立体几何垂直关系专题
专题4:立体几何中垂直关系的证明基础练习题

12.证明见解析
【分析】
在等腰三角形PAB中, 是 的中点,可得 ,利用线面垂直的判定定理可证 平面 ,利用线面垂直的性质定理,即可得证.
【详解】
证明:∵ 是 的中点, ,
∴ ,
∵ 底面 ,
∴ ,
又∵ ,即
∴ 平面 ,
∴ ,
∵ 平面 , 平面 ,
∴ 平面 ,
∵ 平面 ,
∴ .
8.证明见解析
【分析】
由平面 ⊥平面 得到 ⊥平面 ,进一步得到 ⊥ ,再结合直径所对圆周角为直角得到 ⊥ , ⊥平面 ,从而得到证明.
【详解】
由题设知,平面 ⊥平面 ,交线为 .
因为 ⊥ , 平面 ,所以 ⊥平面 ,故 ⊥ .
因为 为 上异于 , 的点,且 为直径,所以 ⊥ .
又 = ,所以 ⊥平面 .
∴点O为三角形ABC的垂心,∴BO⊥AC
又因PO⊥AC,所以AC⊥PBO
故PB⊥AC
考点:证明异面直线垂直.
7.见解析
【分析】
由已知中P为正方形ABCD所在平面外一点,PA⊥面ABCD,结合正方形的几何特征,我们易得到BC⊥平面PAB,由线面垂直的性质得到BC⊥AE,结合已知中AE⊥PB,及线面垂直的判定定理,得到AE⊥平面PBC,最后再由线面垂直的判定定理,即可得到AE⊥PC.
【点睛】
此题考查线面垂直的性质和判定的综合应用,利用线面垂直得线线垂直.
5.证明见解析
【分析】
先证直线 平面 ,再证平面 ⊥平面 .
【详解】
证明:∵ 是圆的直径, 是圆上任一点, , ,
平面 , 平面 ,
,又 ,
平面 ,又 平面 ,
平面 ⊥平面 .
【点睛】
空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
高中数学必修2立体几何专题-线面、面面垂直专题总结

∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
立体几何专题之三垂线定理

写在最后的话
三垂线定理是立体几何的重点定理, 建议对其掌握不好的同学,一方面 扎实基础,牢牢掌握三垂线定理的 各种情况,另一方面所作相关练习, 重点突破 祝大家学习成功,高考顺利!
谢谢大家!
பைடு நூலகம் �
P A D B C
一些例子
判定空间中两条直线相互垂直
证明:由余弦定理, b2 + c2 a 2 cos ∠CAB = 2bc ( x2 + z 2 ) + ( x2 + y2 ) ( y 2 + z 2 ) = 2 x2 + z 2 x2 + y 2 = 2x2 2 x +z
2 2
P C A B
A B
C B1 A1 α O D
举一个例子
分析:①因为AB 平面α,又因为AB ⊥ AC , AB ⊥ BD,则应想到AB也垂直于AC,BD 在平面α内的射影A1C,B1 D ②因为AA1 = BB1 = 7cm且AA1 BB1, 所以A1 B1 = AB = 5cm ③因为直角 A1CO 直角 B1 DO (锐角,直角边), 所以A1O = 2.5cm ④因为A1C = AC 2 AA12 = 15cm 所以CD = 2CO = 2 A1C 2 + A1O 2 = 2 85cm
P a O α
A
三垂线定理说明( 三垂线定理说明(2)
如果平面α内的直线a垂直于斜线 OP的射影OA,那么α必垂直于斜线 OP;反之也成立
P a O α
A
三垂线定理说明( 三垂线定理说明(3)
满足条件(2)的直线a必垂直于斜 线及射影所确定的平面
P a O α
A
三垂线定理说明( 三垂线定理说明(4)
立体几何中的垂直关系

§1立体几何中的垂直关系一知识梳理1.直线与平面垂直(1)定义一般地,如果直线l 与平面α内的任何一条直线都垂直,那么称直线l 与平面α垂直,记作l ⊥α.直线l 称为平面α的垂线,平面α称为直线l 的垂面,它们唯一的公共点称为垂足.注意:过一点有且只有一条直线与一个平面垂直,过一点有且只有一个平面与一条直线垂直.(2)判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.(3)性质定理垂直于同一个平面的两条直线平行.2.直线与平面所成的角一条直线l 与一个平面α相交,但是不与这个平面垂直,这条直线叫做这个平面的斜线,斜线与平面的交点A 叫做斜足.过斜线上斜足以外的一点P 向平面α引垂线P O ,过垂足O 和斜足A 的直线AO 叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线与这个平面所成的角.APlαO 3.半平面一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.4.二面角(1)定义从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)表示如图1,棱为AB ,面分别为α,β的二面角记作二面角α−AB −β.有时为了方便,也可在α,β内(棱以外的半平面部分)分别取点P ,Q ,将这个二面角记作二面角P −AB−Q .图1ABOl βα图2(3)平面角如图2,在二面角α−l −β的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.二面角的平面角θ的取值范围是0◦⩽θ⩽180◦.平面角是直角的二面角叫做直二面角.5.平面与平面垂直(1)定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)判断定理如果一个平面经过另外一个平面的一条垂线,那么两个平面互相垂直.(3)性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.二例题精讲考点一线面垂直与面面垂直的判定定理例1.下列命题中,正确的序号是.若直线l 与平面α内的无数条直线垂直,则l ⊥α; 若直线l 与平面α内的一条直线垂直,则l ⊥α; 若直线l 不垂直于平面α,则α内没有与l 垂直的直线; 若直线l 不垂直于平面α,则α内也可以有无数条直线与l 垂直; 过一点和已知平面垂直的直线有且只有一条.例2.如果直线l ,m 与平面α,β,γ满足:β∩γ=l ,l α,m ⊆α和m ⊥γ,那么必有()A.α⊥γ且l ⊥mB.α⊥γ且mβC.mβ且l ⊥mD.αβ且α⊥γ例3.若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于()A.平面OABB.平面OACC.平面OBCD.平面ABC例4.如图,在正方体ABCD −A 1B 1C 1D 1中.(1)求证:AC ⊥平面B 1D 1DB ;(2)求证:BD 1⊥平面ACB 1.AA 1D 1DB 1C 1BC例5.如图,在三棱锥P −ABC 中,P A ⊥平面ABC ,∠ABC =90◦.求证:BC ⊥平面P AC .PBCA 例6.如图,在三棱锥P −ABC 中,P A =PB ,△ABC 是等边三角形,O 是AB 中点.求证:AB ⊥平面P OC .PBCA O例7.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB =2,BC =2√2,E ,F 分别是AD ,P C 的中点.证明:P C ⊥平面BEF.例8.如图所示,在四棱锥S −ABCD 中,底面四边形ABCD 是平行四边形,SC ⊥平面ABCD ,E 为SA 的中点.求证:平面EBD ⊥平面ABCD.B1C1中,侧棱垂直于底面,∠ACB=90◦,AC=例9.如图,三棱柱ABC−A1AA1,D是棱AA1的中点.求证:平面BDC1⊥平面BDC.2方法总结使用直线与平面垂直的判定定理的关键是在平面内找到两条相交直线都与已知直线垂直,即把线面垂直转化为线线垂直来解决.证明线线垂直常见的方法(1)线面垂直的定义.(2)几何体本身的垂直关系.(3)等腰三角形的三线合一.(4)勾股定理逆定理.证明线面垂直的方法(1)线面垂直的定义.(2)线面垂直的判定定理.(3)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(4)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.由面面垂直的判定定理知,要证两个平面互相垂直,关键是证明其中一个平面经过另一个平面的垂线.练1.如果一条直线垂直于一个平面内的: 三角形的两边; 梯形的两边; 圆的两条直径; 正五边形的两边.能保证该直线与平面垂直的是.练2.如图,已知P A垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,求证:BC⊥平面P AC.练3.如图,Rt△ABC所在平面外有一点S,且SA=SB=SC,点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.练4.如图,在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点.求证:平面EF C⊥平面BCD.考点二线面垂直与面面垂直的性质定理例1.给出下列说法:垂直于同一条直线的两个平面互相平行;垂直于同一个平面的两条直线互相平行;一条直线在平面内,另一条直线与这个平面垂直,则这两条直线垂直.其中正确说法的个数是()A.0B.1C.2D.3例2.已知直线l⊥平面α,直线m⊆平面β.有下列四个说法:αβ⇒l⊥m;α⊥β⇒l m;l m⇒α⊥β;l⊥m⇒αβ.其中正确的说法是()A. B. C. D.B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:EF例3.如图所示,在正方体ABCD−ABD1.例4.如图,在三棱锥P−ABC中,P A⊥平面ABC,平面P AB⊥平面P BC.求证:BC⊥AB.例5.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=√2,等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.例6.如图,在四棱锥P−ABCD中,底面ABCD是∠DAB=60◦且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥P B;(2)若E为边BC的中点,能否在棱P C上找到一点F,使得平面DEF⊥平面ABCD,并证明你的结论方法总结证明线线平行时,可以利用线面垂直的性质定理.证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.立体几何中的垂直关系有三类:线线垂直、线面垂直、面面垂直.处理垂直问题时,要注意三者之间的内在联系.转化思想是立体几何中解决垂直问题的重要思想.垂直关系的转化如下:练1.若平面α⊥平面β,且平面α内的一条直线α垂直于平面a内的一条直线b,则()A.直线α必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直练2.如图,α∩β=l,P A⊥α,P B⊥β垂足分别为A,B,a⊆α,a⊥AB.求证:a l.练3.如图,四棱锥的底面是矩形,侧面V AB⊥底面ABCD,且V B⊥平面V AD.求证:平面V BC⊥平面V AC.考点三线面角与二面角例1.在长方体ABCD−A1B1C1D1中,AB=AD=1,AA1=2,直线AC1与平面ABB1A1所成角的正切值等于.例2.如图,空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90◦,∠BCCD=90◦,且AB=AD,则AC与平面BCD所成角的等于.例3.如图,在正方体ABCD−A1B1C1D1中,求二面角B−A1C1−B1的正切值.例4.已知D,E分别是正三棱柱ABC−A1B1C1的侧棱AA1和BB1上的点,且A1D=2B1E=B1C1.求过D,E,C1的平面与棱柱的下底面A1B1C1所成的二面角的大小.方法总结求线与面的夹角时,关键是找出或作出它们的夹角,再在三角形中进行计算.求二面角的大小关键是要找出或作出平面角.再把平面角放在三角形中,利用解三角形得到平面角的大小或三角函数值,其步骤为作角,证明,计算.练1.已知正四棱锥的高为3,底面对角线的长为2√6,求侧面与底面所成的二面角.练2.在直三棱柱ABC −A 1B 1C 1中,AB =1,AC =2,AA 1=3,∠BAC =60◦,则直线B 1C 与平面AA 1B 1B 所成角的正切值为.三课后作业1.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.有且只有一个或无数个D.可能不存在2.对于直线m ,n 和平面α,β,能得出α⊥β的一个条件是()A.m ⊥n ,m α,nβB.m ⊥n ,α∩β=m ,n ⊆αC.mn ,n ⊥β,m ⊆αD.mn ,m ⊥α,n ⊥β3.已知平面α⊥平面β,α∩β=l ,点P ∈l 给出下面四个结论:过P 与l 垂直的直线在α内; 过P 与β垂直的直线在α内; 过P 与l 垂直的直线必与α垂直; 过P 与β垂直的平面必与l 垂直.其中正确的命题是()A.B.C.D.4.设m,n是两条不同的直线,α,β是两个不同的平面()A.若m⊥n,nα,则m⊥αB.若mβ,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.在三棱锥P−ABC中,已知P C⊥BC,pc⊥AC,点E,F,G分别是所在棱的中点,则下面结论中错误的是()A.平面EF G平面P BCB.平面EF G平面ABCC.∠BP C是直线EF与直线P C所成的角D.∠F EG是平面P AB与平面ABC所成二面角的平面角6.如图所示,在三棱锥P−AB C中,P A⊥平面ABC,∠BAC=90◦,则二面角B−P A−C的大小为.7.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有.8.正四面体的侧面与底面所成的二面角的余弦值是.9.如图,在三棱锥P−ABC中,侧面P AC⊥底面ABC,且∠P AC=90◦,P A=1,AB=1,则P B=.10.已知平面α⊥平面β,在α,β的交线上取线段AB=4cm,AC,BD分别在平面α和β内,它们都垂直于AB,并且AC=3cm,BD=12cm,则CD的长为.11.如图,四边形ABCD是边长为a的菱形,P C⊥平面ABCD,E是P A的中点,求证:平面BDE⊥平面ABCD.12.如图,在四棱锥P−ABCD中,P A⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60◦且P A=AB=BC,E是P C的中点.求证:(1)CD⊥AE;(2)P D⊥平面ABE.。
立体几何中的垂直关系
立体几何中的垂直关系环节1 明晰高考要求垂直关系是立体几何中元素间关系考查的核心,主要从线线垂直、线面垂直、面面垂直三个方面进行考查,而且以线面垂直为聚焦!线面位置关系的考查强调从平面和空间两个方向研究线线垂直!在 “线线垂直”中要特别重视常规平面几何图形中存在的线线垂直性质与以及从空间角度出发,研究线线垂直的性质的定理。
真题示例① 平面几何角度研究垂直关系题1. (2018全国卷Ⅱ)如图,在三棱锥-P ABC中,==AB BC PA PB PC ===4AC =,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角--M PA C 为30︒,求PC 与平面PAM 所成角的正弦值.题2.(2017新课标Ⅲ)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1) 证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.O MPCBAABCDE② 平面几何角度和空间几何角度研究垂直关系题3 .(2018北京)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB的中点,AB BC ==12AC AA ==.(1)求证:AC ⊥平面BEF ; (2)求二面角1B CD C --的余弦值;题4.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.环节2 问题自主解决 1回归教材题5 [必修二 P 67 练习第 1 题] 三棱锥V - ABC 中,VA = VC , BA = BC .求证:VB ^ AC .题6.必修二P 79 复习参考题第1 题] 边长为2 的正方形 ABCD 中,点 E 是 AB 的中点,点 F 是 BC 的中点,将△C 1B 1A 1G FE DC BAMD CBAAED 、△ DCF 分别沿 DE 、 DF 折起,使 A 、C 两点重合于点 A ,连接 EF ,求证: A D EF .题7. [必修二 P 74 习题 2.3B 组第 4 题]如图, AB 为圆O 的直径,点C 是圆O 上的动点,过动点C 的直线垂直于圆O 所在的平面, D , E 分别是VA ,VC 的中点,试判断直线 DE 与平面VBC 的位置关系,并说明理由.题8.[必修二 P 66 探究题]直四棱柱 AB C D ABCD (侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形ABCD 满足什么条件时, A C B D ?问题自主探索:①证明线线垂直用到了平面图形的哪些性质? ②请归纳证明线线垂直、线面垂直和面面垂直的方法. 环节3 经典考题选讲题9.(2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.题10.(2013新课标Ⅰ)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,1BAA ∠=60°.(Ⅰ)证明1AB A C ⊥;(Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.题11.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.题12.(2017江苏)如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .C 1B 1A 1CBA求证: AD ⊥AC .环节4 规律总结 1. 2. 3. 4.环节5 考题精选精做题13.(2019全国Ⅰ理18)如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值.题14.(2019北京理16)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,AD CD ⊥,ADBC ,2PA AD CD BC ====,.E 为PD 的中点,点F 在PC 上,且13PF PC =.FABCDE(Ⅰ)求证:CD PAD ⊥平面; (Ⅱ)求二面角F AE P --的余弦值; (Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由. 题15.(2019全国Ⅲ理19)图1是由矩形ADEB 、R t △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B-CG-A 的大小.题16.(2019全国Ⅱ理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 题17.(2019天津理17)如图,AE ⊥平面ABCD ,,CF AE AD BC∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值; (Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.题18. (2018全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC△折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.题19.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:平面11ABB A ⊥平面1A BC .题20.(2017新课标Ⅰ)如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=.PF E D C BAD 11B 1A 1DCBA(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠= ,求二面角A PB C --的余弦值.题21.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.题22.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD ' (I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.1.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则DCBAPA .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线2.(2018全国卷Ⅱ)在长方体1111-ABCD A B C D 中,1==AB BC ,1=AA 1AD 与1DB 所成角的余弦值为A .15B D 4.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则 A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤5.(2017新课标Ⅱ)已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A B D 6.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则RQ PAB CDA.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α。
高中数学必修2立体几何专题线面垂直典型例题的判定与性质
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
高中数学必修立体几何专题线面垂直方法总结
棱
柱
A
B
C
D-
A1
B1C
1
D
中
1
,
侧
棱
A
A1=
6,
底 面 A B C D 是 菱 形 , A B= 2, A B C= 60, P为 侧 棱
B B1上 的 动 点 .
1求 证 : D1P AC;
2 设 AC BD= O,
求 当 B1P 等 于 多 少 时 , PB
PO 平 面 D1AC ?
【 解 析 】1 证 明 :
因为E是PC的中点,所以AE⊥PC. 由(1)知,AE⊥CD,且PC∩CD=C, 所以AE⊥平面PCD. 而PD 平面PCD,所以AE⊥PD. 又因为PA⊥底面ABCD,所以PA⊥AB. 由已知得AB⊥AD,且PA∩AD=A,所以AB⊥ 平面PAD. 又PD 平面PAD,所以AB⊥PD. 因为AB∩AE=A,所以PD⊥平面ABE.
【证明】(1)连结AC,取其 中点O,连结NO、MO,并 延长MO交CD于R. 因为N为PC的中点, 所以NO为△PAC的中位线,所以NO∥PA. 而PA⊥平面ABCD,所以NO⊥平面ABCD,所 以NO⊥CD. 又四边形ABCD是矩形,M为AB的中点,O为 AC的中点,所以MO⊥CD. 而MO∩NO=O, 所以CD⊥平面MNO,所 以 CD⊥MN.
BB1C1C.
【
证
明
】
直
棱
柱
A
B
C
D-
A1 B 1C
1
D
中
1
,
BB1 平 面 ABC D, 所 以 BB1 AC .
又 因 为 B A D= A D C = 9 0 , A B
= 2AD= 2C D= 2,
67.立体几何讲义2:垂直问题 课件-广东省惠来县第一中学2021届高三数学一轮复习
第四方面:基于代数运算下的垂直关系 ★基于代数运算下的垂直关系,经常涉及勾股 定理和余弦定理的运用。
第四方面:基于代数运算下的垂直关系
题目问题111:1:如图,在直三棱柱
ABC
A1B1C1
中,ACB
90
,AC
BC
1 2
AA1
1
,D
,
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
题目3:(选自2013年全国高考文科Ⅰ卷) 如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1, ∠BAA1=60°, 证明:AB⊥A1C。
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
7.全等三角形(相似三角形) 8.余弦定理
题目探讨:
第一方面:等腰三角形折叠模型+基于筝形的垂直关系
五、问题探讨:
第一方面:等腰三角形折叠模型+基于筝形的垂直关系 1.有着共底边的两个等腰三角形构成的立体图形,两个顶点的连线一定垂直于底边; 2.筝形是指有一条对角线所在直线为对称轴的四边形,也可以说是两组邻边相等的四边形,它的形状就像一个风 筝,基于筝形可以设计许多垂直问题。
题目1:
D
C
E
B A
第一方面:等腰三角形折叠模型+基于筝形的垂直关系
题目2:
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
第二方面:基于菱形(正方形)的垂直关系+基于矩形(正方形)的垂直关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何垂直关系专题高考中立体几何解答题中垂直关系的基本题型是:证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面或辅助体)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
④三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑.应用时常需先认清所观察的平面及它的垂线,从而明确斜线、射影、面内直线的位置,再根据定理由已知的两直线垂直得出新的两直线垂直.另外通过计算证明线线垂直也是常用的方法之一。
垂直题目的解决方法须熟练掌握以下相互转化关系:2垂直转化:线线垂直⇔线面垂直⇔面面垂直;每一垂直判定就是从某一垂直开始转向另一垂直最终达到目的。
例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直。
2.“升降维”思想直线是一维的,平面是二维的,立体空间是三维的。
运用降维的方法把立体空间问题转化为平面或直线问题进行研究和解题,可以化难为易,化新为旧,化未知为已知,从而使问题得到解决。
运用升维的方法把平面或直线中的概念、定义或方法向空间推广,可以立易解难,温旧知新,从已知探索未知,是培养创新精神和能力,是“学会学习”的重要方法。
平面图形的翻折问题的分析与解决,就是升维与降维思想方法的不断转化运用的过程。
注意:证明线面关系,严禁跳步作答证明线面位置关系的基本思想是转化与化归,根据线面平行、垂直关系的判定和性质,进行相互之间的转化,但分析问题时不能只局限在线上,要把相关的线归结到某个平面上,通过证明线面垂直达到证明线线垂直的目的,但证明线面垂直又要借助于线线垂直,在不断的相互转化中达到最终目的.解决空间问题常添加的辅助线与辅助面1.遇到线面平行面面平行做辅助面引出平行线,遇到线面垂直做出过垂线的平面引出垂面2..遇到面面垂直在一平面内做出两垂面交线的垂线引出线面垂直的条件添加辅助线的策略:一、添加垂线策略。
因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。
尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。
二、添加平行线策略。
其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。
三.向中心对称图形对称中心添加连线策略。
这主要是因为对称中心是整个图形的“交通”枢纽,它可以与周围的点、线、面关联起来,常见的有对平行四边形连对角线,对圆的问题向圆心连线,对球体问题向球心连线。
四、名线策略。
即添加常用的、重要的线,如中位线、高、角平分线、面对角线和体对角线等。
尽管这些线上面也有提到,但还是要在这里强化一下,这些线有着广泛的联系。
尤其是添加三角形中位线或者梯形中位线,这主要是因为中位线占据了两个边的中点,并且中位线平行于底边,且是底边长的一半,它可以把底边与其他线面的角度关系平移,使已知和未知集中在一个三角形中。
典型例题精讲空间垂直题型一线线垂直问题1. 证明:体对角线与与侧面上无公用定点的对角线互相垂直,同一侧面上的两条对角线互相垂直,不在同一侧面上的两条对角线的交角为60,(1)含AC 的对角面共有几个分别是哪几个?答案:共三个分别是平面AA1CC1、平面A1B1CD 、平面A1BCD12.(06江西卷)如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD =3,BD =CD =1,另一个侧面是正三角形,求证:AD BCA3. 已知直三棱柱ABC —A 1B 1C 1中,∠ACB=900,∠BAC=300,BC=1,AA 1=6,M 为CC 1中点,求证:AB 1⊥A 1M 。
4. 已知矩形ABCD ,过A 作SA ⊥平面ABCD ,再过A 作AE ⊥SB 交SB 于E ,过E 作EF ⊥SC 交SC 于F 。
(1)求证:AF ⊥SC ;(2)若平面AEF 交SD 于G ,求证:AG ⊥SD5.如图,在正方体ABCD -A 1B 1C 1D 1中,M 是棱A 1A 的中点,N 在AB 上,且AN ∶NB =1∶3,求证:C 1M ⊥MN .ND 1MC 1B 1A 1CD B AA CD E F B GS6.正三棱柱ABC —A 1B 1C 1的侧面三条对角线AB 1、BC 1、CA 1中,AB 1⊥BC 1.求证:AB 1⊥CA 1.7.2014 许 郑 平 1.19.将棱长为a 的正方体截去一半(如图甲所示)得到如图乙所示的几何体,点,E F 分别是,BC DC 的中点.(Ⅰ)证明:1AF ED ⊥; (Ⅱ)求三棱锥1E AFD -的体积.8.2014郑一测19在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,11,2AB AA ==,D 为1AA 的中点,BD 与1AB 交于点O ,CO ⊥侧面11ABB A . (I)证明:1BC AB ⊥;(Ⅱ)若OC OA =,求三棱锥1C ABC -的体积.A 1 C1B 1 CABABD A 1CB 1C 1D 1 D 1DAB 1A 1OC 1CBABD A 1E CF空间垂直题型二线面垂直问题1.已知三棱锥P-ABC 中,E、F分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB .证明PC ⊥平面PAB2.在正方体ABCD —A 1B 1C 1D 1,G 为CC 1的中点,O 为底面ABCD 的中心。
求证:A 1O ⊥平面GBD3.(06天津)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱12EF BC ∥. (I )证明FO ∥平面;CDE(II )设3,BC CD =证明EO ⊥平面.CDFACBP FEODCBF EADA B A 1C B 1 C 1D 1G O4..(福建卷)如图,四面体ABCD中,O、E分别是BD、BC的中点,2, 2.CA CB CD BD AB AD======(I)求证:AO⊥平面BCD;(II)求点E到平面ACD的距离。
5.如图所示,已知PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥平面PCD.CADB OE空间垂直题型三面面垂直问题1.如图所示,已知△ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA =PB =PC. 求证:平面PAC ⊥平面ABC.2.如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC ,点D 是AB 的中点. (1)求证:BC 1∥平面CA 1D ;(2)求证:平面CA1D ⊥平面AA 1B 1B.PA B C3.(山东理)如图,在五棱锥P ﹣ABCDE 中,PA ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB 是等腰三角形. (Ⅰ)求证:平面PCD ⊥平面PAC ;(Ⅱ)求直线PB 与平面PCD 所成角的大小; (Ⅲ)求四棱锥P ﹣ACDE 的体积.4.如图,棱柱ABC-A 1B 1C 1的侧面BCC 1B 1是菱形, B 1C ⊥A 1B (Ⅰ)证明:平面AB 1C 垂直平面 A 1BC 1;(Ⅱ)设D 是A 1C 1上的点,且A 1B//平面B 1CD ,求A 1D:DC 1 的值.5.下图是一几何体的直观图和三视图.(1)若F 为PD 的中点,求证:AF ⊥平面PCD ; (2)求几何体BEC -APD 的体积.探索性问题1.如图四棱锥P —ABCD 中,底面ABCD 是的菱形,∠DAB =60°,侧面PAD 为正三角形,其所在平面垂直于底面ABCD. (1)求证:AD ⊥PB ;(2)若E 为BC 边的中点,能否在棱PC 上找到一点F ,使平面DEF ⊥平面ABCD ,并证明你的结论.2.(2009年宁夏海南高考)如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC.若存在,求SE ∶EC 的值;若不存在,试说明理由.E F3.(本题满分12分)如图,在矩形ABCD 中,AB=2BC ,P 、Q 分别为线段AB 、CD 的中点,EP ⊥平面ABCD.(1)求证:DP ⊥面EPC ;(2)问在EP 上是否存在点F 使平面AFD ⊥面BFC.?若存在求出PAFP的值4.已知△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD,∠ADB=60°,E 、F 分别是AC 、AD 上的动点,且λ==ADAFAC AE ( 10<<λ) (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (2)当λ为何值时,平面BEF ⊥平面ACD.。