基于实验的螺杆式压缩机容积效率计算方法

基于实验的螺杆式压缩机容积效率计算方法
基于实验的螺杆式压缩机容积效率计算方法

压缩机功率对照表以及压缩机详细技术参数

各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 ... 各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 企业名称产品 规格 制冷剂 汽缸容积 (cm3) 名义功率 (HP) 制冷量 (W) 输入功率 (W) 效率 (W/W) 油的 粘度 电机 类型 湖北南光制冷设备有限公司QD56 R12 5.6 132 120 1.1 32 YUR QD63 R12 6.3 145 132 1.1 32 YUR QD72 R12 7.2 165 150 1.1 32 YUR QD80 R12 8.0 186 165 1.12 32 YUR QD88 R12 8.8 200 180 1.11 32 YUR QD96 R12 9.6 233 208 1.12 32 YUR QD110 R12 11 261 238 1.1 32 YUR QD58 R134a 5.8 132 120 1.1 32 YUR QD71 R134a 7.1 148 134 1.1 32 YUR QD78 R134a 7.8 162 145 1.11 32 YUR QD86 R134a 8.6 185 162 1.14 32 YUR Q-5 R22 5.6 750 315 2.38 32 YYR Q-6 R22 6.7 890 370 2.4 32 YYR Q-7 R22 7.1 1000 410 2.44 32 YYR Q-8 R22 8.6 1150 460 2.5 32 YYR 西安远东公司航空工业总公司QD24 R12 2.4 55 75 0.73 22 RSIR QD30 R12 3.0 75 95 0.78 22 RSIR QD45A R12 4.5 113 116 0.95 22 RSIR QD52A R12 5.2 132 139 0.95 22 RSIR QD57A R12 5.7 142 137 1.05 22 RSIR QD62A R12 6.2 154 154 0.95 32 RSIR QD62G A R12 6.2 154 134 1.07 32 RSCR QD75G R12 7.5 190 168 1.09 32 RSCR

简单机械的计算公式

一、杠 杆 杠杆的平衡公式F 1l 1=F 2l 2 1、有用功: W 有=G 物h 2、总功: W 总=Fs 3、额外功:W 额=W 总 —W 有 注意:若不计摩擦,此时只有克服杠杆自重做额外功: W 额=G 杠杆h 4、机械效率 二、用滑轮组竖直提升物体 动滑轮的绳子段数为n 1、拉力F 与物体重力G 物的关系 (a )若不计动滑轮自重、绳重及摩擦: (b )若不计绳重及摩擦,(要考虑动滑轮自重G 动): 2、绳子自由端移动距离S 绳与物体上升高度h 的关系 3、绳子自由端移动速度V 绳与物体上升速度V 物的关系 4、有用功: W 有=G 物h 5、总功: W 总=Fs 6、额外功:W 额=W 总 —W 有 n F = (G 物 + G 动) s 绳= nh V 绳= n V n F = G 物

注意:此时只有动滑轮做额外功:W 额=G 动h 7、机械效率 (a )若不计动滑轮自重、绳重及摩擦: (b )若不计绳重及摩擦,(要考虑动滑轮自重G 动): 三、用滑轮组水平拉动物体 动滑轮的绳子段数为n 1、拉力F 与摩擦力f 的关系: 2、绳子自由端移动距离S 绳与物体移动距离S 物的关系 3、绳子自由端移动速度V 绳与物体移动速度V 物的关系 4、有用功: W 有=fs 物 5、总功: W 总=Fs 绳 6、额外功:W 额=W 总 —W 有 7、机械效率: 四、用斜面拉动物体 1、有用功: W 有=G 物h 2、总功: W 总=Fs 3、额外功: W 额=W 总 —W 有=fs 4、机械效率: 5、计算摩擦力f 方法(注意:拉力F 不等于摩擦力f ): (1)先根据W 额=W 总 —W 有算出额外功 (2)再根据W 额=fs 算出摩擦力 n F = f s 绳= ns 物 V 绳= n V

容积率的计算方法

容积率的术语释义为:容积率是指某一基地范围内,地面以上各类建筑的建筑面积总和与基地总面积的比值。 与容积率密切相关的一个指标就是建筑密度,术语释义为:建筑密度是指某一基地范围内,所有建筑物底层占地面积与基地面积的比率(%)。 从上面两个释义可以看出:如果基地面积和建筑密度不变,那么建筑物的层数越多,容积率就越大。 充分了解容积率对项目品质的影响,对我们的项目定位和规划是非常有帮助的。在此我简单说一说各类建筑分别对应的容积率数值。 容积率数值对应的建筑类型 1、容积率低于0.3,这是非常高档的独栋别墅项目。 2、容积率0.3~0.5,一般独栋别墅项目,环境还可以,但感觉有点密了。如果穿插部分双拼别墅、联排别墅,就可以解决这个问题了。 3、容积率0.5~0.8,一般的双拼、联排别墅,如果组合3~4层,局部5层的楼中楼,这个项目的品位就相当高了。 4、容积率0.8~1.2,全部是多层的话,那么环境绝对可以堪称一流。如果其中夹杂低层甚至联排别墅,那么环境相比而言只能算是一般了。 5、容积率1.2~1.5,正常的多层项目,环境一般。如果是多层与小高层的组合,环境会是一大卖点。 6、容积率1.5~2.0,正常的多层+小高层项目。 7、容积率2.0~2.5,正常的小高层项目。 8、容积率2.5~3.0,小高层+二类高层项目(18层以内)。此时如果做全小高层,环境会很差。 9、容积率3.0~6.0,高层项目(楼高100米以内)。 10、容积率6.0以上,摩天大楼项目。 这是一般情况下可以套用和参考的公式,在此基础上我们必须结合拿到的土地的实际经济指标系数来判定最佳的产品组合方式。 这是一个关于最佳容积率的问题,解决这个问题从下面两个步骤进行:

2011-3139基于实验的螺杆式压缩机容积效率计算方法

基于实验的螺杆式压缩机容积效率计算方法 李庆刚 王发忠 刘敬辉 周雷 (烟台顿汉布什工业有限公司,烟台264003) 摘要: 本文建立了一种基于实验数据的螺杆式压缩机容积效率计算模型,根据实测数据回归后的容积效率计算公式可以在很宽的运行工况范围内较准确的预测螺杆式压缩机的容积效率,在回归数据范围内,预测最大误差小于1%。 关键词:制冷,螺杆式压缩机,容积效率 A Model of V olumetric Efficiency Calculation for Screw Compressor Li Qinggang Wang Fazhong Liu Jinghui Zhou Lei (Dunham-Bush Yantai Co.,LTD ,Y antai 264003,China ) Abstract: A model of volumetric efficiency calculation for screw compressor was developed. The model can predict the volumetric efficiency in a wide running scope with a satisfactory precision. Compared with tested data, the maximal error is less than 1%. Keywords : Refrigeration, Screw compressor, V olumetric efficiency 1. 引言 在进行压缩机性能计算及制冷系统仿真中,压缩机容积效率是个必须用到的参数。文献[1]中对影响活塞式压缩机容积效率的因素进行分析,总结出影响压缩机容积效率的因素总体包括4个:压缩机的余隙容积、进出口的节流损失、吸气被加热引起的吸气量减小、压缩过程的泄漏。并给出如下形式的活塞式压缩机容积效率 v v p T l ηλλλλ= 活塞式压缩机由于其自身的结构特点,效率和性能较低,且体积较大,市场的使用量在逐年减少。螺杆式压缩机由于结构紧凑,能适用于大压比工况,对湿行程不敏感,有良好的输气量调节特性以及维护方便等特点,在制冷装置中应用越来越广泛,已占据了大容量活塞式压缩机的使用范围,并向中大容量范围迅速延伸。因此有关螺杆式压缩机及其系统的仿真的研究越来越多,而螺杆式压缩机的容积效率的研究是这些研究工作的基础。关于螺杆式压缩机容积效率的研究通常采用两种方法,一种是用于系统仿真的纯经验方程形式,如文献[3],这种形式虽然简单,但其准确性和对变工况的适用性受到很大限制。另一种是基于半理论半经验的形式,通常具有较高的精度,并较能准确的反映容积效率随工况变化的趋势,如文献[2]给出的基于半理论半经验的公式。本文是在文献[2]给出的公式形式的基础上,对其进行了进一步推导,给出了另一种形式的半理论半经验容积效率计算公式。 2.螺杆式压缩机容积效率模型 螺杆式压缩机属于回转式压缩机,由于没有余隙容积和吸排气阀,余隙系数和节流系 编号:2011-3139 收稿日期:2011-07-05 修回日期:2011-7-12

容积率计算公式

容积率计算公式:项目总建筑面积÷项目总占地面积=容积率。一个良好的居住小区, 高层住宅容积率应不超过5,多层住宅应不超过3,绿化率应不低于30%。 容积率计算公式: 项目总建筑面积÷项目总占地面积=容积率 在建设用地范围内所有建筑物地面以上各层建筑面积之和与建设用地面积的比率(%) 容积 建筑容积率计算规则 建筑容积率计算规则 颁布部门:鹤壁市城市规划管理局 颁布日期:2007/01/01 实施日期:2007/01/01 一、为进一步规范建筑容积率(以下简称容积率)计算方法,统一容积率计算规则,明确计入容积率的建筑面积数值和计入方式,根据有关法律法规及国家标准的规定,结合我市实际情况,制订本规则。二、一般情况下,计入容积率的建筑面积的计算按照《建筑工程建筑面积计算规范》(GB/T50353-2005)的规定执行;遇有下列情况,按照本规则规定执行。 三、标准层层高超出常规指标的建筑

(一)住宅建筑标准层层高大于等于4.5米的,不论层内是否有隔层,均按该层水平投影面积的1.5倍计入容积率;住宅建筑标准层层高大于等于5.0米 (2.8米+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的2.0倍计入容积率。 跃层式住宅、低层住宅等当起居室层高在户内通高时可按其实际面积计入容积率。 (二)办公建筑(包括写字楼)标准层层高大于等于4.8米的,不论层内是否有隔层,均按该层水平投影面积的1.5倍计入容积率;办公建筑标准层层高大于等于5.8米(3.6米+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的2.0倍计入容积率;办公建筑标准层层高大于等于9.4米(3.6米×2+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的3.0倍计入容积率。 门厅、大堂、中庭、内廊、采光厅等可按其实际建筑面积计入容积率。(三)普通商业建筑标准层层高大于等于5.1米和建筑面积2000平方米以上的大型商业建筑(如超市、大型商场、专卖店、餐饮酒店、娱乐等功能集中布置的商业用房)标准层层高大于等于6.1米的,不论层内是否有隔层,均按该层水平投影面积的1.5倍计入容积率;普通商业建筑标准层层高大于6.1米 (3.9米+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的2.0倍计入容积率;普通商业建筑标准层层高大于10米(3.9米×2+2.2米)的,不论层内是否有隔层,

设备综合效率OEE的计算方法

OEE的计算方法 OEE(Overall Equipment Effectiveness), 即设备综合效率,其本质就是设备负荷时间内实际产量与理论产量的比值。企业在进行OEE计算时常常遇到很多迷惑的问题,如工厂停水、停电、停气、停汽使设备不能工作,等待定单、等待排产计划、等待检查、等待上一道工序造成的停机,不知如何计算。本文引入非设备因素停机的概念,修改了OEE的算法,使计算得到的OEE更能够真实反映设备维护的实际状况,让设备完全利用的情况由完全有效生产率这个指标来反映。本文同时介绍了在不同情况下如何分析设备损失的PM分析流程。 1、 OEE表述和计算实例 OEE= 时间开动率×性能开动率×合格品率 其中,时间开动率 = 开动时间/负荷时间 而,负荷时间 = 日历工作时间-计划停机时间 开动时间 = 负荷时间–故障停机时间–设备调整初始化时间 性能开动率 = 净开动率×速度开动率 而,净开动率 = 加工数量×实际加工周期/开动时间 速度开动率 = 理论加工周期/实际加工周期 合格品率 = 合格品数量/ 加工数量 在OEE公式里,时间开动率反映了设备的时间利用情况;性能开动率反映了设备的性能发挥情况;而合格品率则反映了设备的有效工作情况。反过来,时间开动率度量了设备的故障、调整等项停机损失,性能开动率度量了设备短暂停机、空转、速度降低等项性能损失;合格品率度量了设备加工废品损失。 OEE还有另一种表述方法,更适用于流动生产线的评估, 即 OEE= 时间开动率×性能开动率×合格品率 而,时间开动率 = 开动时间/计划利用时间 而,计划利用时间 = 日历工作时间-计划停机时间 开动时间 = 计划利用时间–非计划停机时间 性能开动率 = 完成的节拍数/计划节拍数 其中,计划节拍数 = 开动时间/标准节拍时间

容积率终极计算法则

容积率的计算 容积率:项目用地范围内总建筑面积与项目总用地面积的比值。 计算公式:容积率=总建筑面积÷总用地面积 当建筑物层高超过8米,在计算容积率时该层建筑面积加倍计算。 容积率越低,居民的舒适度越高,反之则舒适度越低。 所谓“容积率”,是指一个小区的总建筑面积与用地面积的比率。对于发展商来说,容积率决定地价成本在房屋中占的比例,而对于住户来说,容积率直接涉及到居住的舒适度。绿化率也是如此。绿化率较高,容积率较低,建筑密度一般也就较低,发展商可用于回收资金的面积就越少,而住户就越舒服。这两个比率决定了这个项目是从人的居住需求角度,还是从纯粹赚钱的角度来设计一个社区。一个良好的居住小区,高层住宅容积率应不超过5,多层住宅应不超过3,绿化率应不低于30%。但由于受土地成本的限制,并不是所有项目都能做得到。 关于容积率 内容:项目容积率与利润推算方法模块 1、最适容积率 2、最适容积率是能够使利润最大的容积率数值. 一定的土地转让,建安等成本条件下,项目的利润取决于产品的单价和产品的总量,也就是总面积.容积率决定了总面积,也决定了单价.而随着项目容积率的上升,售价并非等比例下降,(容积率这1的TOWNHOUE项目售价不可能达到容积率为3时的高层住宅的3倍了)因而总利润额随容积率的上升而上升,当容积率高出最适容积率的数值的时候,产品的品质开始下降,售价下降,利润下降.在最适容积率点上同,销售额与总成本的差值最大,也就是利润最大.(图中黑色区域为有正利润的容积率范围,其中最宽处即为利润最大点,也就是最适容积率点.)销售额与容积率的相关曲线图如下: 3、最适容积率的确定

明确了容积率的重要性,接下来就是最核心的问题:对于一个低层项目,容积率的最佳值是多少 回答这个问题,我们必须通过经济测算,即在一定的容积率下,本项目可以有多少的销售面积(总规模减去一些必要的配套设施),同时这些面积又可以以多少价格售出,当然这个价格是市场能够接受而反映良好的.我们知道,容积率确定之后,项目的总规模和可出售面积是很快可以计算出来的,但合理的售价如何确定呢在项目区位,成本等各方面条件确定的情况下,售价与住宅的舒适度有很大关系,除去建筑设计方面的因素,住宅之间的拥挤程度,层数就是一个很重要的因素了,而这些因素是直接与容积率相关的.那么建立一个容积率与建筑的拥挤程度,层数之间的变化"函数"就是最终的解决办法.当然,这个"函数"并非严格意义上的数学公式,而是一个相关性的变化分析. 以下就是这种相关性分析的基本思路,可以通过建筑的层数,面宽,进深等条件,粗略的估计一个低层或多层住宅项目的容积率,方法如下: 假设一个小区中的住宅是均匀分布的,下图是其中一部分,图中的四个深灰色区域为住宅,浅灰色区域为经过平均后一栋住宅对应的基地面积,该栋住宅的建筑面积与此浅灰色区域面积的比值即可视为为本项目的容积率. 设住宅的层高为3米,进深为12米,日照间距为1.7,层数为N,容积率的求得公式为: 容积率=(12*A*N)/(B*D)---------公式1 其中,D=3*N*1.7+12----------------公式2 X=A/B--------------------------公式3 把公式2与公式3代入公式1,即可以得出容积率与X和N的关系如下: 容积率=X*N/(0.42N+1) N和X是决定住宅拥挤程度的重要数值,N为建筑的层数,层数多而居住档次相应下降,X为建筑面宽与建筑之间的间距的比值,X值越大,建筑形式越倾向于联排住宅,反之X值越小,建筑形式越倾向于独栋.举一个例子,根据经验判断,X值

设备综合效率计算

设备综合效率计算 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性能开动率和合格品率反映出来,故得到下面设备综合效率公式:设备综合效率=时间开动率×性能开动率×合格品率 时间开动率=(工作时间/负荷时间)×100% 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 速度开动率=(理论加工周期/实际加工周期)×100% 净开动率=(加工数量×实际加工周期/开动时间)×100% 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 实际上 性能开动率=速度开动率×净开动率= 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为0.5min,实际加工周期为0.8min。则 净开动率=0.8×400/400=80% 速度开动率=0.5/0.8=62.5% 性能开动率=80%×62.5%=50% 合格品率=((加工数量-不合格品数量)/加工数量)×100% 【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6% 我们把上面的公式和例子总结成以下的序列,得到 (A)每天工作时间=60×8=480min。 (B)每天计划停机时间(生产、维修计划、早晨会议等)=20min。 (C)每天负荷时间=A-B=460min。 (D)每天停机损失=60min(其中故障停机=20min,安装准备=20min,调整=20min)。 (E)每天开动时间=C-D=400min。 (F)每天生产数量=400件。

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

简单机械的效率计算

简单机械的机械效率的计算 【学习目标】1.学会计算简单机械的机械效率.2.深入理解有用功、额外功和总功. 【典型例题】一、杠杠的机械效率. 例1.用动力臂是阻力臂2倍的杠杆将重400N的货物抬高20cm,手向下压杠杆的力是250N,手下降的高度是多少cm?这个杠杆的机械效率是多少? 二、动滑轮的机械效率. 例2.用动滑轮把重40N的物体匀速提高20m,所用的拉力是25N,则拉力的作用点移动的距离是多少?动滑轮的机械效率是多少? 三、滑轮组的机械效率. 例3.某人用如图所示的滑轮组将重3000N的物体提高6m,所用的拉力是1250N,则拉力的作用点移动的距离是多少?此滑轮组的机械效率是多少 ? 四、斜面的机械效率. 例4.沿着长6m、高2m的斜面,将1200N的物体拉到车上去,所用的拉力是500N,则斜面的机械效率是多少? 【针对练习】1.用动力臂是阻力臂5倍的杠杆,匀速将100N的重物举高0.2m,所用动力是40N,杠杆的机械效率是_________. 2.用动滑轮将重80N的货物提升4m,若加在绳子自由端的拉力F=50N,则绳子移动的距离是_______m;动滑轮对物体做的有用功是________J,该动滑轮的机械效率是_________.

3.某人用如图所示的滑轮组提升2000N的重物,所用的拉力是800N,绳子自由端被拉下4m,这个人做的总功是_________J,有用功是___________J,滑轮组 的机械效率是________. 4.斜面高1m,长为3m,工人用400N沿斜面方向的力将重为840N的箱子推到 车上,则这个斜面的机械效率是_________. 5.某人用动滑轮把重1000N的货物匀速提高10m,如果这个动滑轮的机械效率是80%,试求在此过程中人拉绳的力是多少? 6.沿着长5m、高1m的斜面,将1000N的物体拉到车上去. (1)如果不考虑摩擦,需要的拉力是多少? (2)如果所用的拉力是250N,则斜面的机械效率是多少? 7.某人用如图所示的滑轮组提升重物(忽略绳与滑轮之间的摩擦).已知每个动滑轮重50N (1)当重物的重力为300N时,则需要的拉力是多少?此时的机械效率是多少? (2)当被提升的重物重力是3000N时,则需要的拉力是多少?此时的机械效率又是多少? (3)通过以上两步计算,你得到什么启示 ?

关于容积率面积计算

关于印发《宁波市建筑工程容积率计算规定》和《宁波市建筑工程部分差 异性建筑面积计算规则》的通知 发布时间:2010-10-22 发布机构:宁波市规划局文号: 甬规字〔2010〕122号实施时间: 2010-10-22 各规划分局、市局各处(室): 由于原印发的《宁波市建筑工程容积率计算规定》和《宁波市建筑工程部分差异性建筑面积计算规则》(甬规字〔2010〕113号)有误,现将修正后的《宁波市建筑工程容积率计算规定》和《宁波市建筑工程部分差异性建筑面积计算规则》印发给你们,请遵照执行。原甬规字〔2010〕113号文件作废。各县(市)规划行政主管部门可结合本地的实际制定相应规定,也可以参照执行。 本文件自发文之日起执行。 二〇一〇年十月二十二日 宁波市建筑工程容积率计算规定 为进一步统一和规范我市建筑工程容积率计算,特制定本规定,作为全市建筑工程容积率计算和审查的依据。 一、依据与参考资料 1、《宁波市城乡规划管理技术规定》(甬政发〔2007〕77号) 2、宁波市规划局城乡规划技术委员会会议纪要(〔2010〕第2期) 3、全市规划系统建筑工程规划管理工作例会纪要(宁波市规划局专题会议纪要〔2010〕2号、〔2010〕3号) 4、《浙江省房屋建筑面积测算实施细则(试行)》[简称“省房”] 二、容积率计算 (一)地下室 通常情况下,地下室用作车库、设备用房的,其建筑面积不计入容积率,用作商业服务业、市场、文化娱乐、体育等用房的,其建筑面积按0.6系数折算后计入容积率。 (二)车库 建设项目的配套停车库设置在地下和地上二层(含二层)以下的,其建筑面积可不计入容积率,其余按0.5系数折算计入容积率。竖直循环式机械停车库按3.6米层高计算建筑面积后,按0.5系数折算计入容积率。 房屋层内,以机械设备划分若干层次的立体车库,无论高度和停放层数多少,均按单层计算建筑面积和层次(“省房”4.3.6)。 (三)架空层 建筑底层设架空层应满足以下条件:以柱、剪力墙落地,视线通透、空间开敞;只用作公共通道、停车、绿化、公共休闲等用途。 建筑底层设架空层的,除电梯(楼梯)间、门厅、管道井(水、电、排风等)等 围合部分外,其余部分不计入容积率。

机械采油井系统效率计算方法

机械采油井系统效率计算方法 一定义 1 机械采油井的输入功率——拖动机械采油设备的输入功率 2 机械采油井的有效功率——将井内液体输送到地面所需要的功率 3 机械采油井的系统效率——机械采油井的有效功率与输入功率的比值 4 抽油机井的光杆功率——光杆提升液体并克服井下各种阻力所消耗的功率 5 抽油机井的地面效率——光杆功率与电机输入功率的比值(电动机效率·皮带轮效率·抽油机四连机构效率) 6 抽油机井的井下效率——抽油机井的有效功率与光杆功率的比值(盘根盒效率·抽油杆柱效率·抽油泵效率·油管效率) 二测试方法和计算公式 1电气测试参量:输入功率或电流、电压和功率因数。 2井口测试参量:回压、套压、产液量、含水率和原油相对密度。3井下测试参量:油井动液面深度。 4光杆测试参量:光杆载荷和光杆位移。 计算公式 1机械采油井的输入功率P1=3600n p·K·K1/N p·t p 式中:P1——输入功率,KW n p——有功电表所转的圈数,r

K——电流互感器变比,常数 K1——电压互感器变比,常数 N p——有功电能表耗电为1KW·h时所转的圈数,r/(KW·h) t p——有功电能表转N p所用的时间,s (现在输入由仪器直接测出) 2机械采油井的有效功率P2=Q·H·ρ·g/86400 式中:P2——有效功率,KW Q——油井产液量,m3/d H——有效扬程,m ρ——油井液体密度,t/ m3 g——重力加速度,g=9.8m/s2 3有效扬程H=H d+(p o-p t)·1000/p·g 式中:H——有效扬程,m H d——油井动液面深度,m p o——回压,MPa p t——套压,MPa 4油井液体密度ρ=(1-f w)·ρo+f w·ρw 式中:f w——含水率 ρo——油的密度,t/m3 ρw——水的密度,t/m3 5光杆功率(抽油机井)P3=A·S d·n c·n s/60000 式中:P3——抽油机光杆功率,kW

压缩机制冷量、容积效率、能效比.

容积效率 容积效率(volumetric efficiency)指的是在进气行程时气缸真实吸入的混和气体积除以汽缸容积。这代表了引擎的吸气能力。容积效率对于扭力有决定性的影响,容积效率越大,引擎扭力越佳。影响容积效率的变因有很多,如引擎转速,汽缸头进气道的流量,气门截面积的大小,凸轮轴的设计,进气岐管的长度,燃料雾化的程度等等等。 现今采用喷射供油的四行程引擎,其容积效率皆已达到90%。若进气岐管的长度经过校调,便可以在特定的转速域达到超过100%的容积效率。在进气口处加装涡轮增压器(tu rbocharger),也可以增加容积效率。 某些汽车杂志常把容积效率定义为每升的排气量可以产生多少匹马力,这是错误的。真正的容积效率单位如同其他的效率单位,是百分比,而非hp/L。 容积效率表示液压泵或液压马达抵抗泄露的能力,等于泵(马达)的实际流量与泵(马达)的理论流量之比。它与工作压力、液压泵或马达腔中的摩擦副间隙大小、工作液体的粘度以及转速有关。 因液体的泄露、压缩等损失的能量称为容积损失。 活塞式压缩机的输气系数在一定意义上可以理解为容积效率。压缩机输气系数是这样定义的:压缩机实际容积流量与理论容积流量之比。 输气系数(λ)可以用下式表示: λ=λVλpλtλl 其中,λV——容积系数,与余隙容积有关; λp——压力系数,与吸气过程的压力损失有关; λt——温度系数,与压缩机气缸内温度有关; λl——气密系数,与压缩机的密封程度有关。 输气系数在一定意义上可以理解为容积效率。 能效比 能效比是在额定工况和规定条件下,空调进行制冷运行时实际制冷量与实际输入功率之比。这是一个综合性指标,反映了单位输入功率在空调运行过程中转换成的制冷量。空调能效比越大,在制冷量相等时节省的电能就越多。 1基本定义 1.1能效比数值定义 在制冷和降噪之外,在日益追求环保和节能的今天,用电量的多少也是大家所关注的。对于消费者来说,选择节能空调可将日后使用过程中的电费一点一滴的节省下来,无疑是精明的选择。在这方面涉及两个技术关键词:能效比和变频。能效比是指空调器在制冷运行时,

OEE设备综合效率计算方法案例讲解

OEE设备综合效率计算方法案例 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性能开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率×性能开动率×合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 实际上 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为0.5min,实际加工周期为0.8min。则净开动率=0.8×400/400=80%速度开动率=0.5/0.8=62.5% 性能开动率=80%×62.5%=50%

【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6%我们把上面的公式和例子总结成以下的序列,得到(A)每天工作时间=60×8=480min。(B)每天计划停机时间(生产、维修计划、早晨会议等)=20min。(C)每天负荷时间=A-B=460min。(D)每天停机损失=60min(其中故障停机=20min,安装准备=20min,调整=20min)。(E)每天开动时间=C-D=400min。(F)每天生产数量=400件。(G)合格品率=98%。(H)理论加工周期=0. 5min/件。(I)实际加工周期= 0. 8min/件。(J)实际加工时间=I×F=0. 8×400=320min。(K)时间开动率=(E/C ×100%=(400/460)×100%=87%。(L)速度开动率=(H/I)×100%= (0. 5/0.8×100%=62.5%。(M)净开动率=(J/E× 100%=(320/400×100%=80%。(N)性能开动率=L×M×100%=0. 625×0. 80 ×100%=50%。最后得设备综合效率(全效率)=K×N×G×100%=0.87×0.50×0.98×100%=42.6% 日本全员生产维修体制中,要求企业的设备时间开动率不低于90%,性能开动率不低于95%,合格品率不低于99%,这样设备综合效率才不低于85%。这也是TPM所要求达到的目标。 如前所述,提高设备综合效率主要靠减少六大损失。图1-1就把全效率的计算和减少六大损失联系起来。

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率;

设备综合效率OEE计算公式和方法1

设备综合效率O E E计算公式和方法1 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

设备综合效率OEE计算公式和方法实例 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率×性能开动率×合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为,实际加工周期为。则 净开动率=×400/400=80% 速度开动率==% 性能开动率=80%×%=50% 【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6%

压缩机的热力性能和计算

§2.2.1压缩机的热力性能和计算 一、排气压力和进、排气系统 (1)排气压力 ①压缩机的排气压力可变,压缩机铭牌上的排气压力是指额定值,压缩机可以在额定排气压力以内的任意压力下工作,如果条件允许,也可超过额定排气压力工作。 ②压缩机的排气压力是由排气系统的压力(也称背压)所决定,而排气系统的压力又取决于进入排气系统的压力与系统输走的压力是否平衡,如图2-20所示。 ③多级压缩机级间压力变化也服从上述规律。首先是第一级开始建立背压,然后是其后的各级依次建立背压。 (2)进、排气系统 如图所示。

①图a的进气系统有气体连续、稳定产生,进气压力近似恒定;排气压力也近似恒定,运行参数基本恒定。 ②图b的进气系统有气体连续、稳定产生,进气压力近似恒定;排气系统为有限容积,排气压力由低到高逐渐增加,一旦达到额定值,压缩机停止工作。 ③图c的进气系统为有限容积,进气压力逐渐降低;排气系统压力恒定,一旦低于某一值,压缩机停止工作。

④图d的进、排气系统均为有限容积,压缩机工作后,进气压力逐渐降低;排气系统压力不断升高,当进气系统低于某一值或排气系统高于某一值,压缩机停止工作。 二、排气温度和压缩终了温度 (1)定义和计算 压缩机级的排气温度是在该级工作腔排气法兰接管处测得的温度,计算公式如下: 压缩终了温度是工作腔内气体完成压缩机过程,开始排气时的温度,计算公式如下: 排气温度要比压缩终了温度稍低一些。 (2)关于排气温度的限制 ①汽缸用润滑油时,排气温度过高会使润滑油黏度降低及润滑性能恶化;另外,空气压缩机中如果排气温度过高,会导致气体中含油增加,形成积炭现象,因此,一般空气压缩机的排气温度限制在160°C以内,移动式空气压缩机限制在180°C以内。

OEE 设备综合效率 计算方式

设备管理好帮手 -----OEE(设备综合效率)计算方式 纸箱厂进行整体生产时规划时,目标之一就是提高设备的使用效率,让每台设备对 的每个零件都能最大限度地发挥其潜力即生产能力,并且能够始终保持稳定状态。 为了使生产速度最大化,必须首先了解导致生产速度下降的原因,并采取相应的措施。在这些解决措施中,设备综合效率分析(OEE)是一种非常实用的、有效的设备管理方式,可以帮我们了解设备的潜在的生产能力。 (OEE)是世界级稳定性组织(WCR)中一个非常重要的测量手段.借助OEE,可以与六大损失相关联(故障/停机损失、换装和调试损失、空闲和暂停损失、减速损失、质量缺陷和返工损失、启动损失)。有三大测量指标:设备利用率、生产速度和合格产品率。 六大损失包括 故障/停机损失(Equipment Failure/Breakdown) 设备故障/停机损失是指故障停机造成时间损失,这将减少合格产品数量。如果出现设备故障或停机,就需要对设备进行维修处理。在平时,应该采取正确预防性保养措施、改进操作程序、改进生产设计以防止故障发生。要减少设备故障,生产部门与维修商之间良好的合作与沟通也非常重要。 预防性保养技术包括震动检测、定期上油和温度记录分析,用以防止设备故障的发生。如果出现机器故障,可以采取根本原因分析(RCFA)法来确定导致故障的根源。RCFA可以使企业解决故障问题从事后处理转变为事前处理。RCFA切实有效的“寻根溯源”解决方案能够消除或转移故障发生以及造成的影响。 换装和调试损失(Setup and Adjustment) 换装和调试损失是指在生产不同产品时定单切换时间损失。定单切换时间损失不归入计划停机时间范畴。 空闲和暂停损失(Ldling and Minorsyoppage Losses) 空闲和暂停损失是指由于错误操作而停顿或设备本身发生的短暂停机时间损失。通常在5-10分钟之间,还包括一些小调整或类似清洗之类的活动造成的时间损失。不包括运送原料造成的时间损失。 减速损失(Reduced Speed Losses)

生产效率计算方法

效率(efficiency)是指有用功率对驱动功率的比值,同时也引申出了多种含义。效率也分为很多种,比如机械效率(mechanical efficiency)、热效率(thermal efficiency )等。效率与做功的快慢没有直接关系。工厂效率的含义太广泛了,不好用统一的公式表示。而 设备的利用率可以用以下公计算: 公式一:设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二:设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三:设备利用率=某抽样时刻的开机台数/ 设备总台数 ×100% 数控机床技术人员“综合素质低”。用户缺少高级编程人员、操作人员、维修人员等复合型应用型专业人才。用户若选购一台较复杂、功能齐全、较为先进的数控机床,如果没有适当人去操作使用和编程,没有熟练的维修工去维护修理,再好的机床也不可能用好。 编程“效率低”。据国外统计,手工编程时,一个零件的编程时间与机床实际加工时间之比约为30:1,而数控机床不能开动的原因中有20%~30%是由于加工程序一时编制不出而耽搁的。 维修“时间长”,维修工作跟不上。目前国内除少数大厂配有专业维修队伍以外,大部分使用单位很难配备技术水平高的维修人员。 标准工时:指在正常情况下,从零件到成品直接影响成品完成的有效动作时间,其包含直接工时与间接工时。即加工每件(套)产品的所有工位有效作业时间的总和。制定方法:对现有各个工位(熟练工人)所有的有效工作时间进行测定,把所有组成产品的加工工位的工时,考虑车间生产的均衡程度、环境对工人的影响、以及工人的疲劳生产信息等因素后,计算得到标准工时。 备注: 直接工时:指直接作业的人员作业工时; 间接工时:指对现场直接作业工人进行必需的管理和辅助作业的人员,根据现车间管理组织的特点,车间除主任和直接作业人员外产生的工时; 标准人力:指在设定的产量目标前提下,根据标准工时和实际生产状况,生产单位所配置的合理的人力数量。 生产效率: 实际产量×标准工时

设备综合效率OEE计算公式和方法1

设备综合效率OEE计算公式和方法实例 影响设备综合效率的主要原因是停机损失、 速度损失和废品损失。它们分别由时间开动率、性开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率X性能开动率X合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机 时间是20min ,而故障停机为20min ,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率X净开动率

这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400 件零件加工,理论加工周期为,实际加工周期为。则 净开动率=X 400/400=80% 速度开动率==% 性能开动率=80%X %=50% 【例3】如果仍延用上面的例子,假如设备合 格品率为98%,则 设备综合效率(全效率) =87%X 50%X 98% =42. 6% 我们把上面的公式和例子总结成以下的序列,得到 (A)每天工作时间=60X 8=480min。 (B)每天计划停机时间(生产、维修计划、早晨

相关文档
最新文档