《统计学》样本容量的确定
样本容量的确定

0.05 2 384.16 385
故需取385人的样本。
统计学——第八章参数估计
影响样本容量n的因素
a) 总体个单位之间的差异 b) 概率保证程度 c) 允许误差的大小 d) 抽样方式 e) 抽样的组织形式
statistics
统计学——第八章参数估计
解:已知 =4000,E=1000,1-=95%,
Zα/2=1.96,所以,应抽取的样本容量为:
n(zα2)2σ2
(1.926)40020
E2
10020
61.4762
即应抽取62人作为样本。
二、估计总体比例时样本容量的确定
1.重复抽样
一旦确定了置信水平(1-α),Zα/2的值就确定了。由于总体比例的值是固定 的,所以允许误差由样本容量来确定,样本容量越大允许误差就越小。估计的 精度就越好。因此,对于给定的的π值,就可以确定任一希望的允许误差所需 要的样本容量。令E代表所希望达到的允许误差,即:
statistics
第四节 样本容量的确定
统计学——第八章参数估计
• 样本容量:
样本中个体的数目或组成抽样总体的单位数。
• 必要样本容量:
亦称必要样本单位数,是指满足调查目的要求的情况下, 至少需要选择的样本单位数。
statistics
一、估计总体均值时样本容量的确定
1.重复抽样
一旦确定了置信水平(1-α),Zα/2的值就确定了,对于给定的的值 和总体标准差σ,就可以确定任一希望的允许误差所需要的样本容量。令 E代表所希望达到的允许误差,即:
确定样本容量的注意事项
一、在实际中采用不重复抽样,但常用重复抽样下的公式代替; 二、若和p未知,其处理方式是:
初级统计学第六章 估计与样本容量

第6章估计与样本容量6.1 概述这一章我们介绍估计下列总体参数数值的方法:总体均值、比例和方差。
我们还讲述确定这些参数估计所需要的样本容量方法。
6.2 估计总体均值:大样本这一节的主要目标:已知一个集合中样本数据多于30个,讨论总体均值μ的估计值。
假设1.n>30(样本中的数据超过30个)。
2.样本是一个简单随机样本(相同容量的所有样本被选出的可能性相同)。
不仔细收集的数据绝对是毫无价值的,即使样本很大。
这一节中的方法假设,那些样本之间的差异是由于可能的随机波动造成的,而不是因为一些不合理的抽样方法。
定义估计量(estimator)是指使用样本数据来估计总体参数的公式或过程。
估计值(estimate)是指用来近似总体参数的特定数值或数值的范围。
点估计值(point estimate)是用来近似总体参数的一个数值(或点)。
样本均值x是总体均值μ的最优点估计值。
虽然我们可以使用其他统计量,例如样本中位数、中列数或众数作为总体均值μ的估计值,但研究显示,样本均值x通常会特供最优的估计值,原因有两点。
第一,对于很多总体来说,样本均值x的分布比其他样本统计量的分布有更好的一致性。
第二,对于所有的总体,样本均值x是总体均值μ的一个无偏估计量,这意味着样本均值分布的中心趋近于总体均值μ的中心。
我们为什么需要置信区间?置信区间或区间估计是由一个数值范围(或一个区间)构成的,而不是仅由一个点构成的。
定义置信区间(或区间估计)是指用来估计总体参数真实值的一个数据范围(或一个区间)。
一个置信区间和一个置信度相联系,例如0.95(或95%)。
置信度会告诉我们,有百分之多少的时间,置信区间真的包含了总体参数,这里假设这个估计过程可以重复很多次。
在置信度的定义中,用α(希腊字母阿尔法的小写)表示一个概率或面积。
α的值是置信度的补。
当置信度为0.95(95%)时,α=0.05。
当置信度为0.99(99%)时,α=0.01。
统计学中样本容量的概念

统计学中样本容量的概念
在统计学中,样本容量是指用于进行统计推断的观察单位的数量。
在进行统计推断时,我们通常无法对整个总体进行调查,而只能从总体中抽取一部分样本进行研究。
样本容量的大小直接影响统计推断的可靠性和准确性。
样本容量的确定是一个重要的问题,它需要考虑以下几个因素:
1. 总体大小:样本容量的大小通常取决于总体的大小。
总体越大,通常需要更大的样本容量来进行推断。
2. 误差容忍度:根据研究的目的和需求,我们需要确定对误差的容忍程度。
如果我们需要更高的置信水平和较小的抽样误差,则需要更大的样本容量。
3. 抽样方法:不同的抽样方法对样本容量有不同的要求。
例如,随机抽样方法通常需要较大的样本容量来保证样本的代表性。
4. 特定统计分析的要求:某些统计推断方法对样本容量有特定的要求。
例如,进行回归分析时,需要样本容量大于自变量的数量。
总而言之,样本容量是指进行统计推断所使用的样本观察单位的数量,其大小决定了统计推断的精确性和置信程度。
确定适当的样本容量需要考虑总体大小、误
差容忍度、抽样方法和统计分析的要求等因素。
样本容量的确定

都在此范围内 而通过简单随机样本对总体做的估计为实际总体平均值 2 倍标准误差范围 内的概率为 95 在实际总体平均值 3 倍标准误 差范围内的概率为 99.7 5.5.3 点估计和区间估计
当利用抽样要对总体平均值进行估计时 有两种估计方法 点估计和区间估计 点估计 是指把样本平均值作为总体平均数的估计值 观察图 5.3 的平均数抽样分布可知某一特定的 抽样结果 其平均数很可能相对更接近总体平均数 但是 样本平均数分布中的任一个值都 可能是这一特定样本的平均值 有一小部分的样本平均值与实际总体平均值有相当的差距 这种差距就叫抽样误差
在任何确定样本容量的问题中 都必须认真考虑所要分析并要据此做统计推断的总体样 本的各个子群的数目的预期容量 例如 从整体上看样本容量为 400 很符合要求 但若要分 别分析男性和女性被调查者 并且要求男性与女性的样本各占一半 那么每个子群的容量仅
1
广州方舟市场研究有限公司
统计学基础知识
为 200 这个数字是否符合要求 能使分析人员对两组的特征做出预期的统计推断呢 再如 要按年龄和性别分析调研结果 问题就变得更复杂了 假设要按以下方式将总体样本划分为 四组
5
广州方舟市场研究有限公司
统计学基础知识
5.5.2 根据单个样本做出推断 在实际操作中 人们往往不愿从总体中抽出所有可能的随机样本 画出像表 5.3 和图 5.4
那样的频率分布表和直方图来 人们希望进行简单的随机抽样 并据此对总体进行统计推断 问题出现了 通过任一简单的随机样本对总体均数进行的估计 其估计值在总体平均值 1 个标准误差内的概率究竟为多大 根据表 5.2 可知概率为 68 因为所有样本平均数有 68
总体 个体 样本 样本容量的概念

总体、个体、样本和样本容量是统计学中重要的概念,它们在统计分析和推论中起着至关重要的作用。
在进行统计研究和分析时,研究对象可以分为总体和个体,而样本则是从总体中选取的一部分个体,样本容量则是指样本中包含的个体数量。
下面将对这几个概念进行详细介绍。
一、总体总体是指研究者所感兴趣的所有个体的集合,它通常包括所有可能的观察对象。
总体可以是有限的,也可以是无限的。
在实际研究中,如果研究对象数量较少,那么可以直接对总体进行研究;但如果总体数量较大或是无限的,采用对总体进行全面调查是费时费力的,因此需要采用样本的方式进行研究。
总体是统计推断的基础,通过对总体的研究可以了解整体情况,而且也可以在一定程度上影响样本的选择和研究方法。
二、个体个体是指总体中的每一个成员,它可以是人、物、事物等具体的对象。
在统计研究中,个体是研究和观察的具体对象,研究者的观察和测量对象就是个体。
个体的特征和性质构成了总体的特征和性质,而样本则是总体的一个子集,通过对样本的研究可以对总体进行推断和分析。
三、样本样本是从总体中选取的一部分个体,它是对总体的一种代表性抽样。
在实际调查和研究中,往往很难对总体进行全面调查,因此需要从总体中抽取部分个体进行观察和研究。
通过对样本的研究分析,可以推断出总体的性质和特征,从而得出对总体的结论。
样本的选择需要具有一定的代表性,不能存在抽样偏差,否则对总体的推断就会产生较大的误差。
四、样本容量样本容量是指样本中包含的个体数量,它是样本的大小。
样本容量的大小直接影响着对总体的推断结果,样本容量过小则可能导致推断结果不准确,样本容量过大则可能会造成资源浪费。
在实际研究和调查中,需要根据研究目的、总体规模和资源条件等因素来确定样本容量的大小。
一般来说,样本容量越大,则对总体的推断越准确。
总体、个体、样本和样本容量是统计学中非常重要的概念,它们是统计研究和分析的基础。
在进行统计研究和分析时,需要对这几个概念有清晰的认识,并合理运用于实际研究中,才能得出准确、可靠的结论。
质量工具讲解 | 抽样调查中样本容量的确定方法

(1)如果全部是规模比较小的单位个体户,我们可以根据类别进行适当的分组,将某一类单位比较多的单独分层;将另外类别比较少的,可以几类合并进行抽取具体样本,分层不要多于4层,并保证每层的样本量不小于2个。由于居委会样本量数目已经确定,我们可以直接采取比例分配方法,确定各层样本量。
(2)如果规模比较大的和规模小的并存,可以将规模比较大的单独分层,不用考虑其中的类别;将规模较小的主要是个体户可以根据类别进行分层;其中的难题是如何将样本量在规模大的和规模小的之间分配,因为大规模层内样本变异程度有可能很大,应该抽取较多的样本量,经过测试,如果大规模层总体小于等于5,应该对其进行全面调查;如果大于5个,可以采用以下的公式计算得到:
取规模分配方法,由于人口数与一个地区的个体单位数没有必然的联系,可能导致某些居委会的个体数比较多,却分配了较少的样本量,使得居委会分层变的困难,同时使居委会方差显著增大。而获得较多样本量的居委会,分层的效果和方差提高幅度有限,故采用比例分配的方法可能更加合适一些。对于居委会村委会的抽取,由于本阶可能存在市场内的抽样,分配复杂一些;如果本阶有市场内抽样,可以适当减少居委会村委会的样本量,但应该大于本阶样本量的80%,由于市场内抽样的特殊性,建议将本阶样本量全部分配给居委会村委会,我们所进行的试点就是将样本全部分配给居委会;至于市场内抽样的具体实施,可以根据方案操作完成。对居委会村委会层内,由于使用简单随机抽样完成,采用比例分配平均分配就可。
在实际工作时,由于一个区县包括全部乡镇街道或其中的一个;根据方案,区县抽取办事处的数量应该介于12-4个之间,对应于抽中乡、镇、街道的全部或其中一个,那么其每一个乡镇街道采取比例分配平均分配的样本量应该是11-32个之间;所抽中的居委会、村委会数量应该介于16-48个之间,如果个别乡镇街道抽中的居委会是2个,则其居委会总数相应减少一些;最后,每个居委会、村委会的样本量应该介于3-16个之间,大部分介于5-10之间。以上的讨论没有考虑总体的大小,如果考虑到居委会、村委会的总体有限,则每个居委会村委会的样本量可以减少一些,具体可以采用以下公式得到具体样本量的调整数:
生物统计学8样本容量的确定

入公式求出n2,直到求出的n(i-1)= n(i)为止。
例:有个家畜饲料比较试验,它们是对一种猪在育肥期饲以两 种饲料C1和C2,经过一个月后,调查量其重量(斤数),借 以判明两种饲料的育肥效果。若 = 4斤时,试验就要有一半 的可能性辨别出来,取s2=30,(此数据)是根据以往的试验 数据得出的),则该试验每处理的样本容量应为多少?
u
n
若:
u
x 0 1
n
µ0
µ1
x0
接受H0。
1 - 0 u u
n
接受HA。
二、平均数差异显著性测验中的样本容量问题
(一)单个样本平均数的差异显著性测验中的样本容量问题
1、已知时
n
u2 0.05 / 2
2
L2
其中 :2 =总体的方差
这个数据一般是依靠前人或本人对同类数据的试验来约略估计 的
L = 要求该调查或试验有一半的可能达到的对平均数估计的精 确范围。
L即距平均数上下的95%的置信区间(即置信半径)
该样本容量估算中,β的概率为50%(Ⅱ型错误的概率)。
2、 未知时:
样本容量:
n
t2 0.05 / 2
L2
s2
s2为对总体方差2 的估计值
(这个数据一般是依靠前人或本人对同类数据的试验来约略
则样本容量 n 为:
L u / 2
pˆ 1 pˆ
n
n
u2
/2
pˆ (1 L2
pˆ )
当显著水平为0.05时(置信度为0.95),上述公式的经验公
式为:
n
4
pˆ (1 L2
《统计学》样本容量的确定

样本容量确定的两难
样本容量取得较大,收集的信息 就相对多,从而估计精度较高,但 进行观测所投入的费用、人力及时 间就比较多; 样本容量取得较小,则投入的费 用、人力及时间就相对节约,但收 集的信息也较少,从而估计精度较 低; 所以,精度和费用对样本量的影 响和要求是矛盾的,不存在既使精 度最高又使费用最省的样本量 。
估计总体均值时样本容量的确定 (例题分析)
解: 已知=2000,d=400, 1-=95%, z/2=1.96 置信度为95%的置信区间为:
n ( z 2 )2 2 (1.96 )2 20002
d2
4002
96.04 97
即应抽取97人作为样本。
估计总体比例时样本容量的确定
估计总体比例时ห้องสมุดไป่ตู้本容量的确定
1. 根据比例区间估计公式可得样本容量n为:
• •
重复抽样n
(
z
2
)2
d2
(1
)
•
2.
不重复抽n样
(
N
N( z 2 )2 (1 ) 1)d2 ( z 2 )2 (1
)
d的取值一般小于0.1
其中: d z 2
p(1 p ) n
3. π未知,以样本比例p替代
4. π或p都未知时,可取0.5,这是一种谨慎估计
1. 估计总体均值时样本容量n为:
• •
重复抽样 n
(
z
2
d
)2
2
2
•
不重复抽样
n
(N
N( z 2 )2 2 1)d2 ( z 2 )2 2
其中:d
Z
2
•
n
2. 样本容量n与总体方差成正比,与绝对误差成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 -6
统计学 估计总体均值时样本容量的确定
STATISTICS
(例题分析)
解: 已知=2000,d=400, 1-=95%, z/2=1.96
置信度为95%的置信区间为:
n ( z 2 )22
96.04 97
即应抽取97人作为样本。
5 -7
统计学
其中:d
Z
2
•
n
2. 样本容量n与总体方差成正比,与绝对误差成
反比,与概率度成正比。
5 -5
统计学 估计总体均值时样本容量的确定
STATISTICS
(例题分析)
【例】拥有工商管理学士学位的大学毕业生年 薪的标准差大约为2000元,假定想要估计年薪 95%的置信区间,希望允许误差为400元,应抽 取多大的样本容量?
所以,精度和费用对样本量的影 响和要求是矛盾的,不存在既使精 度最高又使费用最省的样本量 。
5 -2
统计学
STATISTICS
样本容量确定的准则
在对精度有要求时,寻求能够 保证精度要求的费用最省的样本 量;
由于费用通常是关于样本量的 正向线性函数,故使费用最省的 样本量也就是使精度得到保证的 最小样本量;
STATISTICS
估计总体比例时样本容量的确定
5 -8
统计学 估计总体比例时样本容量的确定
STATISTICS
1. 根据比例区间估计公式可得样本容量n为:
重复抽样
n ( z 2 )2 (1 )
d2
不重复抽样
n
(
N
N( z 2 )2 (1 ) 1)d2 ( z 2 )2 (1
)
2. d的取值一般小于0.1
其中: d z 2
p(1 p ) n
3. π未知,以样本比例p替代
4. π或p都未知时,可取0.5,这是一种谨慎估计
5 -9
统计学 估计总体比例时样本容量的确定
STATISTICS
(例题分析)
【例】根据以往 的生产统计,某 种产品的合格率 约 为 90% , 现 要 求允许误差为5% , 在 求 95% 的 置 信区间时,应抽 取多少个产品作 为样本?
统计学
STATISTICS
5.7 样本容量的确定
5 -1
统计学
STATISTICS
样本容量确定的两难
样本容量取得较大,收集的信息 就相对多,从而估计精度较高,但 进行观测所投入的费用、人力及时 间就比较多;
样本容量取得较小,则投入的费 用、人力及时间就相对节约,但收 集的信息也较少,从而估计精度较 低;
在费用有预算限制的时候,寻 求费用预算范围内使精度达到最 高的样本量。
5 -3
统计学
STATISTICS
估计总体均值时样本容量的确定
5 -4
统计学 估计总体均值时样本容量的确定
STATISTICS
1. 估计总体均值时样本容量n为:
重复抽样
n
(
z
2 )2
d2
2
不重复抽样
n
(N
N( z 2 )2 2 1)d2 ( z 2 )2 2
5 - 10
解 : 已 知 p=90% , 1-=95% ,
Z/2=1.96, d =5%
应抽取的样本容量为:
n
(
z
2
)2
p(1 d2
p
)
(1.96 )2 0.9(1 0.9 ) 0.052
138.3 139
应抽取139个产品作为样本。
统计学
STATISTICS
本节结束,谢谢!
5 - 11