空间解析几何-第3章-常见的曲面2
83曲面及其方程

一般地,在空间解析几何
z
方程 F(x, y) 0 表示 柱面,
母线 平行于 z 轴;
x 准线 xoy 面上的曲线 l1 : F ( x, y) 0
l1
y
z
l2
方程 G( y, z) 0 表示柱面,
y
母线 平行于 x 轴;
x
准线 yoz 面上的曲线 l2 : G( y, z) 0
观察柱面的形 成过程:
准线
C
母线
17
柱面演示
播放
18
例如: 考虑方程 x2 + y2 = R 2 所表示的曲面.
在xoy面上, x2 + y2 = R2 表示以 原点O为圆心, 半径为R的圆.
曲面可以看作是由平行 于 z 轴的直线L沿xoy面上的 圆x2 + y2 = R2 移动而形成, 称 该曲面为圆柱面.
相应地平面被称为一次曲面. 讨论二次曲面性状的截痕法:
用坐标面和平行于坐标面的平面与曲面相截, 考察其交线(即截痕)的形状, 然后加以综合, 从而 了解曲面的全貌.
以下用截痕法讨论几种常见的二次曲面.
24
(1) 椭球面
z
x2 a2
y2 b2
z2 c2
1
O y
1 用坐标面z = 0 , x = 0和 x y = 0去截割,分别得椭圆
z x2 y2 cot
两边平方
z2 a2( x2 y2 )
o
y
x
---圆锥面的标准方程
13
y2 z2
例6 以 曲 线
a
2
c2
1 为母线,
y 0
几种常用的二次曲面与空间曲线

1. 指出下列方程的图形:
方程 x5
平面解析几何中 空间解析几何中 平行于 y 轴的直线 平行于 yoz 面的平面
x2 y2 9 圆心在(0,0) 半径为 3 的圆
以 z 轴为中心轴的 圆柱面
y x 1 斜率为1的直线 平行于 z 轴的平面
55
例4:求抛物柱面 x 2y2 和平面 x z 1
椭圆抛物面
x2 y2 z 2 p 2q
双曲抛物面
• 双曲面: 单叶双曲面
双叶双曲面
x2 a2
y2 b2
1
x2 a2
y2 b2
1
• 椭圆锥面:
x2 a2
y2 b2
z2
53
3、几种常用的空间曲线
• 空间曲线 • 求投影曲线
三元方程组 或参数方程 (如, 圆柱螺线)
54
思考与练习
解:绕 x 轴旋转 所成曲面方程为
x2 a2
y2 z2 c2
1
绕 z 轴旋转所成曲面方程为
x2 y2 a2
z c
2 2
1
x
y
z
这两种曲面都叫做旋转双曲面.
20
二、柱面
z
引例. 分析方程
表示怎样的曲面 .
M
解:在 xoy 面上,
表示圆C,
C
o
M1
y
在圆C上任取一点M1(x, y,0), 过此点作 x
o y
S : x2 z2 2 py
例如:将yoz平面上的抛物线C: y2 2 pz
x
绕z轴旋转一周所产生的抛物面为:
z
S : x2 y2 2 pz
高等数学(解析几何)图形

y2
z
L
投影柱面
x2 y2 1
得交线L:
1
所求投影曲线为
x2 y2 1 z 1
x2 y2 1
x2 y2 1 .
.
z 0
.
o
.
.
x
y
z =0
2
25. 空间曲线作为投影柱面的交线(1)
2 y2 z2 4x 4z
L:
y
2
3z 2
关于xoy面:
(x,y,z) (x,y,-z)
关于x轴:
(x,y,z) (x,-y,-z)
M(x,y,z)
y
P
(x,y,-z)
关于原点:
(x,y,z) (-x,-y,-z)
.
2. 两矢量和在轴上的投影 两矢量的和在轴上的投影等于投影的和
c
B A
A´
B´
c´
u
2. 两矢量和在轴上的投影 两矢量的和在轴上的投影等于投影的和
.
1. 空间直角坐标系
八个卦限
z
0 y
x
1. 空间直角坐标系
八个卦限
z
0 y
.
x
1. 空间直角坐标系
八个卦限
点的坐标
Ⅳ
Ⅲ
z z
Ⅱ
Ⅰ
M (x,y,z)
M (x,y,z)
0
y
y
.
x
N
x
Ⅵ
Ⅷ
Ⅴ
1. 空间直角坐标系
z
坐标和点
z
(x,y,z) M
M (x,y,z)
00
y
第三章_第一节 空间解析几何,李养成(新版),

它们的图像都是一条直线,z轴!
x y z a , 例3.1.4 讨论方程组 a 的图像. x y ax
x y z a 解:方程组的图像是球面 a a 与母线平行于z轴的圆柱面 x y 的交线
F x, y, z , G x, y, z
称为空间曲线的一般方程 注: (1)表示同一条曲线的方程不唯一。 (2)曲线上点的坐标都满足方程,
z
S1 S2
o
C
y
满足方程的点都在曲线上, x试考察方程
第3章 常见的曲面
本章在初步介绍空间图形与方程之间的一般关系 后,对柱面、锥面、旋转曲面以及二次曲面(包括椭球 面、单叶双曲面、双叶双曲面、椭圆抛物面和双曲抛 物面)进行讨论.
对于前三种曲面具有明显的几何特征,我们着重从 这些曲面的几何特性来建立它们的方程.
对于五种二次曲面,我们则从曲面的标准方程出 发来讨论它们的几何性质, 描述它们的几何形状.
z
点P 在该圆锥面上
L
cos OP, k cos
OP k OP k
cos
y
x
x y tan z , 整理得二次齐次方程
圆锥面的坐标式方程
习题8(1) 已知圆锥面的顶点为P0 (1, 2,3),轴垂直于 平面 x y z ,半顶角为 ,求这圆锥面的 方程. 解 圆锥面的轴过点 P0 , 方向向量 v 2,2, 1.
特别地,当 C0 是原点时,球面方程为
x2 y2 z 2 R2
表示上(下)球面 .
C0
考研数学一大纲空间解析几何

考研数学一大纲空间解析几何空间解析几何是考研数学一科目的重要内容之一。
在考研数学一大纲中,空间解析几何包括平面方程与空间直线、平面及空间中的曲面方程、立体几何与相关计算方法等内容。
下面将对这些内容进行详细讨论。
一、平面方程与空间直线平面方程是空间解析几何的基础,在考研数学一大纲中要求掌握平面的一般方程、点法式方程、截距式方程以及向量法方程。
对于一般方程Ax+By+Cz+D=0,其中A、B、C为方程的系数,D为常数项,可以通过法向量的系数A、B、C来确定该平面的法向量。
点法式方程是通过平面上的一点和法向量来表示平面方程的形式,截距式方程是通过平面与坐标轴的截距来表示平面方程的形式。
向量法方程是通过平面上的一点和与平面垂直的一个向量来表示平面方程的形式。
空间直线也是空间解析几何的重点内容之一。
在考研数学一大纲中要求掌握空间直线的点向式方程、对称式方程以及向量式方程。
点向式方程是通过直线上的一点和方向向量来表示直线方程的形式,对称式方程是通过直线与坐标轴的截距来表示直线方程的形式。
向量式方程是通过直线上一点和与该直线平行的一个向量来表示直线方程的形式。
二、平面及空间中的曲面方程在考研数学一的大纲中,平面与空间中的曲面方程也是重要的内容。
常见的曲面方程包括二次曲面方程、柱面方程、圆锥曲线方程等。
二次曲面方程的一般形式为Ax^2+By^2+Cz^2+Dxy+Exz+Fyz+Gx+Hy+Kz+L=0,其中A、B、C、D、E、F、G、H、K、L为方程的系数。
不同的二次曲面有不同的特点和性质,例如椭球、单叶双曲面、双叶双曲面、椭圆抛物面等。
柱面方程是通过直线沿着某一方向无限延伸而形成的表面。
柱面方程的一般形式为Ax+By+C=0,其中A、B、C为方程的系数。
圆锥曲线方程是由一个点(焦点)和一个直线(准线)确定的曲线。
圆锥曲线方程的一般形式为(x-a)^2+(y-b)^2-(z-c)^2=0,其中(a, b, c)为焦点的坐标。
空间解析几何-第3章-常见的曲面2

截线为双曲线
y = h
y
x
z
o
③当 时
截线为直线
用平行于坐标面的平面截割
(2)用y = h 截曲面
(0 , b , 0)
用平行于坐标面的平面截割
(2)用y = h 截曲面
③当 时
截线为直线
②当 时
①当 时
(1)单叶双曲面与x,y轴分别交于(±a,0,0), (0,±b,0)而与z轴无实交点. 上述四点称为单叶双曲面的实顶点, 而与z轴的交点(0,0,±ci) 称为它的两个虚交点. (2)截距:分别用y=0,z=0和x=0,z=0, 代入得x,y轴上的截距为: , ; 在z轴上没有截距.
*
空间解析几何
第3章 常见的曲面2
本章主要内容
柱面 2 锥面 3 旋转曲面 4 曲线与曲面的参数方程 5 椭球面 6 双曲面(单叶双曲面,双叶双曲面) 7 抛物面(椭圆抛物面,双曲抛物面) 8 二次直纹面 9 作图
五种典型的 二次曲面
§3.5 五种典型的二次曲面
x
y
z
o
2°用y = 0 截曲面
3°用x = 0 截曲面
1°用z = 0 截曲面
x
z
y
O
4.主截线
Cx=0
Cy=0
两条主抛物线具有相同的顶点,对称轴和开口方向
————其为点(0,0,0)
————xoz 面上的抛物线
主抛物线
———— yoz 面上的抛物线
有相同的定点(0,0,0) 相同的对称轴z轴,开口均向z轴正方向
单叶双曲面 双叶双曲面
x
y
o
z
x
y
o
z
单叶双曲面
解析几何第三章知识点

第三章 平面与空间直线版权所有,侵权必究§3.1 平面的方程1.平面的点位式方程在空间给定了一点M 0与两个不共线的向量a ,b 后,通过点M 0且与a ,b 平行的平面π 就惟一被确定. 向量a ,b 叫平面π 的方位向量. 任意两个与π 平行的不共线的向量都可作为平面π 的方位向量.取标架{}321,,;e e e O ,设点M 0的向径0r =0OM ={}000,,z y x ,平面π 上任意一点M 的向径为r =OM = {x ,y ,z }(如图). 点M 在平面π上的充要条件为向量M M 0与向量a ,b 共面. 由于a ,b 不共线,这个共面的条件可以写成M M 0= u a +v b而M M 0= r -r 0,所以上式可写成r = r 0+u a +v b(3.1-1)此方程叫做平面π 的点位式向量参数方程,其中u ,v 为参数.若令a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z },则由(3.1-1)可得⎪⎩⎪⎨⎧++=++=++=vZ u Z z z v Y u Y y y vX u X x x 210210210 (3.1-2)此方程叫做平面π 的点位式坐标参数方程,其中u ,v 为参数.(3.1-1)式两边与a ×b 作内积,消去参数u ,v 得(r -r 0,a ,b ) = 0(3.1-3)此即222111000Z Y X Z Y X z z y y x x ---=0 (3.1-4)这是π 的点位式普通方程.已知平面π上三非共线点i M (i = 1,2,3). 建立坐标系{O ;e 1, e 2, e 3},设r i = i OM ={i x ,i y ,i z },i = 1,2,3. 对动点M ,设r =OM ={x ,y ,z },取21M M 和31M M 为方位向量,M 1为定点,则平面π的向量参数方程,坐标参数方程和一般方程依次为r = 1r +u(2r -1r )+v(3r -r 1)(3.1-5) ⎪⎩⎪⎨⎧-+-+=-+-+=-+-+=)()()()()()(131211312113121z z v z z u z z y y v y y u y y x x v x x u x x(3.1-6)131313121212111z z y y x x z z y y x x z z y y x x ---------= 0(3.1-7)(3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若i M 是π 与三坐标轴的交点,即1M (a ,0,0),2M (0,b ,0),3M (0,0,c ),其中abc ≠0,则平面π 的方程就是caba z y a x 00---=0 (3.1-8)即1=++czb y a x (3.1-9)此方程叫平面π的截距式方程,其中a ,b ,c 称为π 在三坐标轴上的截距.2.平面的一般方程在空间任一平面都可用其上一点M 0(x 0,y 0,z 0)和两个方位向量a = {1X ,1Y ,1Z },b = {2X ,2Y ,2Z }确定,因而任一平面都可用方程将其方程(3.1-4)表示. 将(3.1-4)展开就可写成Ax +By +Cz +D = 0(3.1-10)其中A =2211Z Y Z Y ,B =2211X Z X Z ,C =2211Y X Y X由于a = {1X ,1Y ,1Z }与b = {2X ,2Y ,2Z }不共线,所以A ,B ,C 不全为零,这说明空间任一平面都可用关于a ,b ,c 的一三元一次方程来表示.反之,任给一三元一次方程(3.1-10),不妨设A ≠0,则(3.1-10)可改写成02=++⎪⎭⎫ ⎝⎛+ACz ABy A D x A即000=--+ACA B zy AD x 它显然表示由点M 0 (-D / A ,0,0)和两个不共线的向量{B ,-A ,0}和{C ,0,-A }所决定的平面. 于是有定理3.1.1 空间中任一平面的方程都可表为一个关于变数x ,y ,z 的三元一次方程;反过来,任一关于变数x ,y ,z 的三元一次方程都表示一个平面.方程(3.1-10) 称为平面π 的一般方程. 3.平面的法式方程若给定一点M 0和一个非零向量n ,则过M 0且与n 垂直的平面π也被惟一地确定. 称n 为π的法向量. 在空间坐标系{O ;i ,j ,k }下,设0r = 0OM ={x 0,y 0,z 0},n = {A ,B ,C },且平面上任一点M 的向径r =OM ={x ,y ,z },则因总有M M 0⊥n ,有n (r -r 0) = 0(3.1-11) 也就是A (x -x 0)+B (y -y 0)+C (z -z 0) = 0(3.1-12)方程(3.1-11)和(3.1-12)叫平面π 的点法式方程. (3.1-12)中的系数A ,B ,C 有简明的几何意义,它们就是平面π 的一个法向量的分量.特别地,取M 0为自O 向π 所作垂线的垂足,而n 为单位向量. 当平面不过原点时,取n 为与OP 同向的单位向量n 0,当平面过原点时取n 0的正向为垂直与平面的两个方向中的任一个.设|OP | = p ,则OP = p n 0,由点P 和n 0确定的平面的方程为 n 0(r -p n 0) = 0式中r 是平面的动向径. 由于1)(20=n ,上式可写成n 0r -p = 0(3.1-13)此方程叫平面的向量式法式方程.若设r = {x ,y ,z },n 0 = {cos α,cos β,cos γ},则由(3.1-13)得x cos α+y cos β+z cos γ-p = 0(3.1-14)此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征:1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p ≤0(意味着p ≥ 0). 3°p 是原点到平面的距离. 4.化一般方程为法式方程在直角坐标系下,若已知π的一般方程为Ax +By +Cz +D = 0,则n = {A ,B ,C }是π的法向量,Ax +By +Cz +D = 0可写为nr +D = 0(3.1-15)与(3.1-13)比较可知,只要以2221||1CB A ++±=±=n λ 去乘(3.1-15)就可得法式方程λAx +λBy +λCz +λD = 0 (3.1-16)其中正负号的选取,当D ≠0时应使(3.1-16)的常数项为负,D =0时可任意选.以上过程称为平面方程的法式化,而将2221CB A ++±=λ叫做法化因子.§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点与平面间的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值|δ |就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p (3.2-2)推论1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题,三元一次不等式的几何意义 设平面π的一般方程为Ax +By +Cz +D = 0那么,空间任何一点M (x ,y ,z )与平面间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.§3.3 两平面的相关位置空间两平面的相关位置有3种情形,即相交、平行和重合. 设两平面π1与π2的方程分别是π1: 11110A x B y C z D +++=(1)π2: 22220A x B y C z D +++=(2)则两平面π1与π2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1 两平面(1)与(2)相交的充要条件是111222::::A B C A B C ≠(3.3-1)平行的充要条件是11112222A B C D A B C D ==≠(3.3-2)重合的充要条件是11112222A B C D A B C D ===(3.3-3)由于两平面π1与π2的法向量分别为11112222{,,},{,,}n A B C n A B C ==,当且仅当n 1不平行于n 2时π1与π2相交,当且仅当n 1∥n 2时π1与π2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为θ,称π1与π2的二面角∠(π1,π2) =θ 或π-θ为两平面间的夹角.显然有12cos (,)ππ∠=±cos θ =(3.3-4)定理3.3.2 两平面(1)与(2)垂直的充要条件是0212121=++C C B B A A(3.3-5)例 一平面过两点 1(1,1,1)M 和2(0,1,1)M -且垂直于平面x +y +z = 0,求它的方程.解 设所求平面的法向量为n = {A ,B ,C },由于12{01,11,11}{1,0,2}M M =----=--在所求平面上,有12M M n ⊥, 120M M n ⋅=,即20A C --= .又n 垂直于平面x +y +z = 0的法线向量{1,1,1},故有 A +B +C = 0 解方程组20,0,A C A B C --=⎧⎨++=⎩得2,,A CBC =-⎧⎨=⎩ 所求平面的方程为2(1)(1)(1)0C x C y C z --+-+-=,约去非零因子C 得2(1)(1)(1)0x y z --+-+-=,即2x -y -z =0§3.4 空间直线的方程1.由直线上一点与直线的方向所决定的直线方程在空间给定了一点0000(,,)M x y z 与一个非零向量v = {X ,Y ,Z },则过点M 0且平行于向量v 的直线l 就惟一地被确定. 向量v 叫直线l 的方向向量. 显然,任一与直线l 上平行的飞零向量均可作为直线l 的方向向量.下面建立直线l 的方程.如图,设M (x ,y ,z ) 是直线l 上任意一点,其对应的向径是r = { x ,y ,z },而0000(,,)M x y z 对应的向径是r 0,则因M M 0//v ,有t ∈R ,M M 0= t v . 即有r -r 0= t v所以得直线l 的点向式向量参数方程r = r 0+t v (3.4-1)以诸相关向量的分量代入上式,得⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛Z Y X t z y x z y x 000根据向量加法的性质就得直线l 的点向式坐标参数方程为⎪⎩⎪⎨⎧+=+=+=Ztz z Yt y y Xtx x 000 (3.4-2)消去参数t ,就得直线l 的点向式对称方程为Zz z Y y y X x x 000-=-=- (3.4-3)此方程也叫直线l 的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L 通过空间两点M 1(x 1,y 1,z 1)和M 2(x 2,y 2,z 2),则取M 1为定点,21M M 为方位向量,就得到直线的两点式方程为121121121z z z z y y y y x x x x --=--=-- (3.4-4)根据前面的分析和直线的方程(3.4-1),可得到||||||||||00v M M v t =-=r r 这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t 的绝对值等于定点M 0到动点M 之间的距离与方向向量的模的比值,表明线段M 0M 的长度是方向向量v 的长度的 |t | 倍.特别地,若取方向向量为单位向量v 0 = {cos α,cos β,cos γ}则(3.4-1)、(3.4-2)和(3.4-3)就依次变为r = r 0+t v 0(3.4-5)⎪⎩⎪⎨⎧+=+=+=γβαcos cos cos 000t z z t y y t x x (3.4-6)和γβαcos cos cos 000z z y y x x -=-=- (3.4-7)此时因 |v | = 1,t 的绝对值恰好等于l 上两点M 0与M 之间的距离.直线l 的方向向量的方向角α,β,γ cos α,cos β,cos γ 分别叫做直线l 的方向角和方向余弦.由于任意一个与v 平行的非零向量v'都可作为直线l 的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z 为直线l 的方向数,用来表示直线l 的方向.2.直线的一般方程空间直线l 可看成两平面π1和π2的交线. 事实上,若两个相交的平面π1和π2的方程分别为π1: 11110A x B y C z D +++= π2: 22220A x B y C z D +++=那么空间直线l 上的任何一点的坐标同时满足这两个平面方程,即应满足方程组111122220,0.A x B y C z D A x B y C z D +++=⎧⎨+++=⎩ (3.4-8)反过来,如果点不在直线l 上,那么它不可能同时在平面π1和π2上,所以它的坐标不满足方程组(3.4-8).因此,l 可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式. 将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例1将直线的一般方程10,2340.x y z x y z +++=⎧⎨-++=⎩ 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为a = {1,1,1},b = {2,-1,3}因a ×b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为12413x y z -+==--令t z y x =-+=-=-32141,则得所求的参数方程为 14,,23.x t y t z t =+⎧⎪=-⎨⎪=--⎩§3.5 直线与平面的相关位置直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形. 设直线l 与平面π 的方程分别为L :000x x y y z z X Y Z ---== (1) π :Ax +By +Cz +D = 0(2)将直线l 的方程改写为参数式⎪⎩⎪⎨⎧+=+=+=tZz z tY y y tX x x 000. (3)将(3)代入(2),整理可得(AX +BY +CZ )t = -(Ax 0+By 0+Cz 0+D )(4)当且仅当AX +BY +CZ ≠0时,(4)有惟一解CZBY AX DCz By t +++++-=000Ax这时直线l 与平面π 有惟一公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠0时,方程(4)无解,直线l 与平面π 没有公共点;当且仅当AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0时,(4)有无数多解,直线l 在平面π 上. 于是有定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX +BY +CZ ≠02)平行:AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D ≠03)直线在平面上: AX +BY +CZ = 0,Ax 0+By 0+Cz 0+D = 0以上条件的几何解释:就是直线l 的方向向量v 与平面π 的法向量n 之间关系. 1)表示v 与n 不垂直;2)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)不在平面π 上; 3)表示v 与n 垂直且直线l 上的点(x 0,y 0,z 0)在平面π 上. 当直线l 与平面π 相交时,可求它们的交角. 当直线不与平面垂直时,直线与平面的交角ϕ 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X ,Y ,Z }是直线l 的方向向量,n = {A ,B ,C }是平面π 的法向量,则令∠(l ,π ) =ϕ,∠(v ,n ) = θ ,就有ϕ=-2πθ 或 ϕ= θ-2π(θ 为锐角) 因而sin ϕ =∣cos θ∣=vn v n ⋅⋅=222222ZY X CB A CZ BY AX ++++++ (3.5-1)§3.6 空间直线与点的相关位置任给一条直线l 的方程和一点M 0,则l 和M 0的位置关系只有两种:点在直线上和点不在直线上。
空间解析几何-第3章 常见的曲面3

2017/1/4
直纹面的应用
2017/1/4
室外探索乐园——广东科学中心
解法二:
设过点( 2,3, - 4)的直线方程为 x 2 lt y 3 mt z -4 nt l2 m2 n2 2 2 1 代入曲线方程得( )t (l m n)t 0① 4 9 16 3 2 由命题3.6.( 1 1)知过点( 2,3, - 4)有且仅有两条直母线 ,故①为一关于 t的恒等式 l2 m2 n2 有 0 4 9 16 2 1 和l m n 0 3 2 2x z 0 x20 解得l : m : n 1 : 0 ( : - 2)或0 : 3: (-4) , 从而母线方程为 { 与{ y 3 0 4 y 3z 0
平面是直纹面
二次柱面和二次锥面都是直纹面。
其它的二次曲面中,只有单叶双曲面和双曲抛 物面是直纹面。
2017/1/4
单叶双曲面是直纹面
x2 y2 z2 2 2 1 2 a b c
含两个直母线系 直纹面在建筑学上有意义 例如,储水塔、电视塔等 建筑都有用这种结构的。
2017/1/4
空间解析几何
第3章 常见的曲面3
2017/1/4
本章主要内容
1 2 3 4 5 6 7 8 9 柱面 锥面 旋转曲面 曲线与曲面的参数方程 椭球面 双曲面(单叶双曲面,双叶双曲面) 抛物面(椭圆抛物面,双曲抛物面) 二次直纹面 作图
五种典型的 二次曲面
§3.6 直纹面
由一簇直线构成的曲面叫直纹面,其中的直线 叫直纹面的母线。
双曲抛物面(马鞍面)是直纹面
x2 y2 2 z 2 a b
含两个直母线系2017/1/4 Nhomakorabea双曲抛物面是直纹面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把方程的左边都化成两项正,一项负,则右边是1的就 表示单叶双曲面,而右边是-1的,就表示双叶双曲面.
2°绘图时要注意区分“实轴”和“虚轴”,并且保证对坐 标轴的标注要符合右手系的原则.
1、椭圆抛物面
x2 a2
, 椭圆
z h.
O
结论:单叶双曲面可看作由一
个椭圆的变动(大小位置都改
x
y
变)而产生,该椭圆在变动中,
保持所在平面与xOy 面平行,
且两对顶点分别在两定双曲线
上滑动.
用平行于坐标面的平面截割
z
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
①当 h b时
截线为双曲线
o
y
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
0,
y h.
③当 h =b 时
截线为直线
(0 , b , 0)
单叶双曲面: x2 y2 z2 1 a2 b2 c2
用y = h 截曲面
①当 h b 时
②当 h b 时
③当 h =b 时
x2 Cyh: a2
x2 Czh: a2
y2 b2
h2 c2
1,
z h.
结论:双叶双曲面可看作由 一个椭圆的变动(大小位置 都改变)而产生,该椭圆在 变动中,保持所在平面与 x
xOy 面平行,且两轴的端点
分别在两定双曲线上滑动.
z
o
y
(2)用 y t截曲面
截线为双曲线
z2 Cyt: c2
x2 a2
1
t2 b2
x2 a2
y2 b2
z2 c2
1
(a 0,b 0, c 0)
1.对称性:
•主平面:三坐标平面 •主轴:三坐标轴 •中心:坐标原点
2.顶点:(±a,0,0),(0,±b,0),(0,0,±c) 轴:2a,2b,2c ( ) 半轴:a,b,c 截距:±a, ±b, ±c
3.范围: x a, y b, z c
z 0
x2
xOz面
:
a
2
z2 c2
1
y 0
y2
yOz面
:
b2
z2 c2
1
x 0
椭球面的主截线(主椭圆)
z 椭球面
o
x
y
5.平截线:
z
x2 y2 z2 1
a2 b2 c2
用z = h截曲面 用y = m截曲面 用x = n截曲面
c
o a
by
x
椭圆截面的大小随平面位置的变化而变化,因此椭球面 可以看成是由一个椭圆的变动(大小位置都改变)而产生.
变为
x2 y2 b2
z2 c2
1.
此时的单叶双曲面是双曲线
o
b
y
y2
:
b2
z2 c2
1,
x 0
绕虚轴(即 z 轴)旋转形成的.
单叶旋转双曲面是单叶双曲面的特殊情形.
z
当 a b时, 方程
x2 a2
y2 b2
z2 c2
1
变为
x2 y2 z2 1.
b2
c2
此时的单叶双曲面是双曲线
y2
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
②当 h b 时
截线为双曲线
用平行于坐标面的平面截割
z
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
③当 h =b 时
x2 Cyh: a2
z2 c2
0,
x
y h.
截线为直线
①用z = 0 截曲面
无交点
②用y = 0 截曲面
z2 Cy0: c2
x2 a2
1, 双曲线
y 0.
③用x = 0 截曲面
x
z2 Cx0: c2
y2 b2
1,双曲线
x 0.
z
o
y
5 平截线
(1)用 z h h c 截曲面
①当 h c时, 交点坐标0,0, c
②当 h c时, 截线为椭圆
z2 c2
1
h2 b2
,
y h.
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
x2 Cyh: a2
z2 c2
0,
y h.
注:在直角坐标系下,方程
x2 a2
y2 b2
z2 c2
1
与
x a
2 2
y2 b2
z2 c2
1
所表示的图形也是单叶双曲面.
z 当 a b时,
方程
x2 y2 z2 1 a2 b2 c2
双曲面及其渐进锥面
双叶:x 2 y 2 z 2 1
a2 b2 c2
渐进锥面:x 2
a2
y2 b2
z2 c2
0
单叶:x a
2 2
y2 b2
z2 c2
1
在平面上,双曲线有渐进线。
相仿,单叶双曲面和双叶双曲面 有渐进锥面。
用z=h去截它们,当|h|无限增大 时,
双曲面的截口椭圆与它的渐进锥
面 的截口椭圆任意接近,即: x
椭球面的几种特殊情况:
(1) a b,
x2 a2
y2 a2
z2 c2
1
旋转椭球面
由椭圆
x a
2 2
z2 c2
1绕
z 轴旋转而成.
y 0
方程可写为
x2 y2 a2
z c
2 2
1
旋转椭球面与椭球面的区别:
与平面 z z1 ( | z1 | c)的交线为圆.
截面上圆的方程
x
2
y2
a c
➢ 抛物面
➢ 椭圆抛物面 ➢ 双曲抛物面
二次曲面的定义: 三元二次方程所表示的曲面称之为二次曲面.
相应地平面被称为一次曲面.
讨论二次曲面形状的截痕法: 用坐标面和平行于坐标面的平面与曲面
相截,考察其交线(即截痕)的形状,然后 加以综合,从而了解曲面的全貌.
以下用截痕法讨论几种特殊的二次曲面.
§3.5.1 椭球面
1 为旋转双曲面
z
oy x
双叶双曲面的性质
1 对称性(symmetric)
双叶双曲面关于三坐标轴(叫做主平面),三坐标面(叫 做主轴)及原点(中心)对称,原点为其对称中心
z 2 与坐标轴的交点及截距 (vertex and intercept)
(1)双叶双曲面与x轴、y轴不交,而与
z轴交于(0,0,±c),此为其实顶点.
:
b2
z2 c2
1,
x 0
o
b
y
绕虚轴(即 z 轴)旋转形成的x .
单叶旋转双曲面
例 用一组平行平面 z h ( h 为任意实数)截割单叶双曲面
x2 a2
y2 b2
z2 c2
1a
b 得一族椭圆,求这些椭圆焦点的轨迹.
分析:
这一族的椭圆方程为
x2
a2
y2 b2
1
h2 c2
,
z h,
空间解析几何
第3章 常见的曲面2
2020/9/28
本章主要内容
1 柱面
2 锥面
3 旋转曲面
4 曲线与曲面的参数方程
5 椭球面
6
双曲面(单叶双曲面,双叶双曲面)
五种典型的 二次曲面
7 抛物面(椭圆抛物面,双曲抛物面)
8 二次直纹面
9 作图
§3.5 五种典型的二次曲面
➢ 椭球面
➢ 双曲面
➢ 单叶双曲面 ➢ 双叶双曲面
O x
y
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
①当 h b 时
截线为双曲线
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
②当 h b 时
x
截线为双曲线
z
o
y
用平行于坐标面的平面截割
用平行于xoy坐标面的平面截割椭球面,得截线的方程为:
x2
a
2
y2 b2
1
h2 c2
(5)
z h
h c ,(5)无图形;
h c
h c
,(5)表示两个点 (0,0,c) ; (5)表示一个椭圆,两半轴长分别为
a
1
h2 c2
b 1 h2 c2
由于h是变化的,(5)表示一族椭圆,椭圆面可以看成由 一个椭圆变动而生成的,其在变动中始终保持所在的平 面与坐标面xoy平行.
而当 A, B,C 均为负时,方程(1)不表示任何图形,或者称 它为虚曲面.
例如当 A 0, B 0,C 0 时,方程(1)可改写为
x2 y2 z2 1 , a2 b2 c2
其中 1
a2
1 A, b2
B,
1 c2
C ,这是单叶双曲面的标准方程.
例 给定方程
x2 y2 z2 1 A B C 0 ,
(1)单叶双曲面与x,y轴分别交于(±a,0,0),