粒子群算法

合集下载

基本粒子群算法

基本粒子群算法

基本粒子群算法粒子群算法(Particle Swarm Optimization,PSO)是一种群体智能算法。

粒子群算法的灵感来源于模拟一群鸟的行为,这些鸟往往会通过互相沟通,得到更好的食物来源。

类比到优化问题中,粒子群算法的每个个体被称为粒子,它们互相传递信息,从而实现全局最优解的搜索。

在粒子群算法中,每个粒子代表了一个解空间内的可行解。

每个粒子的位置被编码成一组向量,这个向量就是这个粒子的位置,每个粒子还有一个速度向量,决定了它在解空间内的运动方向和速度大小。

在每一次迭代中,每个粒子会对自己的位置和速度进行更新,这依赖于当前的个体最优解,和全局最优解。

个体最优解是这个粒子对解空间的局部搜索结果,全局最优解是所有粒子对解空间的全局搜索结果。

粒子群算法通过不断迭代,更新每个粒子的位置和速度,直到达到收敛条件。

收敛条件可以通过迭代次数,目标函数的阈值等来定义。

在应用上,粒子群算法已被广泛应用于优化问题中,包括函数优化,组合优化,路径规划等等。

它的应用在电力系统,通信网络,机器人,图像处理和数据挖掘等领域也被证明是有效的。

在实际应用中,粒子群算法需要注意一些问题。

一是在选择惯性权重时需要遵守准则,即越接近最优解惯性权重应该越小,越远离最优解惯性权重应该越大。

二是需要确定好种群大小,如果种群太小,可能会导致粒子局限于局部最优解,而丢失全局优解的机会。

三是需要合适的约束条件,保证解空间的可行性,尤其是在优化问题中。

综上所述,粒子群算法是一种十分有用的优化算法,它通过模拟鸟群的行为,实现有效的搜索全局最优解。

但是在实际应用中需要注意一些问题,特别是在惯性权重,种群大小和约束条件的确定上,这样才能达到最好的优化效果。

粒子群算法及应用

粒子群算法及应用

粒子群算法及应用粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,源于对鸟群集群行为的观察和模拟。

粒子群算法通过模拟鸟群中个体间的协作与信息传递,以寻找最优解。

在实际应用中,粒子群算法已被广泛应用于函数优化、组合优化、图像处理、各类工程设计等领域。

粒子群算法的基本原理是模拟鸟群中每只鸟(粒子)的行为。

每个粒子表示问题的一个候选解,在解空间中最优解。

算法从一个随机初始解的种子集合出发,通过迭代更新粒子位置和速度,直到满足终止条件。

每个粒子维护自身的历史最优解和全局最优解,通过个体经验和邻域协作来引导过程。

粒子在解空间中自由移动,并通过其中一种适应度函数评价解的质量,并更新自身位置和速度。

整个过程中,粒子会不断地向全局最优解靠拢,从而找出最优解。

粒子群算法广泛应用于函数优化问题。

对于复杂的多峰函数,粒子群算法能够通过群体间的信息共享来克服局部最优解,找到全局最优解。

此外,粒子群算法还可以解决许多实际问题,如资源调度、网络路由、机器学习等。

例如,在图像处理中,可以使用粒子群算法进行图像分割、图像识别和图像增强等任务,通过优化算法自动化地寻找最优解。

除了以上应用,粒子群算法还可以用于各种优化问题的求解。

例如,粒子群算法在组合优化问题中的应用表现得较为出色。

在组合优化问题中,需要从大量的解空间中找到最佳的组合方案。

通过粒子群算法的迭代和全局协作,可以有效地找到最优解。

另外,粒子群算法还可以用于工程设计中的自动优化。

在工程设计过程中,需要考虑多个目标和多个约束条件,粒子群算法可以通过多目标优化或多约束优化来处理复杂的工程设计问题。

总之,粒子群算法作为一种群体智能算法,在函数优化、组合优化、图像处理和工程设计等领域都得到了广泛的应用。

其优势在于全局寻优能力和自适应性,能够找到复杂问题的最优解。

随着对算法的研究和改进,粒子群算法有望在更多领域得到应用和推广。

粒子群算法解决实际问题

粒子群算法解决实际问题

粒子群算法解决实际问题
粒子群算法(Particle Swarm Optimization, PSO)是一种基于群
体智能的优化算法,该算法模拟了鸟群或鱼群等群体在搜索目标
时的行为。

粒子群算法可以用于解决各种实际问题,包括优化问题、机器学习、图像处理等方面。

在优化问题中,粒子群算法能够帮助寻找最优解。

该算法通过
模拟粒子在搜索空间中的移动来寻找最优解。

每个粒子表示搜索
空间中的一个解,并根据其自身的当前位置和速度进行更新。


子利用个体经验和群体经验进行搜索,以逐渐靠近最优解。

通过
多次迭代,粒子群算法能够逐渐收敛到最优解,从而解决实际问题。

在机器学习领域,粒子群算法可以应用于特征选择、参数优化
等问题。

例如,在特征选择中,粒子群算法可以从原始特征集中
选择出最优的特征子集,以提高机器学习模型的性能和效果。


参数优化中,粒子群算法可以搜索参数空间,以找到最优参数组合,从而优化机器学习模型的表现。

在图像处理中,粒子群算法可以用于图像分割、图像去噪等任务。

例如,在图像分割中,粒子群算法可以对图像进行聚类,将
不同区域的像素归类到不同的群体中,从而实现图像分割的目标。

在图像去噪中,粒子群算法可以通过参数调整和优化,使得模型
能够更好地去除图像中的噪声,提高图像的质量和清晰度。

粒子群算法是一种有效的解决实际问题的算法。

其在优化问题、机器学习和图像处理等领域都有广泛的应用。

通过模拟群体智能
行为,粒子群算法能够通过多次迭代逐渐搜索到最优解,从而实
现问题的优化和解决。

粒子群算法详解

粒子群算法详解

粒子群算法详解粒子群算法(Particle Swarm Optimization,PSO)是一种模拟鸟群觅食行为的优化算法,通过模拟个体之间的协作和信息共享来寻找最优解。

它是一种全局优化算法,可以应用于各种问题的求解。

粒子群算法的基本思想是通过模拟鸟群的行为来寻找最优解。

在算法中,将待优化问题看作一个多维空间中的搜索问题,将问题的解看作空间中的一个点。

每个解被称为一个粒子,粒子的位置代表当前解的状态,速度代表解的更新方向和速度。

粒子之间通过互相交流信息,以共同寻找最优解。

在粒子群算法中,每个粒子都有自己的位置和速度。

每个粒子根据自身的经验和邻域中最优解的经验来更新自己的速度和位置。

速度的更新由三个因素决定:当前速度、个体最优解和全局最优解。

粒子根据这些因素调整速度和位置,以期望找到更优的解。

通过不断迭代更新,粒子群逐渐收敛于最优解。

粒子群算法的核心是更新速度和位置。

速度的更新公式如下:v(t+1) = w * v(t) + c1 * rand() * (pbest - x(t)) + c2 * rand() * (gbest - x(t))其中,v(t+1)为下一时刻的速度,v(t)为当前速度,w为惯性权重,c1和c2为学习因子,rand()为[0,1]之间的随机数,pbest为个体最优解,gbest为全局最优解,x(t)为当前位置。

位置的更新公式如下:x(t+1) = x(t) + v(t+1)通过调整学习因子和惯性权重,可以影响粒子的搜索能力和收敛速度。

较大的学习因子和较小的惯性权重可以增强粒子的探索能力,但可能导致算法陷入局部最优解;较小的学习因子和较大的惯性权重可以加快算法的收敛速度,但可能导致算法过早收敛。

粒子群算法的优点是简单易实现,收敛速度较快,对于大多数问题都能得到较好的结果。

然而,粒子群算法也存在一些缺点。

首先,算法对于问题的初始解和参数设置较为敏感,不同的初始解和参数可能导致不同的结果。

粒子群算法

粒子群算法

智能优化计算
1 粒子群算法的基本原理
1.1 粒子群算法的提出 ➢ 五年后,在国际上逐步被接受,并有大批不同 领域的学者投入该算法相关研究,目前已经成 为智能优化领域研究的热门
➢ 2003年,《控制与决策》第二期刊登国内第一篇 PSO论文——综述文章
8
历年发表论文的数目
2500
2328
2000
1500
xikd
)
c2 ra n d( ) ( p gbest
xikd )
xk 1 id
xikd
vk 1 id
i 1,2,, m; d 1,2,, D
惯性权重(续)
通过调节w值,可以控制PSO的全局探索和局部开发能力:
• w≥1:微粒速度随迭代次数的增加而增加,微粒发散。
• 0<w<1 :微粒减速,算法的收敛性依靠惯性权重c1和 c2 。
共性
(1)都属于仿生算法; (2)都属于全局优化方法; (3)都属于随机搜索算法; (4)都隐含并行性; (5)根据个体的适配信息进行搜索,因此不受函 数约束条件的限制,如连续性、可导性等; (6)对高维复杂问题,往往会遇到早熟收敛和收 敛性能差的缺点,都无法保证收敛到最优点。
PSO就是对鸟群或鱼群寻找食物这种群体行为的模拟。
单个鸟 整个鸟群
单个微粒
由多个微粒组 成的微粒群
一个微粒代表问题 的一个解
每个微粒都有一个 由被优化函数值决 定的适应值
鸟群寻找食 物的飞行策 略
鸟群行为
微粒位置和速 度的更新策略
PSO
13
每个微粒通过跟踪 自身找到的最好位 置以及邻域内其它 微粒找到的最好位 置,完成对整个搜 索空间的搜索
最大化问题

粒子群算法基本原理

粒子群算法基本原理

粒子群算法基本原理粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体在自然界中求解问题的行为。

粒子群算法是一种无约束优化算法,可以用于求解各种优化问题。

粒子群算法的基本原理是通过模拟粒子在解空间中的过程来寻找最优解。

每个粒子表示了一个潜在的解,其位置和速度表示了解的状态和速度。

整个粒子群可以看作是一个多维解空间中的群体,每个粒子都具有一个解向量和速度向量,通过不断调整速度和位置来寻找最优解。

1.初始化粒子群:根据问题的维度和约束条件,随机初始化粒子的位置和速度。

其中位置表示解向量,速度表示方向和速度。

2.计算粒子适应度:根据问题的定义,计算每个粒子的适应度。

适应度函数根据问题的不同而变化,可以是目标函数的取值或其他综合评价指标。

3.更新粒子速度和位置:通过利用粒子当前的位置、速度和历史最优解来更新粒子的速度和位置。

速度的更新过程包括两部分,第一部分是加速度项,其大小与粒子所处位置与个体最优解、群体最优解的距离有关;第二部分是惯性项,保持原有的速度方向并控制的范围。

位置的更新通过当前位置和速度得到新的位置。

4.更新个体最优解和群体最优解:将每个粒子的适应度与其历史最优解进行比较并更新。

个体最优解是粒子自身到的最优解,群体最优解是所有粒子中的最优解。

5.判断停止条件:根据预定的停止条件判断是否终止算法。

停止条件可以是达到最大迭代次数、适应度值达到一定阈值或范围满足一定条件等。

6.返回最优解:将群体最优解或个体最优解作为最终结果返回。

粒子群算法通过不断地更新粒子的速度和位置,通过粒子之间的信息交流和协作来找到最优解。

在算法的早期阶段,粒子的范围较大,有较高的探索性;随着的进行,粒子逐渐聚集在最优解周围,并逐渐减小范围,增强了局部的能力。

这种全局和局部的结合使得粒子群算法能够更好地求解多峰优化问题。

粒子群算法的优点是简单易实现、全局能力强,对于非线性、非凸性、多峰性问题有很好的适应性。

粒子群算法介绍

粒子群算法介绍

1.介绍:粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart 和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。

设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

经过实践证明:全局版本的粒子群算法收敛速度快,但是容易陷入局部最优。

局部版本的粒子群算法收敛速度慢,但是很难陷入局部最优。

现在的粒子群算法大都在收敛速度与摆脱局部最优这两个方面下功夫。

其实这两个方面是矛盾的。

看如何更好的折中了。

粒子群算法主要分为4个大的分支:(1)标准粒子群算法的变形在这个分支中,主要是对标准粒子群算法的惯性因子、收敛因子(约束因子)、“认知”部分的c1,“社会”部分的c2进行变化与调节,希望获得好的效果。

惯性因子的原始版本是保持不变的,后来有人提出随着算法迭代的进行,惯性因子需要逐渐减小的思想。

算法开始阶段,大的惯性因子可以是算法不容易陷入局部最优,到算法的后期,小的惯性因子可以使收敛速度加快,使收敛更加平稳,不至于出现振荡现象。

经过本人测试,动态的减小惯性因子w,的确可以使算法更加稳定,效果比较好。

但是递减惯性因子采用什么样的方法呢?人们首先想到的是线型递减,这种策略的确很好,但是是不是最优的呢?于是有人对递减的策略作了研究,研究结果指出:线型函数的递减优于凸函数的递减策略,但是凹函数的递减策略又优于线型的递减,经过本人测试,实验结果基本符合这个结论,但是效果不是很明显。

对于收敛因子,经过证明如果收敛因子取0.729,可以确保算法的收敛,但是不能保证算法收敛到全局最优,经过本人测试,取收敛因子为0.729效果较好。

对于社会与认知的系数c2,c1也有人提出:c1先大后小,而c2先小后大的思想,因为在算法运行初期,每个鸟要有大的自己的认知部分而又比较小的社会部分,这个与我们自己一群人找东西的情形比较接近,因为在我们找东西的初期,我们基本依靠自己的知识取寻找,而后来,我们积累的经验越来越丰富,于是大家开始逐渐达成共识(社会知识),这样我们就开始依靠社会知识来寻找东西了。

粒子群算法步骤

粒子群算法步骤

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,用于解决优化问题。

下面是粒子群算法的一般步骤:1. 初始化参数:- 定义问题的适应度函数。

- 设置群体规模(粒子数量)和迭代次数。

- 随机初始化每个粒子的位置和速度。

- 设置每个粒子的个体最佳位置和整个群体的全局最佳位置。

2. 迭代优化:- 对于每个粒子:- 根据当前位置和速度更新粒子的新速度。

- 根据新速度更新粒子的新位置。

- 根据新位置计算适应度函数值。

- 更新粒子的个体最佳位置和整个群体的全局最佳位置。

- 结束条件判断:达到预设的迭代次数或满足特定的停止条件。

3. 输出结果:- 输出全局最佳位置对应的解作为优化问题的最优解。

在更新粒子的速度和位置时,通常使用以下公式:速度更新:v(t+1) = w * v(t) + c1 * r1 * (pbest - x(t)) + c2 * r2 * (gbest - x(t))位置更新:x(t+1) = x(t) + v(t+1)其中:- v(t) 是粒子在时间t 的速度。

- x(t) 是粒子在时间t 的位置。

- w 是惯性权重,用于平衡粒子的历史速度和当前速度的影响。

- c1 和c2 是加速因子,控制个体和全局最佳位置对粒子速度的影响。

- r1 和r2 是随机数,用于引入随机性。

- pbest 是粒子的个体最佳位置。

- gbest 是整个群体的全局最佳位置。

以上是粒子群算法的基本步骤,您可以根据具体的优化问题进行调整和扩展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒子群算法摘要:粒子群优化算法是由James Kennedy和 Russell Eberbart 设计的一种仿生优化计算方法。

PSO算法的基本设计思想来源于两个方面分别是人工生命和进化计算,设计者通过研究动物群体以及人类行为模式的计算机模拟,然后不断的试错、修改而逐渐的到算法的原型。

PSO算法的运行机理不是依靠个体的自然进化规律,而是对生物群体的社会行为进行模拟。

它最早源于对鸟群觅食行为的研究。

在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种相互作用和影响是通过信息共享机制体现的。

PSO算法就是对这种社会行为的模拟即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体朝着更好的方向发展。

关键词:粒子群优化算法;社会行为;鸟群觅食;信息共享1 粒子群算法设计思想粒子群算法的思想来源于对鸟捕食行为的模仿,虽让鸟群在捕食过程中会发生改变飞行方向、聚集等一系列不可预测的行为但整体还是呈现一种有序性,研究证明是因为鸟群中存在一种信息共享机制。

可以设想一群鸟在随机搜索食物,刚开始每只鸟均不知道食物在哪里,所以均无特定的目标进行飞行,但是它们知道哪只鸟距离食物最近,还有自己曾经离食物最近的位置,每只鸟开始通过试图通过这两个位置来确定自己往哪个方向飞行。

因此可以将鸟群觅食行为看做一个特定问题寻找解的过程。

如果我们把一个优化问题看做是空中觅食的鸟群,那么粒子群中每个优化问题的可行解就是搜索空间中的一只鸟,称为“粒子”,“食物”就是优化问题的最优解。

个体找到食物就相当于优化问题找到最优解。

当然这里的鸟群(粒子)是经过人工处理的,它们均有记忆功能,没有质量和体积,不占空间,每个粒子均有速度和位置两个属性,同时每个粒子都有一个由优化问题决定的适应度来评价粒子的“好坏”程度,显然,每个粒子的行为就是总追随者当前的最优粒子在解空间中搜索。

2 粒子群优化算法2.1 标准粒子群优化算法首先提出两个概念,(1)探索:是值粒子在一定程度上离开原先的搜索轨迹,向新的方向进行搜索,体现了向未知区域开拓的能力,可以理解为全局搜索。

(2)开发:值粒子沿着原来的搜索轨迹进行更细的搜索,可以理解为局部搜索,种群在探索和开发的过程中向最优解靠近,因而如何控制这两种搜索过程将对PSO 算法的效率产生较大影响。

假设问题的空间是N 维,群体中有m 个粒子,每个粒子表示一个可行解),...,,(321in i i i x x x x X i =,将它带入目标函数得到适应度值,用这个值来评价每个粒子的优劣。

记粒子所经历过的最好位置为),...,,(321in i i i p p p p P i =,整个群体的最优位置为),...,,(321gn g g g p p p p P g =。

粒子的位置和速度的更新公式为: ij V k+1=w ij V k +11r c (ij Pbest k -ij x k )+22r c (ij gbest k -ij x k )ij x k+1=ij V k+1+ij x k分析上式:惯性权重w 描述了粒子的惯性对速度的影响,w 值会影响到PSO 算法的全局和局部搜索能力,w 越大则全局搜索能力越强。

1C 、2C 为常数,称为学习因子,1r ,2r 是0到1之间的随机数。

对速度的更新由三部分构成: 第一部分是粒子的当前速度,表明了粒子的当前状态。

第二部是是认知部分,表明粒子自身的能力,让粒子拥有足够强的全局搜索能力,避免局部最小。

第三部分为社会部分,表示粒子间的合作。

这三个部分共同决定了粒子的空间搜索能力,三部分共同作用才能让粒子有效地达到最好的位置。

粒子新的速度由当前速度,当前位置与自己经历过的最优位置,当前位置与种群经历过的最优位置的距离共同计算得出,然后根据位置更新公式得到下一代粒子的位置。

迭代的结束条件时达到最大迭代次数或者得到指定的适应度值,不过通常取前者,因为指定的适应度值不好设定。

另外,粒子在不断根据速度来调增位置时,还要受到最大速度max V 的限制,当速度超过max V 时将被限定为max V 。

标准粒子群优化算法的流程图如下图所示:图1 标准粒子群算法流程图步骤如下:(1)初始化种群,包括种群规模,每个粒子的位置和速度。

(2)计算每个粒子的适应度值。

(3)对每个粒子,用它的适应度和个体极值pbest相比较,如果较好,则更新pbest。

(4)对每个粒子,用它的适应度和全局极值gbest相比较,如果较好,则更新gbest。

(5)根据速度和位置的更新公式对粒子的位置和速度进行更新,以产生新一代的个体。

(6)若达到结束条件(满足迭代次数或误差足够好)则退出,否则转(2)。

2.2 离散粒子群算法根据粒子子啊一种状态到另一种状态的变化概率定义了粒子的位置和速度。

因此粒子在状态空间上的每一维的移动都被严格控制为0或1,所以首先要把粒子的速度映射到区间[0,1],用速度与概率进行映射的方法采用的函数是sigmoid 函数。

))(()(id v S rand if < then 1=id x ;else 0=id x其中函数)ex p (11)(id id v v S -+=,rand()在区间[0,1]的一个随机数,用)(id v S 来表示id x 取1的概率。

因为)(idv S 的值与id V 的值相关,所以应该把id V 限制在一个范围这样才能取得比较好的效果,设速度最大值为max V ,则][m a x m a x ,V V v -∈。

以max V =4为例,)(id v S 的关系图为:图2 速度与是S (v )在]4,4[-∈v 时的函数离散粒子群算法的流程图如下图所示:图三离散粒子群算法的流程图离散粒子群优化算法的步骤和标准粒子群优化算法大致相同,可以参考上面的步骤。

3 粒子群优化算法的优缺点分析3.1粒子群算法的优点(1)PSO算法没有交叉和变异运算,依靠粒子速度完成搜索,并且在迭代进化中只有最优的粒子把信息传递给其它粒子,搜索速度快;(2)PSO算法具有记忆性,粒子群体的历史最好位置可以记忆并传递给其它粒子;(3)需调整的参数较少,结构简单,易于工程实现;(4)采用实数编码,直接由问题的解决定,问题解的变量数直接作为粒子的维数。

3.2粒子群算法的缺点(1)缺乏速度的动态调节,容易陷入局部最优,导致收敛精度低和不易收敛;(2)不能有效解决离散及组合优化问题;(3)不能有效求解一些非直角坐标系描述问题,如有关能量场或场内粒子运动规律的求解问题(这些求解空间的边界大部分是基于极坐标、球坐标或柱坐标的)(4)参数控制,对于不同的问题,如何选择合适的参数来达到最优效果。

4 粒子群算法的应用范围粒子群优化算法已提出就受到了广泛的关注,各种粒子群算法应用研究的成果不断涌现,它的应用领域已从最初的函数优化和神经网络的训练扩展到更加开阔的领域,有力地促进了粒子群优化算法的研究。

目前粒子群优化算法的主要应用在如下几个方面:(1)函数优化PSO算法最初被应用于函数优化,但后来的学者经过研究发现,粒子群算法在解决一些经典的函数优化问题,甚至一些非线性函数时也展示出了良好的性能。

其后研究者开始尝试用PSO算法解决更为浮渣的越苏优化和多目标优化问题。

(2)神经网络训练将PSO算法用于神经网络训练也取得了良好的效果,研究表明,PSO是一种很有潜力的神经网络训练算法,如用于市区环境状况的分析和预测等取得了较高的成功率。

(3)工程领域应用很多工程中的实际问题,本质上都是优化问题,因此PSO算法自然就可以应用到实际的工程问题来,将PSO肃反和BP神经网络算法相结合训练神经网络已用于对电动汽车燃料电池组充电情况的模拟。

粒子群优化算法和其它进化算法那一样,可以解决几乎所有的优化问题,或是可以转化为优化问题来求解。

(4)用于随机优化问题的求解:比如随机雪球车辆路径问题,随机规划问题等。

(5)用于最优控制问题的求解,如求解城市环路交通协调控制系统。

5 粒子群算法发展趋势粒子群算法今后研究的主要方向和热点可以总结为如下几个方面:(1)算法基理的数学基础研究。

PSO在实际应用中被证明是有效的,但目前还没有给出收敛性、收敛速度估计等方面的数学证明,已有的工作还远远不够;(2)将各种先进理论引入到PSO。

各种先进理论的引入,首先可以研究性能良好的新型粒子群拓扑结构。

不同的粒子群邻居拓扑结构是对不同类型社会的模拟,研究不同拓扑结构的适用范围,对算法推广和使用有重要意义;其次可以优化PSO的参数及其选择。

参数的选择分别关系到粒子速度的3个部分:惯性部分、社会部分和自身部分在搜索中的作用。

如何选择、优化和调整参数,使得算法既能避免早熟又能比较快速地收敛,对工程实践有着重要意义;(3)与其它智能优化算法的融合。

将P$O和其它优化算法进行融合,主要考虑如何将PSO的优点和其它智能优化算法的优点相结合,取长补短,构造出有特色、有实用价值的混合算法;(4)PSO的扩展应用。

目前P$O的多数研究是针对直角坐标系统描述的系统、离散系统和单一优化系统,而实际系统中,很多系统是非直角坐标系统描述的系统、离散系统、组合优化的系统,目前在这些系统中应用PSO算法可供参考的研究还较少,广泛地开拓P$O在这些领域的应用不仅具有实际意义,同时对深化研究PSO也非常有意义。

6 总结粒子群优化算法是一类新兴的基于群智能的算法,同其它进化算法相比,主要特使是简洁,容易实现和更强的全局优化能力,没有很多参数需要调整,且不需要梯度信息,因此受人们广泛的关注,PSO算法是非线性连续优化问题、组合优化问题和混合整数非线性优化问题的有效优化工具,目前已经广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

但对该算法还有很多问题值得研究,是目前优化领域的研究热点。

本文分析该算法的思想来源,两种重要的粒子群算法(标准和离散型)介绍、PSO算法的优缺点以及和一些实际的应用范围,展望了将算法未来的研究方向和发展趋势。

参考文献:[1]王芳,粒子群算法的研究[D][2]刘衍民,粒子群算法的研究及应用[D][3]张永芳,粒子群算法的研究与应用[D][4]王岩,粒子群算法在求解组合优化问题中的应用研究[D][5]王文峰,离散粒子群算法的改进研究及其在优化问题中的应用[D][6]李兰,改进的离散粒子群算法求解0-1背包问题[D][7]陈曦,离散粒子群算法的改进及其应用研究[8]李玉毛,粒子群算法的研究与改进[D][9]莫愿斌,刘贺同,陈德钊,粒子群优化算法的发展趋势[J],计算机与应用化学,2009年4月28日,第26卷,第4期[10]王伯成,施锦丹,王凯,粒子群优化算法的研究现状与发展概述[J],Telecommunication Engineering,2008年5月第48卷第5期[11]夏桂梅, 曾建潮,微粒群算法的研究现状及发展趋势[J],2005年3月第19卷第1期[12]王瑾, 张求明, 黄波,粒子群优化算法的分析与研究[J],,计算机与现代化,2009年第7期[13]王俊伟,粒子群优化算法的改进与应用[D][14]周东先,粒子群优化算法的研究及其应用[D][15]张利彪,基于粒子群优化算法的研究[D]。

相关文档
最新文档