数学史(考试重点及答案)

合集下载

数学史知识点及解答

数学史知识点及解答

数学史知识点及解答1. 欧几里得算法欧几里得算法是古希腊数学家欧几里得提出的一种求最大公约数的方法。

该算法的基本原理是通过连续除法的方式,将两个数的较大数除以较小数,然后用余数替换较大数,不断重复这个过程直到余数为零。

最后一次余数不为零的除数即为这两个数的最大公约数。

例如,对于数字36和48,用欧几里得算法可以得到他们的最大公约数为12。

2. 斐波那契数列斐波那契数列是一种数学序列,起始于0和1,后续的每个数都是前两个数的和。

这个数列在数学和自然界中都有广泛的应用。

斐波那契数列的前几个数字依次为0、1、1、2、3、5、8、13、21...以此类推。

斐波那契数列的性质在组合数学、几何学和计算机科学等领域有重要的应用。

3. 哥德巴赫猜想哥德巴赫猜想是一道关于质数的未解之谜。

它由德国数学家哥德巴赫在18世纪提出,猜想的内容是:每个大于2的偶数都可以分解为两个质数之和。

虽然这个猜想在很多特殊情况下得到了证明,但至今尚未找到一个通用的证明方法。

哥德巴赫猜想是数论领域一个备受关注的问题,至今仍然是一个未解之谜。

4. 无理数的发现无理数是一类不能用两个整数的比值来表示的实数。

最早的无理数发现可以追溯到古希腊数学家毕达哥拉斯。

他们通过构造正方形的对角线,发现了无法被有理数表示的长度。

这个发现颠覆了当时数学界的观念,并为后续的数学理论奠定了坚实的基础。

著名的π(圆周率)和√2(根号2)都是无理数的例子。

5. 导数与微分导数和微分是微积分中的重要概念,由众多数学家在不同时期独立发现。

导数描述了函数曲线上某一点的斜率,可以用于求变化率、最优化问题等。

微分引入了一个新的数学对象——微分形式,使得数学分析中的计算和推理更加方便。

导数和微分在物理、经济学和工程学等领域有广泛应用。

总结:数学史上有许多重要的知识点和发现,它们不仅为数学学科本身带来了深远的影响,也推动了其他科学领域的发展。

欧几里得算法、斐波那契数列、哥德巴赫猜想、无理数的发现以及导数与微分等都是数学史上具有重要意义的内容。

数学史中考试题及答案

数学史中考试题及答案

数学史中考试题及答案一、选择题1. 以下哪位数学家是古希腊时期的代表人物?A. 古丘自尼斯B. 狄欧尼斯C. 欧几里得D. 亚历山大大帝答案:C2. 哥德巴赫猜想是由以下哪位数学家提出的?A. 哥德巴赫B. 柯尚夫C. 费马D. 瓦尔斯特拉斯答案:A3. 平面几何学中,欧几里得几何是基于以下哪个公设?A. 平行公设B. 垂直公设C. 同位角公设D. 同旁内角公设答案:A4. 哪位数学家被称为“数学分析之父”?A. 高斯B. 欧拉C. 勒让德D. 新莱布尼茨答案:D5. 数学中的“黄金比例”对应的数值是多少?A. πB. √2C. φ(1.618)D. e答案:C二、填空题1. 希腊数学家欧几里得在其著作《几何原本》中提出了几何学的基础定理,其中最著名的定理是________定理。

答案:勾股定理2. 17世纪法国数学家笛卡尔在代数几何学上首次引入了坐标系,将几何问题转化为代数问题,这一方法被称为________几何。

答案:解析几何3. 曲线的斜率是指曲线上某一点处的切线与________坐标轴所成角的正切值。

答案:x4. 爱因斯坦的著名公式E=mc²中,E代表能量,m代表物质的质量,c代表________。

答案:光速5. 在微积分中,对函数进行求导运算得到的结果称为函数的________。

答案:导数三、解答题1. 简述古希腊数学家欧几里得的《几何原本》对几何学的影响。

答案:欧几里得的《几何原本》是古希腊数学最重要的著作之一,它对几何学的发展和影响有着深远的影响。

其中最著名的贡献是提出了几何学的基础定理,包括勾股定理、等腰三角形定理等。

这些定理为后世的几何学研究奠定了基础,并成为了后来几何学教学的重要内容。

2. 简述笛卡尔解析几何的基本原理及其在数学发展中的地位。

答案:笛卡尔解析几何是由法国数学家笛卡尔于17世纪提出的一种几何研究方法。

它将几何问题转化为代数问题,通过引入坐标系,将点和线段等几何图形与数值运算进行对应。

数学史知识点及答案

数学史知识点及答案

数学史知识点及答案1.世界上第一个把π计算到3.1415926<n <3.1415927 的数学家是( B )A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2数学史知识点及答案是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪3数学史知识点及答案言( A )A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学著作中,最早的一部是( D )A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。

A.笛卡尔公式B.牛顿公式C.莱布尼茨公式D.欧拉公式6.中国古典数学发展的顶峰时期是( D )。

A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期7.最早使用“函数”(function)这一术语的数学家是( A )。

A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。

A.高斯B.波尔查诺C.魏尔斯特拉斯D.柯西9.古埃及的数学知识常常记载在(A )。

A.纸草书上B.竹片上C.木板上D.泥板上10.大数学家欧拉出生于(A )A.瑞士B.奥地利C.德国D.法国11.首先获得四次方程一般解法的数学家是( D )。

A.塔塔利亚B.卡当C.费罗D.费拉利12.《九章算术》的“少广”章主要讨论(D )。

A.比例术B.面积术C.体积术D.开方术13.最早采用位值制记数的国家或民族是( A )。

A.美索不达米亚B.埃及C.阿拉伯D.印度二、填空题14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。

卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。

16.二项式展开式的系数图表,三角,而数学史学者常17.欧几里得《几何原本》全书共分13 卷,包括有(5)条公理、(5)条公设。

1数学史试题及答案

1数学史试题及答案

填空1.世界上第一个把π计算到<π<的数学家是祖冲之2.我国元代数学著作《四元玉鉴》的作者是(朱世杰3.就微分学与积分学的起源而言(积分学早于微分学)4.在现存的中国古代数学著作中,最早的一部是(《周髀算经》5.发现著名公式e iθ=cosθ+isinθ的是( 欧拉6.中国古典数学发展的顶峰时期是(宋元时期)。

7.最早使用“函数”(function)这一术语的数学家是(.莱布尼茨)。

8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是(波尔查诺)。

9.古埃及的数学知识常常记载在(纸草书上)。

10.大数学家欧拉出生于(瑞士)11.首先获得四次方程一般解法的数学家是(费拉利。

12.《九章算术》的“少广”章主要讨论(开方术)。

13.最早采用位值制记数的国家或民族是(美索不达米亚)。

14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、__完备性__、独立性15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。

卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。

16.二项式展开式的系数图表,在中学课本中称其为__杨辉__三角,而数学史学者常常称它为_贾宪__三角。

17.欧几里得《几何原本》全书共分13 卷,包括有_5_条公理、_5条公设。

18.两千年来有关欧几里得《几何原本》第五公设的争议,导致了《非欧几何》的诞生。

19.阿拉伯数学家花拉子米的《代数学》第一次给出了一次和二次方程的一般解法,并用__几何__方法对这一解法给出了证明。

20.在微积分方法正式发明之前,许多数学家的工作已经显示着微积分的萌芽,如开普勒的旋转体体积计算、巴罗的微分三角形方法以及瓦里士的曲线弧长的计算等。

语言的数学家是维尔斯特拉斯。

21.1882 年德国数学家林德曼证明了数的超越性。

22.数学家们为研究古希腊三大尺规作图难题花费了两千年的时间,23.罗巴契夫斯基所建立的“非欧几何”假定过直线外一点,至少有两条年德国数学家林德曼证明了数直线与已知直线平行,而且在该几何体系中,三角形内角和__小于___两直角。

(完整版)数学史知识点及复习题

(完整版)数学史知识点及复习题

第1页/共9页一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号 填在题干的括号内。

)1 .关于古埃及数学的知识,主要来源于(A.埃及纸草书和苏格兰纸草书C.莫斯科纸草书和希腊纸草书 2 .以“万物皆数”为信条的古希腊数学学派是( )。

A.爱奥尼亚学派B.伊利亚学派C.诡辩学派 VD.毕达哥拉斯学派3 .最早记载勾股定理的我国古代名著是( )。

A.《九章算术》B.《孙子算经》V C.《周髀算经》D.《缀术》4 .首先使用符号“0”来表示零的国家或民族是( )。

A.中国V B.印度 C.阿拉伯 D.古希腊5 .欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是()。

V A.斐波那契B.卡尔丹C.塔塔利亚D.费罗6 .对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是()。

A.伽利略 B.哥白尼V C.开普勒 D.牛顿7 .对古代埃及数学成就的了解主要来源于() V A.纸草书B.羊皮书C.泥版D.金字塔内的石刻8 .公元前 4 世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?( )A.不可公度数B.化圆为方 VC.倍立方体D.三等分角9 .《九章算术》中的“阳马”是指一种特殊的()A.棱柱 VB.棱锥C.棱台D.楔形体10 .印度古代数学著作《计算方法纲要》的作者是() A.阿耶波多B.婆罗摩笈多V C.马哈维拉D.婆什迦罗11 .射影几何产生于文艺复兴时期的( ) A.音乐演奏B.服装设计C.雕刻艺术V D.绘画艺术12彳微分符号“d ”、积分符号“『的首先使用者是( )A.牛顿 VB.莱布尼茨C.开普勒D.卡瓦列里)。

V B.莱茵德纸草书和莫斯科纸草书 D.莱茵德纸草书和尼罗河纸草书13.求和符号》的引进者是()第2页/共9页A.牛顿B.莱布尼茨VC.柯西D.欧拉14.作为“非欧几何”理论建立者之一的年轻数学家波约是()A.俄国人B德国人C.葡萄牙人V 口.匈牙利人15.最早证明了有理数集是可数集的数学家是()V A.康托尔B.欧拉C.魏尔斯特拉斯D.柯西16.在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是()V A.希尔伯特B.庞加莱C.罗素D.克莱因17.《周髀算经》和()是我国古代两部重要的数学著作。

大学数学史题库及答案

大学数学史题库及答案

大学数学史题库及答案一、单选题1、以下哪个数学家不是古希腊人?A.毕达哥拉斯B.阿基米德C.欧几里得D.希波克拉底答案:D.希波克拉底2、以下哪个数学符号不是由阿拉伯人发明的?A.零符号B.代数符号C.函数符号D.等号答案:D.等号3、以下哪个数学定理不是由法国数学家费马提出的?A.费马大定理B.费马小定理C.费马多边形定理D.费马圆周率公式答案:C.费马多边形定理二、多选题1、以下哪些数学家是文艺复兴时期的代表人物?A.达芬奇B.伽利略C.开普勒D.牛顿答案:A,B,C2、以下哪些数学符号是印度人发明的?A.十进位记数法B.三角函数表C.圆周率近似值D.虚数单位“i”答案:A,C3、以下哪些数学定理是欧几里得提出的?A.欧几里得定理B.勾股定理C.平行公理D.微积分基本定理答案:A,B,C三、判断题1、阿基米德发现了微积分。

()答案:错误。

微积分是由牛顿和莱布尼茨发现的。

2、π是由印度数学家阿叶彼海特发明的。

()答案:错误。

π是由古希腊数学家海伦发明的。

大学数学史题库附答案数学,作为一门历史悠久且广泛应用的基础学科,以其独特的魅力在大学教育中占据了重要的地位。

今天,我将为大家分享一份精选的大学数学史题库及其答案,希望能够帮助大家更好地理解数学的历史和发展。

一、选择题1、以下哪个选项不是数学史上的重要人物?A.毕达哥拉斯B.阿基米德C.牛顿D.莎士比亚答案:D.莎士比亚解释:莎士比亚是文学巨匠,而非数学家。

2、以下哪个发明与数学无关?A.钟表B.算盘C.电脑D.日晷答案:C.电脑解释:电脑虽然与计算有关,但其主要功能是信息处理和存储,而非数学计算工具。

3、在中世纪,哪个国家对数学的发展做出了重要贡献?A.罗马帝国B.中国C.阿拉伯帝国D.古希腊答案:C.阿拉伯帝国解释:阿拉伯帝国在数学领域有着显著的成就,如代数学的发展以及阿拉伯数字的传播等。

二、简答题1、请简述数学在文艺复兴时期的发展以及主要成就。

数学史考试题和答案

数学史考试题和答案

数学史考试题和答案一、单项选择题(每题2分,共20分)1. 被认为是数学史上第一位数学家的是:A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 牛顿答案:A2. 以下哪位数学家不是古希腊数学家?A. 欧拉B. 阿基米德C. 希帕提亚D. 欧几里得答案:A3. “几何原本”是由哪位数学家所著?A. 牛顿B. 欧拉C. 欧几里得D. 高斯答案:C4. 微积分的发明归功于以下哪两位数学家?A. 牛顿和莱布尼茨B. 欧拉和拉格朗日C. 阿基米德和高斯D. 笛卡尔和帕斯卡答案:A5. 以下哪位数学家不是法国人?A. 帕斯卡B. 拉普拉斯C. 拉格朗日D. 高斯答案:D6. 被誉为“现代数学之父”的是:A. 牛顿B. 高斯C. 欧拉D. 笛卡尔答案:D7. 以下哪位数学家是概率论的先驱?A. 帕斯卡B. 欧拉C. 牛顿D. 阿基米德答案:A8. 以下哪位数学家是解析几何的创始人?A. 牛顿B. 笛卡尔C. 欧拉D. 高斯答案:B9. 以下哪位数学家是复数理论的先驱?A. 欧拉B. 牛顿C. 欧几里得D. 笛卡尔答案:A10. 以下哪位数学家是群论的创始人?A. 高斯B. 拉格朗日C. 伽罗瓦D. 欧拉答案:C二、填空题(每题2分,共20分)1. 毕达哥拉斯定理,也被称为勾股定理,是由古希腊数学家______提出的。

答案:毕达哥拉斯2. 阿基米德是古希腊的数学家、物理学家、工程师,他发现了浮力原理,并计算了圆周率的近似值,他的近似值在______和______之间。

答案:3.14084 和 3.142853. 欧几里得的《几何原本》是数学史上最重要的著作之一,它系统地总结了古希腊几何学的知识,并提出了______条公理。

答案:234. 牛顿和莱布尼茨独立发现了微积分,牛顿的微积分工作主要体现在他的著作《______》中。

答案:自然哲学的数学原理5. 欧拉是18世纪的瑞士数学家,他在数学的许多领域都有贡献,包括数论、图论、拓扑学等,他的名字被用来命名了欧拉公式:e^(iπ) + 1 = ______。

数学史复习题总结及答案(原创)

数学史复习题总结及答案(原创)

1,18世纪主要的数学家:欧拉,雅科布•贝努力,约翰•贝努利,泰勒,麦克劳林,棣莫弗等。

2,19世纪主要的数学家:傅里叶,柯西,泊松,刘维尔,若而当,庞加莱,黎曼,魏尔斯特拉斯,克莱因,希尔伯特,切比雪夫,柯瓦列夫斯卡娅等。

3,《四元玉鉴》作者是:元代数学家朱世杰4,中国古代数学发展的顶峰时期是:宋元时期5,最早使用“函数”这一术语的是:莱布尼茨6,首次获得四次方程的一般解法的是:费拉利7,《九章算术》里“少广”指的是:开方数8,最早使用位制制计数的国家是:美索不达米亚。

他们主要用60进制。

9,希尔伯特在历史上明确提出选择和组织公里的原则:相容性,完备性,独立性10,二项展开式的系数图表在中学称为:杨辉三角。

数学史学者常称:贾宪三角。

11,欧几里得《几何原本》共有13卷,包含5条公理,5条公式12,被称为现代分析之父的数学家是:魏尔斯特拉斯。

被称为数学之王的数学家是:高斯13,第一台能做加减运算的机械式计算机是由数学家:帕斯卡在1642年发明的。

14,1900年德国的希尔伯特在巴黎国际数学大会上提出23 个尚未解决的问题。

15,首先将三次方程一般解法公开的是:卡当(意大利)首先获得四次方程一般解法的是:费拉利首先获得三次方程一般解法的是;费罗16,中国历史上最早叙述勾股定理的著作:《九章算术》中国历史上最早完成勾股定理证明的是:三国时期的赵爽17,积分学的起源早于微分学。

微积分诞生于17 世纪。

18,数学家为了研究古希腊三大尺规作图问题花费了2000 年的时间,在1882年德国数学家林德曼证明了数PI的超越性,从而确定了尺规画圆为方的不可能性。

19,世界上讲述方程最早的著作是:《九章算术》20,《数学汇编》是一部总结前人成果的著作,被认为是古希腊数学的安魂曲,作者是:帕波斯21,不属于算经十书的是:《数书九章》22,以万物皆为数为信条的古希腊学派是:毕达哥拉斯学派23,首先使用“0”来表示零的国家是:印度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 简述数学史的定义及数学史课程的内容。

答:数学史研究数学概念、数学方法和数学思想的起源与发展及其与社会政治经济和一般文化的联系。

数学史课程的功能可以概括成以下四部分:(1)掌握历史知识:通过学习关于数学的专门知识,更好的从整体上把握数学。

(2)复习已有知识:按学科讲述学过的数学知识,系统的提高对该学科的理解。

(3)了解新的知识:通过学习数学各学科的发展,了解没有学过的学科的内容。

(4)受到思想教育:通过了解数学家为数学而奋斗的高尚品质,陶冶数学情操。

2. 简述数学内涵的历史发展。

答:数学的内涵随时代的变化而变化,一般可分为四个阶段。

A 数学是量的科学:公元前4世纪。

B 数学是研究现实世界空间形式与数量关系的科学;19世纪。

C 数学研究各种量之间的关系与联系:20世纪50年代。

D 数学是作为模式的科学:20世纪80年代。

1. 简述河谷文明及其数学。

答:历史学家往往把四大文明古国的文明称之为“河谷文明”,因为这些国家是在河流的入海口建立的。

尼罗河孕育了埃及文明;底格里斯河、幼发拉底河孕育了巴比伦文明;黄河和长江孕育了中国文明;印度河和恒河孕育了印度文明。

埃及、美索不达米亚的数学产生较早,纪元前已经衰微,而印度、中国的数学崛起较晚,却延续至中世纪。

2. 简述纸草书与泥板文书中的数学。

答:古埃及人在一种纸莎草压制成的叶片上书写,幸存至今,被称为纸草书。

莱茵德纸草书(现存于伦敦大英博物馆)中有84个数学题目;莫斯科纸草书(现存于俄国普希金精细艺术博物馆)中有25个数学题目;还有其他纸草书。

纸草书中的数学知识包括:(1)算术,包括加法运算、单位分数、十进制计数、位置法;(2)几何,包括面积、体积计算和四棱台体积公式。

美索不达米亚人用尖芦管在湿泥板上写字,然后将湿泥板晒干或烘干,幸存至今,被称之为泥板文书。

出土50万块其中数学文献300块。

泥板文书中的数学包括:(1)记数,包括偰形文、60制、位值原理;(2)程序化算法,包括û1.414213;(3)数表;(4)x²–px–q=0 ,x³=a,X³+X²=a (5)几何,测量、面积、体积公式、相似形、勾股数值。

代数学。

1.简述几何三大问题及历史发展。

答:用圆规和没有刻度的直尺完成作图(称为尺规作图);(1)画圆为方:作一个与给定圆面积相等的正方形;(2)倍立方体:求作一个正方体,使其体积等于已知正方体体积的两倍;(3)三等分角:分任意角为三等份角。

历史发展:从古代希腊开始,人们对三大问题做了不断的探索但没有解决;直到19世纪人们才能用代数学等的知识彻底解决了;彻底解决证明是不可能的,有的人不了解历史有时仍然盲目的研究它。

2.简述欧几里得的几何《原本》。

答:欧几里德集古代希腊论证数学之大成,写成第一部典范的数学著作几何《原本》。

前六卷相当于几何内容。

第1卷首先用23个定义给出了点、钱、面、圆以及平行线等原始概念,接着提出了5个公社和5个公理,第2卷主要讨论几何代数,第3卷是与圆有关的一些问题,包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理,第4卷在引入了圆的内接和外切圆形的概念以后,讨论了给定圆的某些内接和外切正多边形的尺规作图问题,第5卷讨论了有关量的比例理论,第6卷主要是将激励理论应用于平面几何,其中包括相似三角形等。

第7、8、9卷主要研究初等数论。

第10卷讨论无理数。

后3卷是立体几何的内容.1. 简述割圆术及中国古代数学家所计算的圆周率。

答:(1)割圆术的要旨:就是用圆内接正多边形去逼近圆“割之弥细,所之弥少“。

用圆内接正多边形的周长与面积近似作为圆的周长与面积。

2)刘徽计算到正192边形,得到圆周率约为3.14,以分数157/50近似代替圆周率,称之为徽率。

祖冲之计算的圆周率3.1415926<圆周率<3.1415927以分数22/7近似代替圆周率称之为约率,以分数355/113近似代替圆周率称之为密率,又称之为祖率。

2. 简述“天元术”与“四元术”。

答:(1)天元术:解一元高次方程的方法,“立天元为某某”“相当于设X为某某”类似为代数中的列方程法。

(2)四元术:解多元高次方程组的方法,以“天”、“地”、“人”、“物”来表示四个不同的未知量,并且用固定的格式求出来。

1. 简述巴克沙拉里手稿与印度记数法。

答:公元前2世纪至公元3世纪的时期印度人在桦树皮上记录了数学知识被自然界变迁埋在地下,1881年在巴克沙利村(今巴基斯坦西北地区)被挖掘出来从而称为巴克沙利手稿。

它的主要内容是:分数,平方根,收支与利润的计算,比例计算,级数求和,代数方程(一次方程,二次方程),数学符号。

现在用的计数法是印度人创造的:(1)公元前2世纪至公元3世纪在巴克沙利手稿中记录了完整的十进制计数法用“.”表示零;(2)公元9世纪“.”变为椭圆即现在的“。

”记录在瓜廖尔石碑中;(3)公元11世纪有零号的印度数码和十进制记数法已成熟了;(4)公元8世纪传入阿拉伯,13世纪由阿拉伯传入欧洲,阿拉伯数码的名字由此而来。

2. 简述阿拉伯的代数学。

答: 阿拉伯的数学成就首先表现在代数方面。

阿拉伯数学家阿尔.花拉子米写了重要的代数著作被称为代数学之父,他的《还原与对消计算概要》一书论述了移向与合并同类项,将一元二次方程分成六种类型进行研究并给出了一般的代数解法及解法的几何证明。

阿拉伯数学家奥玛.海雅姆对代数学最杰出的贡献是用圆锥曲线解三次方程,他将求方程转化为与半圆的支点的横坐标。

1. 简述欧洲文艺复兴时期的代数学。

答:欧洲在数学上的推进从代数学开始,人们集中研究三、四次方程尤其是三次方程。

意大利数学家费罗、塔尔塔利亚各自得到了三次方程的求根公式,卡尔丹将该公式发表在他的著作《大法》中后人称为卡尔丹公式,不久费拉里找到了四次方程的解法。

法国数学家韦达首先把数学符号系统化从而导致代数在性质上产生重大变革,他在《分析术引论》一书中,第一次有意识的使用字母与符号,使代数成为研究一般类型的式子与方程的学问。

2. 简述解析几何的产生。

答:法国数学家奥雷斯姆在其著作《论形态幅度》中借用“经度”“纬度”来描述所谓的图线相当于纵坐标与横坐标。

法国数学家笛卡尔的《方法论》一书的附录共3个,其中之一为《几何学》,将方程与曲线对应使几何问题数学化。

法国数学家费马在其《论平面与立体的轨迹引论》一书中定义了曲线提出并使用了坐标的概念。

由于数学家特别是上述三位数学家的工作使解析几何诞生了。

1.简述微积分先驱数学家的贡献。

答:微积分的天才思想在古代数学家那就已产生。

古希腊数学家阿基米德,中国数学家刘徽、祖冲之父子,求面积、体积产生积分学的萌芽;古希腊及中国关于求变化率、切线产生微分学的萌芽;笛卡尔、费马创造的解析几何为微积分的创立搭设舞台。

在牛顿、莱布尼茨之前半个多世纪很多数学家都投入到微积分的研究之中,其中主要的有(一)开普勒对旋转体的体积的研究;(二)卡瓦列里对不可分原理的研究;(三)简卡尔对求切线的“圆法”的研究;(四)费马对极大与极小值的求法的研究;(五)巴罗对微分三角形的研究;(六)沃利斯对无穷算数的研究。

正是由于众多数学家都研究了微积分的问题才使牛顿和莱布尼兹创立了微积分。

2.简述牛顿的微积分与莱布尼茨的微积分。

答:牛顿是在笛卡尔的《几何学》和沃利斯的“无穷算数”的基础上创立微积分理论。

1665年11月牛顿建立了“正流数术”;1666年5月牛顿创立了“反流数术”;1666年10月牛顿写了总结性论文《流数简论》。

牛顿继续研究流数术相继完成了三篇论文《分析学》、《流数法》、《求积术》,并且以极限法作为微积分的基础,牛顿在《自然哲学的数学原理》一书中最早公开表述微积分学说。

莱布尼兹从几何问题出发,发现了求曲线的切线与面积的互逆关系。

1684年他发表了《一种求极大与极小值和求切线的新方法》,1686年他发表了《深奥的几何与不可分量及无限的分析》。

1.简述微积分的发展。

答:大不列颠以泰勒、麦克劳斯、棣莫弗、斯特林继承和发展了牛顿创立的微积分;欧洲大陆以伯努利家族、欧拉、达朗贝尔、拉格朗日为代表继承和发展了莱布尼茨创立的微积分。

微积分的发展分为5个方面:(1)积分技术与椭圆积分:包括变量替换、部分分式积分,椭圆积分;(2)微积分向多元函数的推广:包括偏导数和多重积分;(3)无穷级数理论:包括收敛性、调和级数、判别法;(4)函数概念的深化;(5)微积分严格化的尝试:其中主要著作有达朗贝尔的《科学、艺术和工艺百科全书》,拉格朗日的《解析函数论》。

代表学科:分析学和分析。

2.简述分析学在18世纪的新分支。

答:分析学在18世纪有3个分支:(一)常微分方程:包括积分因子法,变易系数法。

例如:微分方程,常微分方程。

(二)偏微分方程(又称数学物理方程)这一分支有两位著名的数学家进行了研究:其中达朗贝尔研究弦的振动,得出所满足的微分方程,并求出某种形式的通解:拉普拉斯研究弦的振动,得出所满足的偏微分方程(位势方程),通常称为拉普拉斯方程。

(三)变分法:欧拉对于变分问题给出了一般的处理,得出了变分法的基本方程,常称为“欧拉方程”。

1. 简述伽罗瓦对代数学的贡献。

答:法国数学家伽罗瓦的工作原理是在拉格朗日、高斯、柯西、阿贝尔等人的工作启发之下完成的。

他在拉格朗日的基础上提出了“置换群”、“子群”、“正规子群”、“极大正规子群”等全新的数学概念。

伽罗瓦研究根的排列,实际上建立了置换群。

1829-1831年,伽罗瓦发现了代数方程可用根式解的基本定律——伽罗瓦基本定律。

判断根式可解的充要条件。

问题转化为域,建立了子域与子群的对应关系,给出了根式可解得充要条件,开辟了代数学的新纪元。

2.简述19世纪的数论。

答:高斯1801年著书《算数研究》对代数数论进行了总结并发长了此数论。

高斯研究了同余理论、复整数型的理论,使数论成为现代数学的一个重要分支,复整数理论开辟了代数理论。

库默尔对代数数论作出了重要贡献。

例如:费马定理的证明,唯一因子分解定理和理想数理论。

1.简述非欧几何的产生。

答:研究欧几里德平行公社由来已久,19世纪进入研究的活跃时期。

克里格尔对平行公理能否有其他公理推出表示怀疑。

兰伯特通过替代平行公社而展开无矛盾的几何学著作《平行线理论》。

高斯建立并相信一种逻辑上相容并且可以描述物质空间像欧氏几何一样正确的几何学。

J. 波约(匈牙利)著《绝对空间的几何学》,给出了非欧几何。

罗巴切夫斯基是俄国数学家,他1826年发表《简要论述平行线定理的一个严格证明》,1829年完成《论几何原理》;1835-1838年完成《具有完备的平行线理论的新几何原理》,1840年完成《平行理论的几何研究》,他最早发表并捍卫自己的理论,被成为罗巴切夫斯基几何,简称为罗氏几何。

相关文档
最新文档