锻钢冷轧工作辊表面缺陷形成原因分析

合集下载

冷轧带钢边鼓缺陷产生原因与控制措施

冷轧带钢边鼓缺陷产生原因与控制措施

冷轧带钢边鼓缺陷产生原因与控制措施全文共四篇示例,供读者参考第一篇示例:冷轧带钢是一种重要的金属材料,广泛应用于建筑、汽车、机械制造等领域。

在生产过程中,冷轧带钢常常会出现边鼓缺陷,影响产品质量。

本文将从冷轧带钢边鼓缺陷的产生原因和控制措施两方面进行探讨。

一、冷轧带钢边鼓缺陷产生原因:1. 轧辊质量不良:轧辊表面粗糙度大、硬度不足或不均匀,会导致轧件表面质量不良,进而引起边鼓缺陷的产生。

2. 轧辊边缘磨损严重:轧辊边缘磨损加剧,造成轧件边部挤压不平整,易产生边鼓缺陷。

3. 轧件冷却不均匀:冷却水量不足或水压不稳定会导致轧件温度分布不均匀,使得边部冷却速度不一致,进而引发边鼓缺陷。

4. 锯切不准确:如果在冷轧带钢的切割过程中,锯切位置不准确或锯切刀具损坏,容易导致边部挤压变形,产生边鼓缺陷。

5. 压下力控制不好:在轧制过程中,如果压下力控制不好,会造成轧辊与轧件之间的挤压不均匀,容易形成边鼓缺陷。

1. 提高轧辊质量:选用优质的轧辊材料,确保轧辊表面光滑、硬度均匀,减少轧辊对轧件表面的损伤。

2. 加强轧辊维护:定期检查轧辊边缘磨损情况,及时更换或修复磨损严重的轧辊,确保轧辊边缘的平整度。

3. 控制冷却工艺:合理设置冷却水量和水压,确保轧件冷却均匀,避免轧件边部出现温差过大的情况。

4. 加强锯切管理:对切割设备进行定期维护保养,确保切割精度和品质,避免因切割不准确导致的边鼓缺陷。

冷轧带钢边鼓缺陷的产生原因复杂多样,需要生产企业在生产过程中严格控制各项工艺参数,加强设备维护保养,提高操作技术水平,才能有效避免边鼓缺陷的产生,确保产品质量。

希望通过本文的介绍,能够对冷轧带钢生产企业提供一定的参考和帮助。

【以上内容仅供参考】。

第二篇示例:冷轧带钢是一种重要的金属材料,广泛应用于各种领域。

但是在生产过程中,冷轧带钢边鼓缺陷是经常出现的一种质量问题,给生产造成了一定的影响。

本文将从边鼓缺陷的产生原因和相应的控制措施进行探讨,希望对相关行业提供一些参考。

冷轧半成品常见缺陷及改正措施专题

冷轧半成品常见缺陷及改正措施专题

冷轧半成品常见缺陷及改正措施专题一、压痕特征:带钢表面呈周期性凹状印痕原因:1、因勒带或穿带甩尾不正常,带钢在工作辊表面造成堆焊或粘接2、在轧机空转时预压力过小,造成工作辊与支撑辊点接触而使支撑辊周长方磨损,受损支撑辊反过来造成新更换工作辊表面压印而造成带钢表面压痕3、支撑辊掉肉造成工作辊表面压印,即在带钢表面产生压痕措施:1、轻微小面积压痕可对工作辊进行修磨(用砂石),严重压痕应更换工作辊2、轧机空转时给一定轧制压力或采用正弯辊,以避免局部损伤轧辊,发现支撑辊局部损伤,避免使用负弯辊,减轻轧辊表面压痕深度,勤换工作辊,必要时及时更换支撑辊二、压印特征:带钢表面呈周期性凸状印痕原因:工作辊表面产生裂纹或掉皮措施:1、更换新工作辊之前,严格检查轧辊表面质量,防止未磨净裂纹辊投入使用,(轧辊间应确保应有磨削量,特别是粘钢辊,以完全消除裂纹层)2、确保各机架工艺润滑良好,轧制液温度、浓度、压力在正常范围,防止喷嘴堵塞,避免轧辊局部温度过高3、发现压印及时更换轧辊,更换新辊后,要进行一定预热,同时,开轧头几卷钢要严格控制升速制度三、划伤特征:带钢沿轧制方向的直线凹状缺陷原因:1、各种导辊与带钢速度不一样2、带钢与辅助设备异常接触3、生产线设备有异物措施:1、定期检查辅助传动辊是否转动灵活及表面状况2、固定辅助设备与带钢应保持一定间隔3、及时检查、清除生产线设备中的异物4、发现带钢表面有划伤,应从后向前逐个检查,查出事故原因后,根据情况采取的办法给予处理四、裂边特征:带钢边部局部开裂或呈锯齿形裂口原因:1、酸洗剪切边部状况不好,造成轧后带钢裂边2、热轧板本身边部裂口或龟裂3、吊运中夹钳碰撞,使带钢边部碰损措施:1、酸洗剪切边剪刃间隙,应按剪切的不同厚度规格精确调节2、热轧原板边部缺陷应在酸洗工序尽量切除(呈月牙形)3、吊运钢卷时,夹钳应稳、准、轻,防止吊具将钢卷边部碰损五、热划伤特征:带钢表面沿轧制方向无规律的局部条状凹痕原因:1、轧辊和带钢温升过高2、轧制薄规格时,在高速高压下,轧制油的油膜强度不够,使润滑不良所致措施:1、正确选择轧制油浓度和轧制油类型,确保良好的润滑性能2、使各机架的负荷分配尽量均匀3、正确选择轧制液的温度、压力,确保良好的冷却性4、选择适当的轧制速度,在润滑和冷却不好的情况下,轧制速度不应超过1000mpm5、当已经发现有较严重的热划伤时,立即更换工作辊六、轧穿特征:带钢表面呈周期性孔洞原因:1、工作辊表面严重粘接2、严重粘辊裂纹(一般前架板面产生压印,经后架轧钢延伸造成轧穿)3、轧辊表面凹状缺陷措施:1、更换新工作辊2、防止异物掉入轧机进入辊缝,避免轧辊表面损伤七、板形缺陷A、双边浪特征:带钢两边呈可见波纹状原因:轧辊凸度小,轧制压力过大,轧制温度低、正负弯辊使用不当措施:减小轧制压力或加大后张力,合理控制好辊型,将工作辊中间部分轧制液流量尽量减小,增大正弯辊B、单边浪特征:带钢一边呈可见波浪状原因:有浪一边轧制力过大,轧辊温度不均,工作辊水平未调好,来料厚度不均(楔形)措施:通过压下双摆,将有浪一边轧制力减小,严格要求原料同板厚差不超规定,头尾有镰刀弯在酸洗一定.要剪掉C、中间浪特征:带钢中部呈可见波浪状原因:与双边浪相反措施:与双边浪相反D、二肋浪特征:带钢沿宽度方向1/4、3/4处或部分区域呈可见波浪状原因:轧制温度不均,局部过热与浪相对应的轧辊冷却液喷嘴堵塞措施:加大二肋浪部位的轧制液流量,认真检查二肋浪部位喷嘴是否堵塞八、厚度不均或不合特征:带钢沿轧制方向厚度波动变化超出产品要求或轧制成品厚度与产品要求厚度不符原因:1、热轧原料本身厚度不均,材质硬度不均2、AGC系统没有投入时,压下及速度调节不及时3、各机架张力波动范围过大4、测厚仪(特别是最后机架)不准措施:1、确保热轧原料厚度精度,对严重超厚或超薄部分应切除,轧制中发现原料厚度波动,应及时降速,待调节好后再升速,当厚度波动严重时,要停机,然后按实际厚度进行手设定计算,再启动设备进行轧制2、AGC系统没有投入使用时,随速度的变化及时调节轧制力和张力,保证厚度精度正常3、严格保证系统的张力稳定4、定期检查测厚仪的精度,轧制时如发现异常状况,及时检查、核对成品实物厚度与测厚仪显示的一致性,否则立即通知计控人员进行处理九、卷形A、溢出边特征:钢卷边部局部不齐原因:酸洗来料溢出边,热轧板形较差,卷取张力过小及波动,轧制压力不稳定,入口无跑偏控制装置措施:发现原料溢出边严重时,人工首先降速,及时采取手动对中调节,严格控制好板形,对带头板形不好的部分,应切除,严格控制卷取张力,确保压下稳定正常,尽快使人工跑偏控制装置投入使用,一旦出现严重溢边,在最后机架分卷B、塔形特征:钢卷边部呈弧形状原因:酸洗卷塔形,带钢头部板形不良或卷心有废带头,卷取张力过小,卷心与卷取机卷筒之间有窜动,各架侧倒板间隙过大等因素,均可造成卷取时钢卷塔形措施:轧制酸洗塔形卷时速度不能高,人工随时进行对中调节,当实在无法纠偏时,最后机架轧钢工根据情况进行分卷,严格控制好穿带头部倒板,当带头板形不好时,应及时切除,废带头一定不能卷入卷心,确保卷取张力正常,满足工艺制度的要求,无论在何种情况下,发现塔型应立即分卷C、心形卷特征:钢卷内径局部下凹原因:带卷头部卷取张力过小,轧制规格薄措施:提高头部卷取张力,一般应大于设定张力20~30%,适当增大带头厚度,必要时更换小直径卷筒D、抽心卸卷时,卷取机卷筒将卷心部分带出,或是热处理吊车在掉卷时,将卷心部分吊起,无法将钢卷吊走特征:钢卷内径局部溢出原因:带钢头部板形不好,卷心卷取张力过小,卷取机卷筒位移或钢卷小车上塑料垫磨损不均,造成钢卷中心与卷筒中心不一致措施:确保带钢头部板形良好,特别是废带头不要卷入内径,手动方式加大头部卷取张力,将偏移的卷取机复位,同时更换已磨损的钢卷小车塑料垫块,经常检查吊具的表面状况及磨损程度E、塌卷特征:钢卷卧放时呈椭圆状原因:在整个轧制过程中,卷取张力都小于设定张力,卸卷以后便暴露,尤其以薄规格产品为明显,经吊车吊运后会发生卷内孔径全塌,厚规格产品,经退火后平整机上料时暴露出来措施:在张力调节系统或张力设定不正常时,要通过手动操作方式,将卷取张力升高,以保证带钢头部及整卷的卷取张力符合工艺的要求,避免质量和安全事故的发生冷轧带钢的质量指标中,带钢的尺寸偏差、板形以及表面粗糙度等要求是很主要的项目,消除产品在这些方面的缺陷是冷轧生产中质量提高的关键之一。

冷轧生产企业轧辊缺陷产生原因及防范措施

冷轧生产企业轧辊缺陷产生原因及防范措施

冷轧生产企业轧辊缺陷产生原因及防范措施轧辊是轧钢生产中的一种大型工具,其性能与质量将直接影响轧机产量和产品质量,其消耗在轧钢生产中占很大比例。

因此,轧辊的使用与管理在冷轧的生产中至关重要。

本文所列舉的冷连轧机为四机架六辊UCM(Universal Crown Mill)轧机,设计产量为152.8万t,其技术从国外成套引进,是目前国内装备水平较高的冷轧机之一。

自投产以后,多次与国内外的轧辊专家进行了技术交流,以提高轧辊的使用和管理水平。

研究冷轧辊缺陷产生的原因,并采取相应的具体措施,以便降低轧辊消耗,对降低成本和稳定生产有着重要的意义。

1冷轧辊缺陷的主要形式当前我们所使用轧辊来自于日立金属、美国电钢、英国轧辊、中国一重、邢台轧辊和常冶轧辊等几家轧辊生产制造厂,其材质为3Cr,5Cr和4CrMo锻钢。

目前出现的轧辊缺陷按照所产生的形态可以分成软点、剥落(爆辊)和内部裂纹等三大类。

1·1 轧辊软点轧辊表面的某些地方会显示出比轧辊表面其它地方硬度值变化较大情况。

通常这些软点区域的硬度值要比基体材料的硬度低20HS。

一般情况下软点区域用肉眼是分辨不出来的,但是经过硝酸酒精腐蚀以后,就会显示出来,呈现一片暗色区域(见图1所示)。

在某些情况下,软点疵瑕也可以保持有硬化情况和回火色(兰色/棕色)。

1·2 轧辊剥落轧辊剥落就是指轧辊辊身的某个区域从辊身上分离出来的现象。

剥落按照产生的原因不同可分成下述几类。

1.2.1 轧辊表面剥落轧辊表面剥落可通过裂纹表面的“破损”轨迹来鉴别。

这种疲劳“破损”轨迹的显著特征是具有典型疲劳痕(海滩纹见图2所示)或在疲劳裂纹面上的“扇形”裂纹流线。

疲劳“破损”轨迹蔓延的方向与轧制时轧辊旋转的方向相反。

1.2.2 接触应力引发的剥落由于轧机的负荷以及轧辊在接触点上的局部挤压,造成的最大组合剪切应力(通常称作“赫兹应力”)位于轧辊表面之下的某个较小区域中。

多处的裂纹可以引发并在赫兹应力超过轧辊的抗拉强度时,在表面之下位置发生弥散,导致剥落的产生,这会通过两种模式发生。

冷轧厂生产冷轧板表面缺陷的起因及对策分析

冷轧厂生产冷轧板表面缺陷的起因及对策分析

冷轧厂生产冷轧板表面缺陷的起因及对策分析冷轧厂的主要生产路线是酸轧-罩退-平整-重卷。

该工艺路线的生产运行情况和产品质量决定着冷轧厂的总体经济效益。

其中,每一道工序,特别是前三道,如处理不当都可能造成轧制产品的表面缺陷。

这些缺陷会使产品品级降级,严重者成为废品,因此,应该分析缺陷所造成的原因,并加以解决。

1.轧制过程可能造成的缺陷:大致可分为:原料缺陷、表面斑迹缺陷、板形缺陷和边部缺陷。

所谓原料缺陷,是指由原料引起而在冷轧过程中造成并继续保持或残留下来的一些缺陷。

原料缺陷通常有气泡、夹杂、铁皮压入、原料划伤和辊印等。

板面斑迹缺陷,主要是由于带钢表面的轧制油和轧制时产生的铁粉吹扫不干净,轧制后残留在带钢表面所造成的。

板面斑迹缺陷在钢卷退火后,在带钢表面碳化而形成黑斑,影响带钢表面质量。

冷轧板表面残油残铁超标,是造成罩退工序后产生黑带的主要原因并可能导致平整-重卷工序中产生黄斑。

所谓板形缺陷主要是指连轧机产品存在的各种浪形和瓢曲。

主要原因是机架负荷分配不均衡、机架间张力设定不良与工作辊辊型不合理等。

这种缺陷容易造成罩退炉内发生粘结现象,对产品质量影响很大。

边部缺陷,主要是由于酸洗切边质量不好或带钢的塑性较差所造成的。

边裂多成锯齿状,严重的边裂容易造成断带,带来生产事故。

要消除边浪等板形缺陷,必须制定合理的压下规程,降低末机架压下率,优化弯辊调整值。

2.罩退工序可能造成的缺陷:主要是粘结缺陷。

粘结是冷轧带钢采用罩式炉退火时难以避免的情况,大部分发生在带钢中部,少量在边部。

粘结钢卷在进入平整工序时,由于粘结部位突然被撕开,带钢局部应力超过屈服。

锻钢轧辊缺陷产生的原因及对策

锻钢轧辊缺陷产生的原因及对策

锻钢轧辊在轧制中出现问题的原因及对策目录页数1. 引言 42. 轧辊表面迹象A. 夹杂5~6B. 橘皮状轧辊表面7~8C. 辊印9~12D. 软点13~18E. 热裂纹i. 热轧机工作辊19ii. 冷轧机工作辊20~273. 剥落A. 表面迹像28~46B. 表皮下引发i. 与材质有关47~49ii. 接触应力a. 一般机理50~52b. 冷轧机工作辊53~61c. 热轧机工作辊62~64d. 支撑辊65~704. 辊颈断裂A. 表面迹像71~72i. 辊颈应力计算73~77B. 表皮下引发i. 轧辊设计或材料质量78~81C. 辊颈修复82~85D. 瞬时发生i. 深置缺陷86~87ii. 轧机过载88~905. 辊身断裂A. 疲劳--- 深置缺陷91~93B. 瞬时i. 轧机过载94~95ii. 深置缺陷96~976. 轧辊检测98A. 涡流探伤99~100B. 表面波超声波探伤101~105C. 着色渗入探伤106~108D. 刻蚀探伤109~111E. 磁粉探伤112~113F. 硬度检验114~1187. 轧辊处理和储存1198. 轧辊各部位的英文名称120~121引言在轧钢生产中的轧辊性能及质量直接影响轧机产量和产品质量。

因为轧辊采购费用在轧钢厂生产成本中占有较大比重,也是影响轧制成本的重要因素。

本书的目的是针对锻钢轧辊在轧制中可能出现的相关问题,并就问题的类型,特徵,样例(照片,图解),产生机理及预防措施等进行分析。

仅供有关人员参考。

锻造轧辊的无损探伤(NTD)对轧辊生产厂家和轧辊用户都非常重要。

轧辊生产厂家在轧辊热处理以及随后的精加工之前用NDT无损探伤,来确认轧辊的表面和内部是否合格。

轧辊用户(轧辊车间)利用NDT无损探伤确保研磨切削部分满足进一步使用之前的轧辊表面要求。

NDT 无损探伤以及其应用,可以作为最佳化轧辊维护过程的管理方法之一。

轧辊的处理和储存也是轧辊问题发生的因素。

冷轧机轧辊缺陷表现形式及预防措施!

冷轧机轧辊缺陷表现形式及预防措施!

冷轧机轧辊缺陷表现形式及预防措施!许崇山"常州宝菱重工机械有限公司#江苏常州$%&’%()摘要*介绍了轧辊表面缺陷的表现形式#提出了减少和预防轧辊缺陷的措施+关键词*轧辊,冷轧,预防措施中图分类号*-.%/$0/引言冷轧过程中#轧辊对带钢产量1板形质量1吨钢成本消耗三大指标的影响很大2%#$3+冷轧轧辊使用过程中的缺陷#会造成批量产品质量降级甚至报废#造成成材率降低#且可能导致相关设备损坏+因此#国内各冷轧生产厂家都非常注重对轧辊使用的研究#致力于有效降低冷轧轧辊的消耗2$4/3+本文从轧制工艺对轧辊的客观要求出发#从加强轧辊检测1完善轧辊磨削及装配工艺1改善轧制工艺条件1优化轧制工艺参数等多方面提出了轧辊缺陷的预防和消除措施+5轧辊缺陷表现形式及预防措施根据实际生产现场使用情况#轧辊缺陷主要划分为表面缺陷1剥落缺陷和断裂缺陷三大类263+575轧辊表面缺陷表现形式及预防措施轧制过程中#轧辊表面缺陷会明显地转移到带钢表面#直接影响到成品板带的表面质量+常见的轧辊表面缺陷原因分析及预防措施如下*%7%0%轧辊表面夹杂物在轧辊表面用肉眼或借助低倍放大镜可观察到的形状不规则的夹杂物2&3#长度一般在’7’84899范围内+预防措施*控制冶炼锻造加工及热处理等原始状态的关键参数#降低轧辊表面夹杂物的尺寸和数量+%7%7$轧辊表面桔皮轧辊超期服役1在工艺冷却润滑条件相对较差的环境下较长时间工作时#辊身表面会出现粗糙不均的:木纹;状结构#外观形状很像:桔子皮;2&3+有时轧辊过量磨削后也会出现这种特征+预防措施*改善轧制润滑条件#阻碍轧辊表面桔皮缺陷的发展#或适当增加锻造比1合理地缩短轧制周期+%7%7&轧辊表面印痕主要表现为辊面针孔1凹痕1压痕和孔洞#在轧辊表面不规则分布的凹痕#一般呈圆形2&3#最大直径可达&99#深度可达’7’<99#表面状态或轧辊的纹理通常保留在凹痕内#一般是由一些碎片"异物)进入咬入区或轧辊间相互接触摩擦造成的+预防措施*鉴别碎片异物来源1改善工艺润滑冷却条件1提高酸洗卷板的表面质量和剪边质量1增加工作辊表面硬度和淬硬深度1提高工作辊和中间辊和支撑辊之间的硬度差+%7%7=轧辊表面热损伤主要表现为软点和压痕#轧辊表面某个局部区域硬度比正常值低+特殊情况下#热损伤可引起轧辊表面局部的高硬度和回火色+轧辊工作期间#当局部温度超过轧辊制造时的回火温度#辊面便会发生热损伤#受损伤区域的硬度下降+预防措施*避免引发热损伤的一些潜在热源的发生#如磨床砂轮冲刀1轧制时的断带1打滑1轧制事故"缠钢1粘钢)1冷却不均匀1轧制产品规格变化1冷却液温度1轧制速度的变化等#有效降低轧辊表面产生热损伤的几率+对于存在引发热损伤问题几率较高的轧制环境#应当考虑使用硬度较低的轧辊+第&6卷第=期$’’(年<月现代冶金>?@A B C>A D E F F G B H IJ?F0&6K?0=L G H0$’’(!收稿日期*$’’(M’/M%8作者简介*许崇山"%(6%N)#男#工程师+电话*"’8%()<&$8<=//#%&6’%8’&&$6!"!"#轧辊表面热裂纹轧辊表面热裂纹又称应力裂纹$外观上看$热裂纹的形状有沿轧辊轴向的小裂纹%!&&’和龟裂纹两种$冷轧轧辊出现较多的是沿轧辊轴向的小裂纹(通常热裂纹发生在因断带或轧辊粘钢引起的轧辊热损伤最严重的区域内$有时候由于中间辊或支撑辊表面剥落也会引起轧辊表面裂纹(预防措施)避免热损伤和热冲击可以有效降低辊面形成热裂纹缺陷的几率(*"+轧辊剥落缺陷表现形式及预防措施轧辊剥落的起因不一定都来自热损伤和热裂纹区$辊面任何应力集中点都有可能产生疲劳裂纹$如轧辊印痕,清除不彻底的表面裂纹,擦伤等(轧辊剥落按照剥落发生的起始部位划分$可以分为表面起源诱发的轧辊剥落,轧辊材质缺陷引起的次表层剥落,接触应力引起的次表层剥落(!"-"!表面剥落表现为剥落断口有明显的疲劳带$可以通过断口上存留的像沙滩花纹样的延性疲劳纹和扇形断口流线的疲劳带来识别$一个疲劳带的长度范围小到几厘米,大到沿轧辊圆周方向数圈(预防措施)尽量避免轧辊产生应力集中和轧制过载.制定合理的轧辊磨削工艺$保证消除干净上一轧制周期产生缺陷.轧辊磨削后进行涡流探伤和超声波探伤(!"-"-轧辊材质缺陷引起的次表层剥落断口上存在同心疲劳花样%/鱼眼0形状’123$疲劳起自一个点,有疲劳纹,呈椭圆形传播$疲劳纹只与材料内在的缺陷有关(这种疲劳花样不能与表面起源的疲劳相混淆$表面起源的疲劳伴随有疲劳破坏带(预防措施)尽量减少钢锭中的参杂物(!"-"2接触应力引起的次表层剥落由于轧制载荷的作用$在变形区内轧辊会发生弹性压扁$最大剪应力位于辊面下的次表层位置(当剪应力超过轧辊的抗剪切强度时$裂纹在次表层萌生并扩展(预防措施)避免因杂质通过辊缝引起最大综合剪应力超过轧辊本身抗剪切强度.保证轧辊足够的磨削量.缩短轧制周期$减少轧辊应力循环次数.降低轧制力以降低最大综合剪切应力.改进辊身肩部倒角及半径$以减少辊身边缘的应力集中.避免轧制事故如带钢与轧辊间打滑,高速轧制时断带粘钢等(*"4轧辊断裂缺陷表现形式及预防措施!"2"!辊颈断裂辊颈断裂一般表现为疲劳断裂和脆性断裂两种形式(%!’疲劳断裂疲劳断裂按照诱因可分为表面起源,次表面起源和辊颈修复三种形式(表面起源诱发的辊颈疲劳断裂(轧辊有多个起源于表面的棘轮状标记$当采用工作辊传动方式轧制时$工作辊辊颈承受较大的扭转力矩$同时受轧制压力和弯辊力的合力作用$承受一定的弯曲应力$如果施加在辊颈上的合力超过材料的抗拉疲劳强度$周向表面裂纹就会形成$严重时导致辊颈疲劳断裂(次表面起源引起的辊颈疲劳断裂(次表面诱发的辊颈疲劳断裂是从一个材料质量缺陷点%深层固有缺陷’上萌生$或从轧辊结构的某一部分萌生$以椭圆形式从源点开始扩散$可以通过断口上次表层存在的椭圆形疲劳花纹%/鱼眼0形状’来识别(辊颈修复引起的辊颈疲劳断裂(断口上有多个从表面萌生的疲劳/棘轮0标记(轧制过程中会出现工作辊的轴承故障$严重时甚至出现工作辊的轴承抱死$对轧辊辊颈造成一定的修复损伤(前期修复的区域有很大的疲劳倾向(通常修复包括焊接和去掉轧制隐患的挖槽$如果焊缝,母材界面和挖槽的区域接近或处于辊颈上应力高的部位%如辊身5辊颈的圆弧’$集中应力容易超过材料的拉伸疲劳强度(预防措施)避免轧制过程中出现轧辊轴承抱死故障.设计辊型$避免应力集中.提高轧辊材料强度以阻止裂纹的萌生和扩展.设计辊颈时$考虑辊颈所承受的弯曲和扭转载荷$以避免裂纹萌生和扩展.提高轧辊材料强度以阻止裂纹的萌生和扩展.局部修复如焊接界面,凹槽要远离圆弧或辊颈上的应力集中区.使用过程中适当控制道次压下量$降低工作辊承受的扭转力矩(%-’脆性断裂与疲劳断裂产生原因不同$脆性断裂大多是由材质缺陷和轧制过载引起的(轧辊材质缺陷引起的辊颈脆性断裂起源于内部单独一点$断裂不呈现任何疲劳痕迹%疲劳辉纹’(在结晶凝固时$夹杂物%耐火材料,熔渣,局部偏析,疏松等’有可能残存于钢锭中$造成轧辊工作时产生应力集中(轧制过载引起的辊颈断裂一般发生在横向剪切面%呈6#7角’$由表面一点萌生$流线从源点出发$覆#第6期许崇山)冷轧机轧辊缺陷表现形式及预防措施盖整个断口!内部断口在外观上是典型的韧性断裂!断裂源不显现任何疲劳特征"疲劳辉纹#$预防措施%严格控制冶炼过程&减少残存夹杂物&改进热处理工艺&增加辊颈材料强度$’()(*辊身断裂"’#次疲劳断裂疲劳从一个单一点萌生!形成一个伴有疲劳辉纹的椭圆形花纹$深层固有缺陷导致的辊身断裂的危害极大!在轧制状态下!轧辊可能沿轴向完全爆裂或者断裂成几大段$次表层应力集中使局部应力超过疲劳强度!疲劳裂纹萌生并扩展!周围材料的强度逐渐降低到发生疲劳的强度!断裂的最后阶段是瞬时的$预防措施%轧辊磨削后进行超声波探伤!进行检测并跟踪使用情况!及时防止该类缺陷造成的严重事故的发生$"*#脆性断裂辊身脆断是由轧制过载引起的瞬间辊身断裂!一般发生在横向剪切面上"与轴向成+,-角#!断裂裂纹在表面应力最高的一点萌生!在横向剪切面上径向&圆周方向扩展!内部断口在外观上是典型的韧性断口$发生轧制事故时!辊身突然承受很大额外应力!一旦超过辊身材料强度!很容易发生脆断$预防措施%在生产过程中应尽量避免事故的发生.在冶炼过程中要严格控制夹杂物的含量$/应用实例某厂01六辊可逆冷轧机组由于轧辊的使用方法不当!在试生产阶段!出现了大量的轧辊质量缺陷!严重影响了轧后带钢表面质量和板形质量$为此通过轧辊检测设施"包括磁粉探伤&便携式轧辊表面硬度检测仪&超声波控伤等#进行了轧辊缺陷检测!并采取了相应的预防措施$/(2减少轧辊表面缺陷轧辊表面缺陷产生后不断向辊身渗透是导致轧辊裂纹&轧辊剥落和轧辊断裂的主要原因$为此对表面软点&粘结&裂纹等表面缺陷的轧辊进行了深度磨削!把表面缺陷除净后再磨掉3(’344!然后放置*天左右!再进行探伤等轧辊表面检查合格后上机$图’为改进前后轧辊表面缺陷产生几率的对比!由图’可知!改进后轧辊的换辊周期有所延长$/(/预防轧辊剥落通过对正常轧辊疲劳程度变化规律的分析!确卷图!为换辊周期与各种轧辊缺陷发生几率的关系曲线"从左至右分别为换辊周期与表面缺陷#曲线$%&与表面裂纹#曲线’%&与轧辊剥落#曲线(%发生几率的关系曲线)当换辊周期达到带长*+,-以上"橘皮&印痕&热划伤等轧辊表面缺陷产生的几率开始升高"当换辊周期达到带长$.+,-以上"轧辊裂纹产生的几率迅速升高"当换辊周期超过’++,-"轧辊剥落产生的几率超过了带长’+/)为了降低轧辊裂纹&轧辊剥落等缺陷的发生几率"换辊周期应控制在$!+0$.+,-之内)为解决工作辊边部应力集中区剥落问题"对中间辊&支撑辊的两个肩部分别设计加工大圆弧类型复合倒角"降低了轧辊边部因应力集中导致的剥落)123预防轧辊断裂避免工作辊轴承抱死和瞬间过载是预防轧制状态下的工作辊辊身和辊颈断裂#除轧辊本身材质缺陷外%的主要方法"主要措施有以下几点4#$%轧辊轴承及轴承室应定期清洗"保证轴承室的清洁和润滑油路畅通5#’%轴承外套定期倒面"保证磨损均匀)正常情况下"一套四列短圆柱轴承的使用寿命为.06个月"轧制带钢总长度约为7+++0.+++万-"轴承外套倒面时间周期为’个月"每次沿周向旋转*+85 #(%选用进口密封件"保证轴承室密封良好"防止乳化液进入轴承室5#!%对轧机工作辊轴承润滑方式进行改进"改双轴承座并联油雾润滑为单独润滑"降低工作辊轴承故障发生频率和工作辊辊颈断裂事故5 #7%减少轧制状态下的瞬间过载对工作辊的冲击"充分利用轧机的断带保护功能#过负载卸荷和辊缝快速打开%"并以主电机额定电流为负荷上限"减少过负荷冲击造成的轧辊剥落和断辊事故)3结论预防轧辊缺陷的主要措施有4#$%在轧制过程中尽量避免和减少轧制事故5#’%轧辊磨削加工后进行超声波探伤"及时发现轧辊缺陷5#(%改进轧机的工艺润滑及冷却条件5#!%改善酸洗卷板的表面质量"可以有效控制轧辊表面缺陷的产生5#7%制定科学合理的轧辊使用周期&磨削工艺和辊型优化&减少辊面应力过分集中5#.%完善轧辊装配工艺&减少轧制过载"可以有效降低轧辊断裂)参考文献49$:刘以宽"汪光然"严家高;轧辊失效分析9<:;轧钢"$**("#$%4(+=(!;9’:刘德富"尹钟大;冷轧工作辊的早期失效及预防措施9<:;特殊钢"’++("’!#.%4((=(7;9(:陈联满;轧辊辊颈断裂分析9<:;理化检验物理分册"’++$"(>#>%4(+7=(+6;9!:任喜来;冷轧辊的失效分析及其修复9<:;轧钢"’++’"$*#(%4!7=!>;97:?@AB C"DE F G H@CC"I@F J;K L@M;N E O K P O H P M M F E Q@ R P M S H P M M E Q T-E M ME Q@F L K K MU M@Q L V P U K H@L E P Q W K H F X F -@Q X O@R L X H K9<:;Y Q T E Q K K H E Q TZ@E M X H K B Q@M A F E F"’+++">#$%477=.>;9.:B[K W K S P\?Z"]K M P L L E^K L P<;Z@E M X H K@Q@M A F E FP OO P H T K S@Q SE Q S X R L E P QG@H S K Q K SF L K K M R P M S_P H,H P M M F 9<:;Y Q T E Q K K H E Q T Z@E M X H KB Q@M A F E F"’++!"$$#!%4!>7=!6!;9>:杨利坡"周涛"彭艳"等;‘\可逆冷轧机轧辊失效分类及预防9<:;冶金设备"’++7"$7!#.%4$=.;>第!期许崇山4冷轧机轧辊缺陷表现形式及预防措施。

马钢冷轧轧辊缺陷的分析及防范措施

马钢冷轧轧辊缺陷的分析及防范措施

马钢冷轧轧辊缺陷的分析及防范措施今天,随着工业的发展,越来越多的重要工业用钢,如马钢板材,在冷轧过程中,轧辊是一个非常重要的部件,随着轧辊的日益快速的寿命,轧辊的缺陷也会带来不利影响。

本文将从分析原因和防范措施两方面来探讨马钢冷轧轧辊缺陷的问题,为提高冷轧轧辊的使用寿命和质量提供参考。

一、马钢冷轧轧辊缺陷的分析1、损坏原因由于轧辊会在马钢冷轧过程中长期受到扭矩、温度、压力等不均匀的外界考验,而轧辊中各种元素的问题也会导致轧辊疲劳损坏,从而出现缺陷,如表面裂纹、磨损和烧伤等。

2、实际表现轧辊缺陷以表面裂纹为主,由此可知表面失效正是轧辊缺陷产生的原因之一,根据不同的裂纹形态,可以推断出轧辊的损伤原因,如圆柱形裂纹、锥形裂纹、Y字型裂纹等。

二、马钢冷轧轧辊缺陷的防范措施1、优化轧辊设计优化轧辊设计,使得轧辊具有较大的强度,同时增加轧辊表面的耐磨性,减少轧辊表面的损坏,使轧辊的使用寿命更长。

2、降低轧辊温度应控制轧辊的表面温度,并在较低的温度范围内进行轧制,以减少轧辊表面的烧伤,提高轧辊的使用寿命。

3、均匀保护润滑剂应给轧辊表面均匀的润滑,以确保轧辊的表面,同时保持充足的润滑剂分布,以减少轧辊噪声,平滑运行,减少轧辊磨损损坏,提高轧辊的使用寿命。

4、改善马钢材质应均匀改善马钢坯料的碳素含量,改善马钢冷硬度,使冷轧材料更加均匀,减少冷轧过程中烧伤、磨损等,提高冷轧轧辊使用寿命。

综上所述,马钢冷轧轧辊缺陷的分析及防范措施应及早采取有效的措施,以提高冷轧轧辊的使用寿命和质量,促进行业的健康发展。

首先,应优化轧辊的设计,降低轧辊温度,提供良好的润滑剂保护,同时改善马钢材质,以改善冷轧工艺,减少轧辊缺陷产生的可能。

马钢冷轧轧辊缺陷的分析及防范措施

马钢冷轧轧辊缺陷的分析及防范措施

马钢冷轧轧辊缺陷的分析及防范措施
调整轧辊缺陷主要涉及轧辊的设计成形等工艺指标,以满足冷轧要求的功能、精度和
结构。

钢铁厂在设计轧辊时,应当特别注意轧辊成型工艺过程中发生轧辊缺陷。

马钢冷轧
轧辊缺陷的具体表现主要体现在轧辊表面存在肉眼可见的凹凸疵点,局部残余焊料不充分,铸造的物理性能和力学性能较差等问题。

如何防止和减少马钢冷轧轧辊缺陷,目前主要采用如下措施:
首先,应确保轧辊材料的质量。

钢铁厂在选择轧辊材料时应该严格按照要求,以满足
冷轧材料的使用寿命和功能。

同时,轧辊材质的选择也应参考轧制条件,比如速度、温度、能量等参数。

其次,选择合适的轧辊成形工艺来减少缺陷。

无论是采用成型机还是手工操作,在轧
辊成形工艺的过程中,应坚持微小改变原则,尽量保持轧辊的精度,并观察成形过程中产
生的残余焊料,从而减少轧辊缺陷。

同时,搭配合理的润滑来提高轧辊耐磨性。

轧辊运行中,要保证轧辊机体和轴承各部
件能正常润滑。

正确的润滑模式和润滑油定期更换,可减少机械式的磨损,减轻轧辊的磨耗,有效的防止轧辊缺陷的产生。

此外,保证轧辊安装对接质量也是必不可少的一环。

钢铁厂在轧辊的安装时,应确保
轧辊的质量,安装的时候要避免过度的倾斜、圆弧不平等现象,并且在安装时尽量减少人
工操作,以免造成损伤。

总之,轧辊缺陷的具体归因原因无法一概而论,要想减少马钢冷轧轧辊缺陷,就需要
从多个角度出发,避免在设计、选择材料、工艺成形、安装对接过程出现现象,做到安全
结构、成本有效,提高轧辊的品质和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第47卷第2期2019年4月
Vol. 47 No. 2Apr. 2019
现代冶金
Modern Metallurgy
锻钢冷轧工作辊表面缺陷形成原因分析
王永,韩剑
(宝钢轧辊科技有限责任公司,江苏常州213019 )
摘要:锻钢冷轧工作辍在制造过程中需进行成品表面超声波探伤检测,某段时间内发现多支工作辍存在表面超声
波探伤缺陷信号;为分析该缺陷的类型和形成原因,采用直读光谱仪、肖氏硬度计、光学显微镜和扫描电镜对缺陷
进行了化学成分、硬度、显微组织的检测,结果显示:这类缺陷是在辍坯冶炼过程中的VD 真空脱气和ESR 电渣重 熔过程中对N 含量的控制不当造成的钢坯中N 元素含量过高所致的孔洞,N 元素在钢坯内扩散聚集形成氮气并 向外扩散时形成了局部孔洞,表面超声波探伤时显示缺陷信号,磁粉检测时显示为点状可见缺陷。

关键词:冷轧工作辍;表面超声波;氮气;电渣重熔中图分类号:TG335. 12;TG333. 17;TF763+. 2
1概述
轧辊是使金属产生塑性变形的工具,冷轧辊是 对带钢(板)进行冷轧使其变形的工具,冷轧辊因其
特殊的工况需求,一般采用锻造合金工具钢制造% 目前,国内、外主流的锻钢冷轧辊材质为5%Cr,即
Cr 含量约5%,此外还含有少量Ni, Mo, V , Mn 等
合金。

锻钢冷轧辊的制造流程一般为电弧炉炼钢一 铸造一电渣重熔(ESR )—锻造一锻后热处理一调
质一车昆身表面感应淬回火一精加工(车+磨)—成品 检测;其中成品检测除进行尺寸、硬度、UT 等常规
检测外,还要进行一种特殊的超声波检测一一表面
超声波检测%
表面超声波是一种瑞利波⑴,这种波只在被测
试件表面传播,探测深度约3 mm,其探测原理如图
1所示%
图1表面超声波探伤原理图
表面超声波探伤是一种灵敏度非常高的检测手
段,可以准确地发现轧辊表面的裂纹、夹杂等缺陷,
在轧辊使用过程中,为避免轧辊带缺陷上机提供了 有力的保障,因此在冷轧辊行业应用非常广泛,使用 价值也得到了认可%
对于轧辊制造商,在对所有轧辊进行成品质 量检测时,表面超声波探伤也是必不可少的检测 项目% 2017年4-6月份对某一批15支同规格轧 辊进行检测时发现有5支存在缺陷波信号,不合
格率高达33%,轧辊编号为HW360516的产品, 其表面超声波检测波形如图2所示,其他轧辊的 波形类似%
图2表面超声波探伤波形图
为了找出该5支探伤有信号产品的缺陷形成原
因,采用磁粉、金相显微镜对其进行了检测,同时,还
对缺陷位置进行了取样,检测了化学成分和扫描电
镜,以研究形成原因并采取措施避免该问题的再次 发生%
收稿日期:2018-08-23
作者简介:王 永(1985-),男,工程师% E-mail : wangyong285314@baosteel.
com
44现代冶金第47卷
位置经放大400倍观察呈黑色,判断其为孔洞类缺陷。

2试验材料与方法
本批次探伤异常的5支轧辊材质均为5%Cr,
是国内某冷连轧机组使用的工作辊,产品规格为
"420mm X4350gg,该工作车昆技术要求为:新车昆
车昆身表面硬度94-97HSD,淬硬层深度"25mm,报
废硬度"90HSD。

针对该类型的缺陷,采用磁粉对缺陷位置进行
了确认和形貌显示,采用斯派克SDR-800型直读光谱仪对该区域和周边区域的化学成分进行了定量分析%采用MEF-4型金相显微镜对显微组织进行了观察,浸蚀剂为4%硝酸酒精%采用JJF-065肖氏硬度计对缺陷区域进行了硬度检测;采用蔡司扫描显微镜对切取的带有缺陷的样品进行了扫描观察和能谱检测%
3结果分析与讨论
3.1宏观形貌和显微组织分析
由于表面超声波只能发现缺陷存在,无法显示缺陷形貌,采用黑油磁悬液在编号为HW360516的工作辊缺陷处进行了辅助检测,检测结果显示,缺陷波处是一处点状缺陷,形貌如图3所示;采用MEF-4型金相显微镜对显微组织进行了观察,组织形貌如图4所示,组织为:回火马氏体+颗粒状碳化物+残余奥氏体,纤维组织为理想的热处理组织,点缺陷
图3缺陷信号处的宏观形貌(磁粉检测)
图4缺陷处金相显微组织(400X)
3.2化学成分和硬度分析
采用斯派克直读光谱仪对编号为HW360516的工作辊缺陷位置和周边无缺陷位置进行了化学成分检测,检测结果如表1所示%参照技术条件中5%C+的成分标准,缺陷位置和正常区域的化学成分并无明显差异且都符合技术条件要求%
表1工作辊缺陷位置和正常区域的化学成分/%
!(C)!(Si)!(Mn)!(P)!(S)w(Cr)!(M o)!(Ni)!(V)正常区域0.860.760.400.0120.002 5.050.400.320.12
缺陷位置0.890.720.500.0140.002 5.120.330.290.14
技术要求0.80-1.000.50-1.000.30-0.50#0.020#0.015 4.50-5.500.20-0.500.20-0.500.10-0.40
采用JJF-065肖氏硬度计对缺陷位置和周边区域做硬度检测,检测结果显示,缺陷位置和周边区域硬度均在95-97HSD,两区域的硬度并无明显差异,也均符合图纸技术条件要求%
3.3扫描电镜分析
为进一步分析HW360516工作辊表面点缺陷的性质,采用线切割的方式切取了带有缺陷的试样,试样尺寸20mm X20mm,如图5所示;采用蔡司扫描电镜对缺陷位置进行了扫描观察,同时对缺陷进行了能谱检测,缺陷扫描照片如图6所示,能谱检测结果如图7所示,能谱成分分析结果如图8所示%从图6中的扫描形貌观察可以发现,宏观形貌显示为点状的缺陷实际是一孔洞类缺陷,孔洞周边及内部未见明显的夹杂和异物存在;孔洞区域的能谱分析显示,该区域的化学成分主要为Fe,Mn,Cr,3等合金元素,元素类型也基本与冶炼的化学成分控制要求基本相同,说明缺陷处并不存在异金属或夹杂类缺陷%
3.4缺陷形成机制分析与预防措施探讨
HW360516
工作辊辊面存在的表面超声波探
第2期王永,等:锻钢冷轧工作辊表面缺陷形成原因分析45图5缺陷取样形貌
图6扫描电镜形貌
图7缺陷位置化学成分表
2.4
1.9
1.4 KCnt
1.0
0.5
0.0
r e
Cr
Ti V”1Wife
S Jw Q............. 1.002.003.004.005.006.007.008.009.0010.00
Energy-keV
图8缺陷位置能谱分析图
伤缺陷经金相和扫描电镜分析认为,该类缺陷为孔洞类缺陷,这类缺陷是轧辊局部存在气体,气体在扩散的过程中破裂形成的孔洞,主要与轧辊制造过程中的气体控制有关。

结合辊坯制造过程中的气体控制分析,这些孔洞的形成主要与N含量的控制有关,辊坯冶炼的工序为LF炉精炼+浇铸+VD+ ESR,而N含量的控制主要在VD工序和ESR工序,在真空脱气(VD)工序,一般需要在极限真空度下保持一定时间,以脱除氮气⑵,此外,在ESR工序,一般通过通入Ar气进行保护,防止空气中的N 进入钢液中,同时通过Al元素的加入,脱除钢渣及钢液中的N⑶,如果VD工序的真空度不足或保持时间偏短,则无法有效地达到去除氮气的目的,使得N 含量偏高;在后续的ESR过程中如不能很好地控制,这些N元素在钢坯内部扩散聚集就会形成氮气,氮气向外扩散时就会在局部导致破裂,形成孔洞。

针对上述原因,为控制轧辊孔洞类表面缺陷的形成,需在VD工序中加强控制,要求在极限真空度下保压时间大于25min,以最大限度脱除氮气,目标值#(N)#35X10T6;此外,电渣重熔冶炼过程中,保证冶炼过程中Ar气的持续通入,隔绝空气中的N进入炉渣中,同时,通过持续加入A1粒,脱除渣中及钢水中的N,形成A1N于渣中,保持高还原性渣的状态,以尽可能地消除N的存在,避免氮气的形成。

4结束语
经对5%Cr锻钢工作辊表面缺陷进行超声波检测和分析,该类表面波缺陷实质是孔洞类缺陷,这类缺陷是在辊坯冶炼过程中的VD真空脱气和ESR 电渣重熔过程中对N含量的控制不当造成钢坯中N元素含量过高,N元素在钢坯内扩散聚集形成氮气并向外扩散时形成了局部孔洞,表面超声波探伤显示为缺陷信号,磁粉检测时显示为点状缺陷。

为避免该类问题的再次发生,需加强轧辊辊坯制造VD过程中的极限真空度控制及保持时间,以更好地完成脱N的目的;同时,在后续的ESR过程中,也需要持续地保持Ar气通入和Al的加入,以完成脱N的过程,避免后续N的聚集和局部气体的形成造成孔洞类缺陷。

参考文献:
(1)夏纪元,黄建明.超声波探伤实战经典案例精选[M).
广州:中山大学出版社,2014.
()黄希祜.钢铁冶金原理[M).北京:冶金工业出版社, 20084
()黄希祜.基于数值模拟的电渣重熔理论与技术[M).
北京:科学出版社,
2016.。

相关文档
最新文档