船舶操纵性能
船舶操纵习题集

船舶操纵习题集(杲)第一章船舶操纵性能一、知识点1.船舶操纵性能船舶操纵性能包括船舶变速性能、旋回性能、航向稳定性和保向性、船舶操纵性指数(K、T指数)的物理意义及其与操纵性能的关系、船舶操纵性试验和IMO船舶操纵性衡准的基本内容。
2.船舶变速性能船舶变速性能包括船舶启动性能、船舶停车性能、倒车停船性能及影响倒车冲程的因素和船舶制动方法及其适用。
3.船舶旋回性能船舶旋回性能包括船舶旋回运动二个阶段及其特征、旋回圈及旋回要素的概念(旋回反移量、滞距、纵距、横距、旋回初径、旋回直径、转心、旋回时间、旋回降速、横倾等)、影响旋回性的因素和旋回圈要素在实际操船中的应用(反移量、旋回初径、进距、横距、旋回速率在实际操船中的应用,舵让与车让的比较)。
4.航向稳定性和保向性航向稳定性和保向性包括航向稳定性的定义及直线与动航向稳定性、航向稳定性的判别方法、影响航向稳定性的因素、保向性与航向稳定性的关系和影响保向性的因素。
5.船舶操纵性试验船舶操纵性试验包括旋回试验的目的、测定条件、测定方法,冲程试验的目的、测定条件、测定方法,以及Z形试验的目的和试验方法。
二、练习题(一)选择题(请选择一个正确或最合适的答案)1.船舶启动过程中,为保护主机。
A.先开高转速,在船速达到与转速相应的船速时再逐级减小转速B.先开低转速,在船速达到与转速相应的船速时再逐级加大转速C.先开低转速,在螺旋桨转动起来后就开高转速D.先开低转速,在转速达到相应的转速时再逐级增大转速2.船舶由静止状态进车,达到相应稳定航速的前进距离。
A.与船舶排水量成正比,与相应稳定船速的平方成正比B.与船舶排水量成正比,与相应稳定船速的平方成反比C.与船舶排水量成反比,与相应稳定船速的平方成正比D.与船舶排水量成反比,与相应稳定船速的平方成反比3.船舶由静止状态进车,达到相应稳定航速的前进距离。
A.与船舶排水量成正比,与达到相应稳定航速时的螺旋桨推力成正比B.与船舶排水量成正比,与达到相应稳定航速时的螺旋桨推力成反比C.与船舶排水量成反比,与达到相应稳定航速时的螺旋桨推力成正比D.与船舶排水量成反比,与达到相应稳定航速时的螺旋桨推力成反比4.船舶由静止状态进车,达到相应稳定航速的时间。
第一章 船舶的操纵性能

影响旋回圈大小的因素
⑼横倾
①低速时,向低舷侧旋回,旋回圈小; ②高速时,向高舷一侧旋回,旋回圈小。
⑽ 浅水影响
由于浅水中阻力明显增大,转船力矩下降,因此,旋 回圈在其他条件相同时随着水深的变浅而逐渐增大。 当H/d < 2时,旋回圈将明显增大; 当H/d < 1.2时,旋回圈将急剧增大。
影响旋回圈大小的因素
影响旋回圈大小的因素
⑸舵面积比(AR/Lpp×d)
AR/Lpp×d大,旋回圈减小 。
⑹船速
①.商船速度范围内,船速对旋回初径的影响却很小。 ②.航进中减速旋回时,旋回圈将增大;相反,船舶在静止 中或低速中加车进行旋回,旋回圈将减小 。
影响旋回圈大小的因素
⑺吃水
吃水d大的船进距、横距、旋回初径有所增加,反移则 有所减小。
第二阶段 (过渡阶段)
过渡阶段:转舵结束起到船舶进入定常 回转运动为止的动态过程 受力情况:随船舶横移、漂角增大,作 用于船体的流体力和力矩增大; 运动特点 : 斜航运动; 横移速度和漂角增大; 旋回加速(角速度增大,角加速度减小); 纵向速度下降; 内倾渐渐向外倾变化。
第三阶段(定常阶段)
第一章:船舶的操纵性能
青岛远洋船员职业技术学院
船舶操纵性
船舶操纵性能(maneuverability)是指船 舶对驾引人员实施操纵的响应能力总称 船舶操纵性能内容:
船舶的旋回性Turning ability ; 船舶航向稳定性与保向性( course -keeping
ability) ; 船舶的停船性能(stopping ability ); 船舶的转头惯性抑制性能(Yaw-checking ability )等。
1.人落水时:应立即操落水者一舷满舵,并停车,使船尾迅 速摆离落水者,以免使之卷入螺旋桨。 2.前方发现障碍物时:应立即操满舵使船首让开, 当估计船 首已可避开时,再操相反一舷满舵以便让开船尾。 3.离泊时:当船首已摆出码头,拟进车离泊时,如很快操大 舵角进车离泊,则会因为船尾外摆较大而触碰码头。所以 应适当减速,用小舵角慢慢驶离。 4.船舶过弯道时:如船速快,大舵角转向,则会产生较大的 船尾反移量,因此应保持足够的船岸间距。
船舶操纵性能

第一章船舶操纵性能第一节船舶变速运动性能船舶出于避碰、狭水道及港内航行或驶往泊地的需要而改变螺旋桨的转速和方向,进行启动、变速、停车、倒车操纵。
转速和方向改变后直至达到新的定常运动状态之前,存在着一段加速或减速运动的过程,该段过程称为变速运动过程,也称船舶惯性。
衡量船舶变速运动特性有两个重要指标,一是船舶完成变速运动所航进的路程,称为冲程;另一是完成变速运动所需的时间,称为冲时。
一、船舶启动性能船舶在静止状态中开进车,直至达到与主机输出功率相应的稳定船速前的变速运动,称为船舶起动变速运动。
在起动变速过程中,螺旋桨推力T与船舶阻力R之差,是船舶产生加速运动的动因。
由于启动后推力增加较快,而船速增加则较为缓慢,因此要注意合理用车。
即分段逐级加车,待达到相应转速的船速时,再提高用车的级别,以免主机超负荷工作。
完成启动变速运动所需的时间t和航进的路径s可用下列关系式估算。
W·V0t ≈ 0.004 ————R0W·V02s ≈ 0.101 ————R0式中,V0为最终定常速度,单位为kn;W为船舶实际排水量,单位为t;R0为达到最终定常速度V0时的船舶阻力;计算出的t单位为min;计算出的S单位为m。
根据经验,从静止状态逐级动车,直至达到海上速度,满载船舶约需航进20L左右的距离,轻载时约为满载的1/2~2/3。
二、船舶减速性能船舶以一定常速度(全速或半速)行驶中采取停车措施后,直至降到某一余速(2kn~4kn)前的变速运动称为船舶停车变速运动。
主机停车后,推力急剧下降到零。
开始时,船速较高,阻力也大,速降很快;但当速度减小后,阻力也随之减小,速降越来越慢,船很难完全停止下来,且在水中亦很难判断。
所以,通常以船速降至维持舵效的最小速度作为计算所需时间和船舶航进路程的标准。
主机停车后的时间、速度及航进路程存在如下关系。
达到速度V时所需的时间:W·V02 1 1t = 0.00105 —————(—— - ——)R0V V0达到速度V时所航进的路程:W·V02V0s = 0.075 ————— ℓn (——)R0V式中:R0为速度V0时船舶所受阻力,单位为t;W为船舶实际排水量,单位为t;t 的单位为min;S为m;速度单位为kn。
船舶操纵性能

B .转向角速度较小,角加速度较小D .转向角速度较大,角加速度较小B .横移速度较小,横移加速度较大D .横移速度较大,横移加速度较小第一章船舶操纵性能0001船舶以一定的速度直航中操一定的舵角并保持之,船舶进入回转运动的性能称为A .船舶的保向性能B .船舶的旋回性能C •船舶的变速性能D •船舶的改向性能0002直航船操一定舵角后,其转舵阶段的一 A .转向角速度较小,角加速度较大 C .转向角速度较大,角加速度较大0003直航船操一定舵角后,其转舵阶段的一 A .横移速度较小,横移加速度较小 C .横移速度较大,横移加速度较大0004 直航船操一定舵角后,其过渡阶段的一 A •横移速度为变量,横移加速度为常量 B •横移速度为常量,横移加速度为变量 C •横移速度为变量,横移加速度为变量 D •横移速度为变量,横移加速度为常量0005直航船操一定舵角后,其过渡阶段的一A .转向角速度为变量,角加速度为常量D .转向角速度为变量,角加速度为常量0006直航船操一定舵角后,其定常旋回阶段的一一。
A .转向角速度为常量,角加速度为变量B .转向角速度为变量,角加速度为零C .转向角速度为变量,角加速度为变量0007直航船操一定舵角后,其定常旋回阶段的一一。
A .横移速度为常量,横移加速度为变量B .横移速度为变量,横移加速度为零C .横移速度为变量,横移加速度为变量0008船舶在旋回运动过程中,其首、尾转动情况为一一。
C .船首向操舵一侧转动,船尾向操舵一侧转动D .船首向操舵相反一侧转动,船尾向操舵相反一侧转动0009船舶在旋回运动过程中,其首、尾转动量的大小与重心旋回轨迹相比较,A .船首比船尾向操舵相反一侧转动量大B .船尾比船首向操舵相反一侧转动量大C .船首比船尾向操舵一侧转动量大D .船尾比船首向操舵一侧转动量大0010旋回圈是指直航中的船舶操左(或右)满舵后一- A .船尾端描绘的轨迹B .重心描绘的轨迹C .转心户描绘的轨迹D .船首端描绘的轨迹0011驾驶台展示的船舶操纵性资料中,其旋回圈一一。
船舶的操纵性能

船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能)船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。
往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。
一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转心、旋回时间、旋回中的降速和横倾等。
这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。
偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。
漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水量大,旋回时间增加,比如万吨船快速满舵旋回一周约为6MIN,而超大型船舶旋回时间几乎增加一倍;旋回中的降速系由船体斜航阻力增加,舵阻力以及推进效率降低而造成的,所降部分为航速的1/4-2/4不等;旋回产生的横倾,它是一个应注意的不安全因素,旋回初出现向用舵方向一侧的内倾,倾角较小,时间也较短,不久随着转头角度速度增加,将出现向用舵反侧的外倾,对于GM值较小的集装箱船等,在操纵中应特别注意。
第一章船舶操纵性能

主机功率
1.机器功率MHP:机器功率是指主机发出的功率。蒸 汽机主机常用指示功率IHP,IHP指主机在气缸内产生 的功率。内燃机主机常用制动功率BHP,BHP指输出 于主机之外可实际加以利用的功率;汽轮机主机常用 轴功率SHP,SHP指传递到与螺旋桨尾轴相连接的中间 轴上的功率;
第一阶段:
速度下降;转向角速度小;加速度大;横移 速度小;内倾;反移量。
-( mv&+mxGr&)
G Yv&v&+Yr&r& K
Yd d
转舵阶段
mv&+mxGr&+mu0r
G
Yvv + Yr r +
K
Yv&v&+Yr&r&
Yd d C
过度阶段
mu0r
G
Yv v +Yr r
K
Yd dC
定常阶段
一、船速
1.航行阻力(resistance) 航行阻力 R 包括基本阻力R0 和附加阻力 △R R = R0 + △R 1)基本阻力R0 刚出坞新裸体船(不包括附体)在平静水面行驶 时水对船体产生的阻力。
基本阻力包括: 摩擦阻力Rf(frictional resistance)取决于船速和船
和船速有关。低速时剩余阻力通常占总阻力的 8~25%,高速时为45~60%。
基本阻力的大小主要与船速和吃水有关。吃水越
船舶的操纵性能

船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能)船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。
往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。
一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转心、旋回时间、旋回中的降速和横倾等。
这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。
偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。
漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水量大,旋回时间增加,比如万吨船快速满舵旋回一周约为6MIN,而超大型船舶旋回时间几乎增加一倍;旋回中的降速系由船体斜航阻力增加,舵阻力以及推进效率降低而造成的,所降部分为航速的1/4-2/4不等;旋回产生的横倾,它是一个应注意的不安全因素,旋回初出现向用舵方向一侧的内倾,倾角较小,时间也较短,不久随着转头角度速度增加,将出现向用舵反侧的外倾,对于GM值较小的集装箱船等,在操纵中应特别注意。
船舶操纵性

固定坐标系中船舶六自由度操纵运动方程:
. m(u . vr wq ) X H X R X P X 1W X 2W m(v ur pw) YH YR YP Y1W Y2W . m( w uq vp) Z H Z P Z1W Z 2W . I xx p K H K R K P K1W K 2W . I yy q ( I xx I zz ) pr M H M P M 1W M 2W . I zz r ( I yy I xx ) pq N H N R N P N1W N 2W
回转直径:
D
2U 0 2U 0 r K r
k为舵效系数
L2 d 最小回转直径: D 10 AR
2) 战术直径 DT
船舶首向改变180度时,其重心距初始直线航线的横向距离
4) 正横距 l B
转舵开始点到首向角改变90度时重心横移 的距离
DT (0.9 ~ 1.2) D
3) 进距 l A
Cw 为水线面系数
桨力
桨推力减额系数: 推力系数:
进速系数:
(汉克歇尔公式估算)
舵力
(1)
tR
为舵阻力减额系数
(2) 舵的正压力: a) f 的计算:
f a 为舵的法向力系数, 为舵的展弦比 ,
(芳村模型) (船舶机动时舵处的伴流系数)
2 b)U R (有效来流速度)的计算:
v为船舶瞬时速度,
非线性流体动力:
为展弦比,
3)转船流体动力 采用井上模型:
a) b) c)
d) e)
f)
为首尾吃水差
4)横摇流体动力矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1—3
二、旋回圈及其要素
定速直航(一般为全速)的船舶 操一定舵角(一般为满舵)后,船舶 将作旋回运动,其重心所描绘的轨迹 叫做旋回圈。在“船舶操纵性临时标 准”中,将旋回圈定义中的试验速度 规定为至少达到主机最大输出功率 85%时所对应的速度的90%。旋回圈 及其要素如图1—4所示。
图1—4
8
二、旋回圈及其要素
1. 进距Ad(advance) 进距是指开始操舵到航向转过任一角度时重心所移 动的纵向距离。进距又称纵距,通常所说的进距是指航 向转过90o时的进距。在此基础上,如再转过相当于漂角 的度数,则船舶在原航向上将达到最大纵移距离,称为 最大进距(Max advance)。 横距Tr(transfer) 横距是指开始操舵到航向转过任一角度时船舶重心向 操舵一侧移动的横向距离。通常所说的横距是指当航向 转过90 o时的横距。 旋回初径DT(tactical diameter) 旋回初径是指开始操舵到航向转过180 o时重心所移 动的横向距离。在此基础上,如再转过相当于漂角的度 数,则将出现船舶重心偏离原航向线达到最大的横移距 离,称为最大横距(Max transfer)。 旋回直径D(final diameter) 旋回直径是指船舶作定常旋回运动时,重心轨迹圆的 直径。 滞距Re(reach) 滞距是指从操舵开始时的重心位置至定常旋回曲率中 心的纵向距离。又称心距。
3
一、船舶旋回运动的过程
船舶以一定航速直线航行中,操某一舵角并保持之, 船舶将作旋回运动。根据船舶在旋回运动过程中的受 力特点及运动状态的不同,可将船舶的旋回运动分为 三个阶段。 第一阶段——转舵阶段 第二阶段——过渡阶段 第三阶段——定常旋回阶段
4
第一阶段——转舵阶段
船舶从开始转舵起至转至规定舵角 止(一般约8~15s),称为转舵阶段或 初始旋回阶段。 如图1—1所示,该阶段中,船速 开始下降但幅度甚微;漂角也已出现 但量较小;旋回角速度不大,但旋回 角加速度最大。由于船舶运动惯性的 原因,船舶重心G基本上沿原航向滑 进,在舵力转船力矩Mδ 的作用下,船 首有向操舵一侧回转的趋势,重心则 有向操舵相反方向的微量横移,与此 同时,船舶因舵力位置比重心位置低 而出现少量内倾。因此,该阶段也称 为横移内倾阶段。
第三阶段——定常旋回阶段
随着旋回运动的不断发展,一方面,舵 力的下降使舵力转船力矩Mδ 减小,水动力Fw 的作用点W随着漂角的增大不断后移,水动 力转船力矩Mβ 减小。另一方面,随着船舶旋 回角速度的增加,由阻止船舶回转的阻力Rf 、 Ra所构成的水阻力转船力矩Mf 、Ma也同时增 大。如图1—3所示,当漂角β 增加到一定值 时,作用于船体的诸力及其力矩达到平衡, 即船舶进入定常旋回。该阶段中,船体所受 合力矩为零,船舶旋回角加速度为零,转头 角速度达到最大并稳定于该值,船舶降速达 到最大值,外倾角、横移速度也趋于稳定。 船舶以稳定的线速度、角速度作旋回运动, 故又称第三阶段为稳定旋回运动阶段。不同 载况的船舶进入定常旋回状态的时间也各不 相同。空载船大约在转首60o左右,满载船大 约在转首100 o ~120 o左右进入定常旋回阶段。
图1—2
该阶段中船舶的运动特点是: 1)船舶降速明显。其首要因素是船舶斜航时水动力Fw的纵向分力Fwx的增加,其次是舵力 Pn的纵向分力Pnx,旋回运动产生的离心力Q的纵向分力Qx以及旋回中推进效率的下降。 2)由反向横移变成向操舵一侧正向横移。原因是船舶在旋回中,随着漂角β的增大,水动 力Fw不断增大,而舵力却有所下降,以致FW的横向分力大于Pn的横向分力。 3)船舶出现外倾并逐渐增大。其原因是舵力横向分力Pny、水动力横向分力Fwy以及旋回中 产生的离心力的横向分力Qy作用于船舶垂直方向的不同位置,构成了力矩,从而使船舶由初 始阶段的内倾变为外倾。如图1—2(b)所示。 6 4)船舶加速旋回。
11
2.漂角β
船舶旋回时,船舶首尾线与首尾线上某一点的 旋回圈的切线速度方向之间的夹角,称为该点的漂 角。一般所说的漂角是指重心处的漂角,如图1—5 所示。 船舶首尾线不同点处的漂角值各不相等,船尾 处的漂角最大。随着回转的加剧,重心处的漂角由 小到大,最后在定常旋回阶段趋于稳定。旋回中船 舶所具有的漂角与舵角有关,一般船舶不同舵角时 重心处的漂角在定常旋回阶段约在3o~15 o之间。 如果把船体视为一个大面积的舵的话,则漂角 越大,流向船体的水对船体产生的升力就越大,即 水动力Fw越大,水动力转船力矩越大,使船舶加速 旋回。因此,漂角越大,其旋回性越好,旋回直径 也越小。大型油轮较一般货船的回转性好,因此它 在定常旋回中的漂角也较大。浅水中船舶的回转性 较深水中差,故漂角也较深水中小。
1
第一章 船舶操纵性能
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 第九节 船舶旋回性能 船舶操纵运动方程及操纵性指数 船舶的航向稳定性与保向性 船舶变速运动性能 实船操纵性试验 IMO船舶操纵性衡准的基本内容 舵及舵效 螺旋桨的致偏效应 船速与主机功率
2
第一节
船舶旋回性能
在船舶操纵中,就舵的使用而言,大致可分为小舵 角的保向操纵、一般舵角的转向操纵及大舵角的旋回 操纵三种,船舶旋回性是船舶操纵中极为重要的一种 性能。 一、船舶旋回运动的过程 二、旋回圈及其要素 三、影响旋回圈大小的因素 四、旋回圈要素在实际操船中的应用
2.
3.
4.
图1—4
5.
9
二、旋回圈及其要素
为了更完整地表述旋回运动的特性,通常还应 考虑以下几个参数。 1.反移量 2.漂角β 3.转心 4后,船舶重心从原航向向操 舵相反一侧横移的距离。又称偏距。在 满舵旋回时,当船舶回转达到一个罗经 点时,反移量达到最大值,约为船长的 1%左右,而船尾反移量的最大值可达船 长的1/10~1/5。
图1—1
5
第二阶段——过渡阶段
操舵后,由于船舶出现向操舵相反一侧横移而 使其运动方向发生改变,形成了漂角β。越来越明 显的斜航运动将使船舶进入加速旋回阶段,同时伴 有明显的降速。 如图1—2(a)所示,该阶段中,船舶的旋回 角速度、横移速度和漂角均逐步增大,水动力Fw 的作用方向由第一阶段来自正前方,逐渐改变为来 自船首外舷方向。由于水动力FW作用点较重心更 靠近船首,因而产生水动力转船力矩Mδ ,方向与 舵力转船力矩MJ一致,使船舶加速旋回;与此同 时,随着旋回角速度的不断提高,又会产生不断增 大的船舶旋回阻矩,从而使旋回角速度不断降低, 角速度的增加受到限制。