在毕业论文中,样本选择和样本量确定的具体应用取决于研究的目标和方法。
以下是几个常见的情况:(1)问卷调查:在进行问卷调查时,可以根据研究的目标和受众群体的特点,采用随机抽样原则进行样本选择,并根据样本调查结果进行样本量的确定,以便获取可靠的统计数据。
(2)实证研究:在进行实证研究时,可以根据研究的问题和目标,选择适当的样本选择原则,并根据相关的统计学方法确定样本量,以获得可信的实证结果。
样本量的确定

当研究的特征具有最大的变异程度时,调 查需要的样本容量也最大。
对于只取两个值的特征,则当这两个值在 总体中以50—50的比例出现时,特征的变 异程度最大。
SSI
第23页
如果所研究特征的真实变异程度大于确定 样本容量时我们估计的变异程度,那么, 调查估计值的精度就会低于期望的精度。
注意,公式(1)使用了有限总体校正因子n/N,对总体规模进行校 正。如果忽略这个因子,初始样本容量n1就可以按下列公式计算:
SSI
第30页
设计效果因子
一般来说,当样本容量的计算公式假定为简单随机抽样SRS, 但使用的是更复杂的选样方式时,达到既定精度所需的样本容量应
该乘以设计效果因子。
设计效果=对于同样规模的样本容量,给定样本设计下 估计量的抽样方差对简单随机抽样估计量的 抽样方差的比率。
对于简单随机抽样设计,设计效果 = 1
SSI
第20页
我们来看假设有一个首次开展的调查,试图估 计对某企业提供的服务持满意态度的顾客比例。对 “顾客满意”这一指标,设置两个可能的值:满意 或者不满意。
SSI
第21页
SSI
表2 列出了持满意和不满意态度的顾客可能占的比例的组合
1
100% 满意
2
90% 满意
3
80% 满意
4
70% 满意
5
60% 满意
6
50% 满意
7
40% 满意
8
30% 满意
9
20% 满意
10
10% 满意
11
0% 满意
0% 满意 10% 满意 20% 满意 30% 满意 40% 满意 50% 满意 60% 满意 70% 满意 80% 满意 90% 满意 10% 满意
样本量的确定方法及公式

样本量的确定方法及公式
样本量的确定是研究中的一个重要的环节,其确定方法和公式可以为研究者提供参考。
样本量的确定是根据具体研究的需要,考虑到调查对象及其调查环境等因素来决定的。
根据实际情况,确定样本量应与研究的范围及内容有关,以保证研究结果的可靠性。
样本量的确定一般需要根据样本量计算公式来确定,其公式为:n=N/(1+Ne²),其中n为样本量,N为总体数量,e为允许的误差。
此计算公式适用于调查对象的数量和分布都已知的情况,研究者可以根据自身研究的具体情况,填写相应的数值,以确定样本量。
研究者在确定样本量的过程中,应考虑到样本量的充分性和合理性,以保证研究结果的可靠性和准确性。
如果样本量过大,将增加研究成本,而样本量过小,则可能影响研究结果的准确性。
因此,研究者应根据自身研究的内容和需要,合理确定样本量,以保证研究的可靠性。
样本量的确定是研究中的一个重要环节,其确定方法和公式可以为研究者提供参考。
研究者在确定样本量时应考虑到调查对象及其调查环境,并参照样本量计算公式确定,以保证研究结果的可靠性和准确性。
3.3-2-3.4样本量的确定

wh
Wh S h
ch
h
W S
h 1 h
L
ch
n
ch )( Wh S h /
h 1
ch ) (4)
V ( yst )
W
h 1
L
h
Sh 2
N
二、不同应用场合下的公式
(3)当按奈曼分配时,
n ( Wh S h )
h 1 L 2
wh
Wh S h
W S
h 1 h
L
Wh S h 2 N
h 1
(1)
若估计精度以误差限形式给出,则
n (
W
h 1
L
2
h Sh
2
wh
d 2 ) t
Wh Sh 2 N
h 1
L
W 2 h S h 2 wh
h 1
L
rYst 2 ( ) t
Wh S h 2 N
h 1
L
(2)
其中d为绝对误差限,r为相对误差限,t为标准正态分布的双侧
分位数。
二、不同应用场合下的公式
(1)当按比例分配时,wh=Wh,
n
W
h 1
L
h
Sh 2
h
V ( y st )
L
W
h 1
L
Sh 2
N
n0 1 n0 / N
(3)
其中n0
Wh S h 2
h 1
V ( y st )
(2)当按最优分配时,
( Wh S h
h 1 L L
没有考虑ch的差异对总费用的影响
一 样本量分配对精度与费用的影响
估计总体均值 时样本量的确定

估计总体均值时样本量的确定估计总体均值时样本量的确定1.引言在统计学中,估计总体均值是一项常见的任务。
然而,在进行估计时,选择合适的样本量是至关重要的。
本文将探讨在估计总体均值时,样本量的确定方法,并对这一主题进行全面评估。
2.为什么确定样本量很重要样本量的确定直接关系到估计的准确性和可靠性。
如果样本量过小,估计结果可能不够可靠,无法对总体均值进行准确的估计。
而样本量过大,则会浪费时间、精力和资源。
在进行估计之前,我们需要确定适当的样本量。
3.确定样本量的方法3.1 方差和置信水平样本量的确定与方差和置信水平密切相关。
方差是衡量样本数据点与样本均值之间的离散程度,而置信水平是衡量估计结果的可靠性。
一般来说,方差越大,为了达到相同的置信水平,所需的样本量就越大。
3.2 抽样技术抽样技术也对样本量的确定有重要影响。
随机抽样可以提高样本的代表性,从而降低样本量需求。
另外,分层抽样和系统抽样等方法也可以在一定程度上减少样本量。
4.样本量计算公式在确定样本量时,可以使用一些常见的计算公式。
最常见的是用于计算均值估计的公式。
以95%的置信水平为例,均值估计的样本量计算公式如下:n = (Z * σ / E) ^ 2其中,n代表所需样本量,Z是正态分布的分位数,σ表示总体标准差,E为估计误差。
5.个人观点和理解在确定样本量时,我认为需要综合考虑多方面的因素。
需要考虑研究目的和研究问题的复杂程度。
如果研究问题较为简单,样本量可以适当减少;而对于复杂的研究问题,应该增加样本量以保证结果的可靠性。
与实际情况相结合也是很重要的。
如果我们的预算有限,不可能获取大规模的样本,那么在样本量的确定上需要更加谨慎。
还要考虑时间和资源的成本,以及研究的可行性。
我认为样本量的确定也需要根据已有文献和经验进行参考。
可以查阅已有的研究,了解他人在类似问题上的样本量设计,并结合自己的研究目标和实际情况进行调整。
6.总结与回顾通过本文的全面评估,我们了解到在估计总体均值时,确定合适的样本量至关重要。
报告中的样本选取与样本量确定
报告中的样本选取与样本量确定样本选取与样本量确定在报告中扮演着至关重要的角色。
它们直接影响着研究结果的准确性和可靠性。
在进行科学研究或者市场调查时,正确选择样本和确定样本量是保证研究的可信度和代表性的关键步骤。
本文将从样本选取的原则、方法和样本量的确定等方面进行讨论。
一、样本选取的原则和方法1. 随机抽样原则随机抽样是最常用的样本选取方法。
它能够消除主观偏差,使得样本具有代表性。
随机抽样可以采用简单随机抽样、分层抽样、系统抽样等方法。
简单随机抽样适用于样本总体具有均匀分布的情况,分层抽样适用于样本总体具有明显不均匀分布的情况,系统抽样适用于样本总体具有周期性分布的情况。
2. 最大化样本代表性原则样本选取应该尽可能代表总体的特征。
在进行样本选取时,需要根据研究目的和研究对象的特点选择最具代表性的样本。
例如,进行市场调查时,选择具有不同地域、不同年龄、不同职业等特征的被调查对象,以充分反映总体情况。
二、样本量的确定确定合适的样本量是保证研究结果有效性的重要步骤。
样本量的确定需要考虑以下几个因素:1. 总体大小总体大小直接影响到样本量的确定。
总体越大,样本量需要越大才能保证结果的精确性。
一般来说,总体越大,选择的样本比例应该越小,以达到一定的随机性。
同时,总体越大,样本量增加对结果的影响也越小,因此要综合考虑成本和精确度。
2. 误差容忍度误差容忍度是指研究者能够接受的最大误差范围。
误差容忍度越小,需要的样本量就越大。
一般来说,研究结果对误差的容忍度越低,则研究者需要选择更大的样本量。
3. 显著性水平显著性水平是指判定研究结果是否具有统计学意义的标准。
常见的显著性水平有0.05和0.01两个水平。
显著性水平越低,需要的样本量就越大。
选择适当的显著性水平取决于研究目的和研究对象的特点。
4. 角度多样性角度多样性是指样本中各个角度、各个维度的覆盖程度。
样本中应包含不同观点、不同经验和不同状况,以减少主观偏差对结果的影响。
第六讲-2 样本量确定
深圳土壤风沙尘合理采样数目
深圳
Na Mg Al Si K Ca
分布类型 对 对 对 对 正 正
变异系数(%) 2.3 23.7 2.4 0.5 36.3 58.5
=0.05,K=0.1 1 21 1 1 50 131
=0.05,K=0.2 1
5 1 1 13 33
=0.1,K=0.1 1 15 1 1 36 93
(二)约定式方法
认为某一个约定或数量就是正确的样本容量。但约定式确定样本容量的方法
忽略了与所要进行的研究相关的情况,而且采用约定的样本容量进行研究所
需的费用可能比较高。
如大气颗粒物采样
(三)成本基础法
将成本作为确定样本容量的基础。成本将不是确定样本容量的唯一考虑因素, 但在确定样本容量时也应予必要的考虑。
)S
2
假定两样本标准差相同
t均为不同显著性水平的t值
n1、n2- n1=n2时两个样本的大小
Δ—样本平均值*相对误差(%)
14
两个相关样本的情况
n
(t
t
)Sd
2
n
(t
/2
t
)Sd
2
Sd,样本差别的标准差
15
2
为什么要确定样本量?
4. 取样误差与实验室分析误差比较,通常认为取样 误差更大,因此应更加重视取样方法及取样的代 表性,尤其在微量、痕量组分分析中,取样误差 往往比其它误差来源更重要。
5. 当取样偏差是测量偏差的3倍或更多时,测量偏 差就不重要了。所以,当存在显著的取样偏差时, 任凭用多么精密的仪器,对提高分析结果的准确 性都无济于事。可见,分析全过程中,取样工作 是重要的一环.
=0.1,K=0.2 1
自然科学实验中样本量的确定与计算方法
自然科学实验中样本量的确定与计算方法在自然科学研究中,实验是获取数据和验证假设的重要手段。
而在进行实验时,确定合适的样本量是至关重要的。
样本量的大小直接影响到实验结果的可靠性和推广性。
因此,科学家们需要仔细考虑样本量的确定与计算方法。
确定样本量的首要因素是实验的目的和研究问题。
如果研究问题是探索性的,即对某一现象进行初步观察和描述,那么样本量可以相对较小。
但如果研究问题是验证性的,即对某一假设进行推断和判断,那么样本量就需要相对较大。
因为在验证性研究中,我们需要通过样本数据来推断总体的特征,样本量越大,推断结果的可靠性就越高。
另一个影响样本量的因素是预期效应的大小。
预期效应是指研究者所期望观察到的差异或关联关系的大小。
如果预期效应较大,那么样本量可以相对较小;而如果预期效应较小,那么样本量就需要相对较大。
这是因为当预期效应较大时,即使样本量较小,也能够较容易地观察到显著差异;而当预期效应较小时,需要更大的样本量才能够观察到显著差异。
此外,样本量的确定还需要考虑统计功效和显著性水平。
统计功效是指在总体参数真值为某一特定值时,能够拒绝原假设的概率。
显著性水平是指当原假设为真时,拒绝原假设的概率。
通常,我们希望统计功效越高越好,显著性水平越小越好。
在样本量的确定中,我们需要根据预期的统计功效和显著性水平来计算样本量。
计算样本量的方法有多种,其中一种常用的方法是基于效应大小的样本量计算。
这种方法通过预先设定效应大小、显著性水平和统计功效,来计算所需的样本量。
另一种常用的方法是基于样本量的统计检验,即根据已有的样本量和观察到的效应大小来进行统计检验,从而判断样本量是否足够。
这两种方法都可以帮助科学家们确定合适的样本量。
除了以上的因素和方法,科学家们还需要考虑实验的可行性和成本效益。
样本量的增加会增加实验的时间、人力和资源成本。
因此,在确定样本量时,科学家们需要综合考虑研究问题的重要性、预期效应的大小和实验成本的可行性,从而做出合理的决策。
论文写作中的研究样本与样本量确定技巧
论文写作中的研究样本与样本量确定技巧在进行学术研究时,选择适当的研究样本和确定样本量是非常重要的,因为这直接关系到研究结论的可靠性和推广性。
本文将介绍论文写作中的研究样本和样本量确定的一些技巧和注意事项。
一、研究样本的选择研究样本的选择一定要符合研究目的和研究问题,同时要尽可能地保证样本的代表性和可靠性。
1. 研究目的和研究问题在确定研究样本时,首先要明确研究的目的和研究问题。
例如,如果研究的目的是了解某一特定群体的特征,那么样本应该选择该特定群体中的个体。
如果研究的目的是比较不同群体之间的差异,那么样本应该包括不同群体的个体。
2. 代表性和可靠性为了保证研究样本的代表性,样本的选取应该尽可能地随机和全面。
通过随机抽样的方法,可以尽量避免选择偏差,使得样本能够代表总体。
此外,样本的大小也要保证足够大,以获取可靠的结果。
二、样本量的确定样本量的确定是指确定研究所需的样本数量。
样本量的大小直接关系到研究结果的可信度和推广性。
下面介绍几个常用的确定样本量的方法。
1. 根据已有研究在某些情况下,可以根据已有研究的样本量来确定自己研究的样本量。
通过查阅相关文献,可以了解到研究领域中常用的样本量范围,可以借鉴这些研究的样本量来确定自己研究的样本量。
2. 使用统计方法在进行定量研究时,可以利用统计方法来确定样本量。
常用的方法有效应量分析、置信区间分析和统计功效分析等。
这些统计方法可以根据研究的目的、假设和统计指标来确定合适的样本量。
3. 进行样本量试验如果缺乏已有研究或数据来确定样本量,可以进行样本量试验来估计所需样本量。
通过先选取一个相对较小的样本量进行研究,然后根据实际的数据情况来进行样本量估计和统计分析,最终确定合适的样本量。
三、注意事项在确定研究样本和样本量时,需要注意以下几个问题。
1. 研究资源要根据自身研究资源的限制来确定样本量。
例如,如果研究经费有限,那么样本量就需要在可接受范围内进行控制。
同时,还要考虑研究时间、人力等资源的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
举例
9
举例
JAMA: IF=35.5
10
举例
11
2.多组率比较的随机对照研究
例:某医院观察三种治疗方法治疗某病的 效果,初步观察结果A 法有效率54.8%,B 法有效率28.46%,C 法有效率14.9%。试 问正式实验需要观察多少病人?
5
1. 两组率比较的随机对照研究
例:某医生采用中药治疗慢性盆腔炎,观 察到复发率为15%,根据文献检索西药治 疗慢性盆腔炎复发率45%,拟进行一项临 床试验,请问需要多少研究病例?
6
两样本率比较样本含量的估算公式
7
解释与计算
取α=0.05,β=0.1,双侧检验
μ α =μ 0.05=1.96
临床研究样本含量的确定
谢可越
嘉兴市第一医院 The first hospital of jiaxing
1
一些概念
检验水准:α
犯第一类错误的概率,即显著性水平;
通常取α=0.05;
同时应明确单侧、双侧;
α越小,样本量需要越多;
2
一些概念
检验效能:1-β β为犯第二类错误的概率; 通常取β =0.1;
12
计算公式
13
解释与计算
本研究最大样本率:Pmax= 0.548
本研究最大样本率:Pmin= 0.149
α=0.05,β=0.1,ⅴ=k-1=3-1. 查λ值表: λ=12.65
14
结果
15
Λ值表
16
3.两样本均数比较的样本含量
例:某医院中药治疗某病,血沉作为疗效指标, 临床前该中药可使病人血沉下降3.3mm/h,标准 差1.94,西药可使病人血沉下降4.9mm/h,标准 差2.97,为进一步观察该中药的疗效,请问估 计需要观察多少病例数?
23
计算与解释 =(32+32+22)/3
=(11-10)2+(10-10)2+ (9-10)2
:v1=3-1=2,v2=∝,查表得ψ0.05,0.1,2,∝ =2.52
n1=2.522(22/3)/[2/(3-1)]=47 v1=3-1=2,v2=3×(24-1),查表得ψ0.05,0.1,2,69 =2.57 n2=2.572(22/3)/[2/(3-1)]= 49
1-β:应大于0.75;
β越小,样本量需要越多;
3
一些概念
容许性误差:δ
即处理组间的差别;
两总体均数之间的差值δ=μ1-μ2;
两总体率之间的差值δ=π1-π2;
4
小故事
小故事诠释统计的三个基本概念:一类错误(α error),二类错误(β error)和统计 效力(power) N年过去了,统治地球的男人们活腻味了,于是挑起战争 他们对小打小闹已经失去了兴趣 新世纪的战争,自然得有新气息 他们商讨一番,决定相互灭绝 使用的新鲜武器是: 区分男性和女性,杀死所有的男性,放过所有的女性, 自动判别,如果胸小于A罩杯,则杀无赦 如果等于或大于A罩杯,则放过 硝烟过后,大家可以想象得到结果 有些可怜的mm因为胸太小被误杀,这就是武器的判别程序犯的一类错误, 本属于女性这个群体,却被错误的判断为不属于(弃真)。 有些胸肌发达的男性因为胸很大而活下来,这就是武器的判别程序犯的二类错误, 本不属于女性这个群体,却被误判为属于(存伪)。 而所有被杀害的男性,则是该判别程序的效力(power, 1-β)
17
计算公式
18
计算与解释
取α=0.05,β=0.1; 双侧检验; Uα= = 1.96 (双尾),Uβ=1.28(单尾); σ为两总体标准差的估算值,一般取两者中 大的; δ为两均数的差值;
19
计算与解释
n=2× [(1.96+1.28)2× 2.972]/(4.9-3.3)2
Uα = 1.96, Uβ=1.28; σ=2.97; δ=4.9-3.3;
20
举例
21
4.多样本均数比较样本量计算
22
多样本均数比较举例
例:3种方法治疗脑卒中抑郁患者,观察神 经功能康复状况。估计治疗后3种方法SSS评 分分别为11、10、9,标准差各位3、3、2, 如果要得到显著性差别的结论,问每组各需 要多少例患者?
24
Ψ 值表(普西)
25
多指标样本含量估算
26
多元线性回归样本含量计算
麻醉平面& 腹围、脊柱长度、身高、年龄和体重的关系
27
多元线性回归分析
/statcalc3/calc.aspx?id=1
28
举例
29
计算太复杂? 软件:G·Power
/p-427154229.html
30
与计算公式是否一致?
失访率
15%-20%的失访率
32
适合性
只适合临床试验
并不适合动物实验
33
34