第六讲-动态规划背包问题
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
动态规划——01背包问题

动态规划——01背包问题⼀、最基础的动态规划之⼀01背包问题是动态规划中最基础的问题之⼀,它的解法完美地体现了动态规划的思想和性质。
01背包问题最常见的问题形式是:给定n件物品的体积和价值,将他们尽可能地放⼊⼀个体积固定的背包,最⼤的价值可以是多少。
我们可以⽤费⽤c和价值v来描述⼀件物品,再设允许的最⼤花费为w。
只要n稍⼤,我们就不可能通过搜索来遍查所有组合的可能。
运⽤动态规划的思想,我们把原来的问题拆分为⼦问题,⼦问题再进⼀步拆分直⾄不可再分(初始值),随后从初始值开始,尽可能地求取每⼀个⼦问题的最优解,最终就能求得原问题的解。
由于不同的问题可能有相同的⼦问题,⼦问题存在⼤量重叠,我们需要额外的空间来存储已经求得的⼦问题的最优解。
这样,可以⼤幅度地降低时间复杂度。
有了这样的思想,我们来看01背包问题可以怎样拆分成⼦问题:要求解的问题是:在n件物品中最⼤花费为w能得到的最⼤价值。
显然,对于0 <= i <= n,0 <= j <= w,在前i件物品中最⼤花费为j能得到的最⼤价值。
可以使⽤数组dp[n + 1][w + 1]来存储所有的⼦问题,dp[i][j]就代表从前i件物品中选出总花费不超过j时的最⼤价值。
可知dp[0][j]值⼀定为零。
那么,该怎么递推求取所有⼦问题的解呢。
显⽽易见,要考虑在前i件物品中拿取,⾸先要考虑前i - 1件物品中拿取的最优情况。
当我们从第i - 1件物品递推到第i件时,我们就要考虑这件物品是拿,还是不拿,怎样收益最⼤。
①:⾸先,如果j < c[i],那第i件物品是⽆论如何拿不了的,dp[i][j] = dp[i - 1][j];②:如果可以拿,那就要考虑拿了之后收益是否更⼤。
拿这件物品需要花费c[i],除去这c[i]的⼦问题应该是dp[i - 1][j - c[i]],这时,就要⽐较dp[i - 1][j]和dp[i - 1][j - c[i]] + v[i],得出最优⽅案。
动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
动态规划解决背包问题和旅行商问题

动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。
在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。
1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。
给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。
动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。
dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。
通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。
可以通过回溯的方法找到具体放入背包的物品。
2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。
动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。
dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。
对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。
通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。
同样可以通过回溯的方法找到具体的最短路径。
动态规划算法--01背包问题

动态规划算法--01背包问题基本思想:动态规划算法通常⽤于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可⾏解。
每⼀个解都对应于⼀个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若⼲个⼦问题,先求解⼦问题,然后从这些⼦问题的解得到原问题的解。
与分治法不同的是,适合于⽤动态规划求解的问题,经分解得到⼦问题往往不是互相独⽴的(即下⼀个⼦阶段的求解是建⽴在上⼀个⼦阶段的解的基础上,进⾏进⼀步的求解)。
若⽤分治法来解这类问题,则分解得到的⼦问题数⽬太多,有些⼦问题被重复计算了很多次。
如果我们能够保存已解决的⼦问题的答案,⽽在需要时再找出已求得的答案,这样就可以避免⼤量的重复计算,节省时间。
我们可以⽤⼀个表来记录所有已解的⼦问题的答案。
不管该⼦问题以后是否被⽤到,只要它被计算过,就将其结果填⼊表中。
这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
应⽤场景:适⽤动态规划的问题必须满⾜最优化原理、⽆后效性和重叠性。
1、最优化原理(最优⼦结构性质)最优化原理可这样阐述:⼀个最优化策略具有这样的性质,不论过去状态和决策如何,对前⾯的决策所形成的状态⽽⾔,余下的诸决策必须构成最优策略。
简⽽⾔之,⼀个最优化策略的⼦策略总是最优的。
⼀个问题满⾜最优化原理⼜称其具有最优⼦结构性质。
2、⽆后效性将各阶段按照⼀定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态⽆法直接影响它未来的决策,⽽只能通过当前的这个状态。
换句话说,每个状态都是过去历史的⼀个完整总结。
这就是⽆后向性,⼜称为⽆后效性。
3、⼦问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。
其中的关键在于解决冗余,这是动态规划算法的根本⽬的。
动态规划实质上是⼀种以空间换时间的技术,它在实现的过程中,不得不存储产⽣过程中的各种状态,所以它的空间复杂度要⼤于其它的算法。
NOI导刊资源背包动态规划

少。
剩下钱数最少的找零方案中的所需的最少 硬币数。
N<=500,T<=10000.
分析
设F[i]表示需要找的钱数为i时所需要的最少 钱币数。显然有:
F[i]=Min{F[ i - A[j] ] + 1} { i≤ T,1≤j≤N} 初始值:F[0]=0。 A[j]表示其中 第j种钱币的面值。 时间复杂度为O(N*T)。
动态规划
• 可以按每个物品进行规划,同样每种物品有选和 不选两种选择
• 设F(i,j)表示前i件物品载重为j的最大效益,则有
F(i 1, j w[i]) C[i],第i种物品装载 F(i, j) MaxF(i 1, j),第i种物品不装载
• 1<=i<=N, 0<=j<=N • 初值:F(0,j)=0 • F(N,M)即答案 • 显然时间复杂度为O(NM)
for j:=0 to m do
begin
if j>=w[i] then //背包容量够大
f[j]:=max(f[j-w[i]]+c[i],f[j])
end;
思考题1:机器分配
• M台设备,分给N个公司。 • 若公司i获得j台设备,则能产生Aij效益 • 问如何分配设备使得总效益最大? • M<=15,N<=10。
else
//背包容量不足
f[i,j]:=f[i-1,j];
end;
满背包问题(01背包)
• 有N件物品; • 第i件物品Wi公斤; • 第i件物品价值Ci元; • 现有一辆载重M公斤的卡车; • 问选取装载哪些物品,使得卡车开车正
好装满时,运送的总价值最大? 若无法装满卡车,则输出无解。
动态规划求解01背包问题
动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
动态规划方案解决算法背包问题实验报告含源代码
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
背包问题全套PPT
用来求最优解具体组成的时间效率
②式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:
V(i,j)=max{V(i-1,j) ,V(i-1,j-wi)+vi) } j-Wi>=0;
(1) V(i,0)=V(0,j)=0;
所以时间效率主要取决于W,用另一种话说本次测试的数据里面,在物品数目相同的情况下,求解背包问题法最优解分析
问题分析:
令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,
则可以得到如下的动态规划函数:
(1) V(i,0)=V(0,j)=0;i>=0,j>=0;//初始化
(2) V(i,j)=V(i-1,j)
j-Wi<0; ---①//递推式
(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-
Wi的背包中的价值加上第i个物品的价值Vi;
(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入 容量
为j的背包中所取得的价值。
取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。
3.数据处理与分析
时间应该是线性效率的。
物品数n=10时背包最大容量
取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。
(1)实验之前,先对算法进行理论效率分析和正确性分析:
用来求最优解具体组成的时间效率
(2) V(i,j)=V(i-1,j)
j-Wi<0;
动态规划法基本思想: 动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
5.5动态规划求解01背包问题
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题3:系统可靠性
一个系统由若干部件串联而成,只要有一个部件故障, 系统就不能正常运行,为提高系统的可靠性,每一部件 都装有备用件,一旦原部件故障,备用件就自动进入系 统。显然备用件越多,系统可靠性越高,但费用也越大 ,那么在一定总费用限制下,系统的最高可靠性等于多 少?
给定一些系统备用件的单价Ck,以及当用Mk个此备用件 时部件的正常工作概率Pk(Mk),总费用上限C。求系统 可能的最高可靠性。
分析
假设只有主件的情况 ,显然与经典背包问题完全相同 !
现在每个物品有附件,我们可以分成4种方案 仅装载主件 装载主件+第1个附件 装载主件+第2个附件 装载主件+2个附件
由于上述4种并列,这是几种不同的决策同时规划即可
动态规划
设F(i,j)表示前i件物品背包为j的最优解,则有,
由于每种物品有选和不选两种情况,可以将每种物品的 2k组合 (即2进制数)。例如 第i种物品要选10个,则10=23+21 。
这样第i种物品的个数为k=㏒2 (m/wi)物品,是一个很大 的改进。
进一步, 在计算k时, K =㏒2 (j/wi), j为当前背包剩余空间 。
for j:=1 to m do
begin
if j>=w[i] then //背包容量够大
f[i,j]:=max(f[i-1,j-w[i]]+c[i],f[i-1,j])
else
//背包容量不足
f[i,j]:=f[i-1,j];
end;
满背包问题(01背包)
有N件物品; 第i件物品Wi公斤; 第i件物品价值Ci元; 现有一辆载重M公斤的卡车; 问选取装载哪些物品,使得卡车开车正好装满
分析
用机器数来做状态,数组f(i,j)表示前i个公司分配 j台机器的最大盈利。则状态转移方程为:
f(i,j) =Max{f[i-1,k] + a[i,j-j]} (1<=i<=N,1<=j<=M,0<=k<=j )
初始值: f(0,0)=0 时间复杂度O(N*M2)
思考题2:硬币找零
时,运送的总价值最大? 若无法装满卡车,则输出无解。
动态规划
设F(i,j)表示前i件物品背包为j的最大效益,则有
1<=i<=N, 0<=j<=N 初值:F(0,j)=0, F(1,j)= -∞ F(N,M)即答案 显然时间复杂度为O(NM)
带条件的背包问题(1)
有N件物品; 第i件物品Wi公斤; 第i件物品价值Ci元; 第i件物品可能带0~2个附件; 若装载附件,必须装载主件,反之没有约束; 现有一辆载重M公斤的卡车; 问选取装载哪些物品,使得卡车运送的总价值最大?
给定N枚硬币 给定T元钱 用这N枚硬币找这T元钱,使得剩下的钱最少。 剩下钱数最少的找零方案中的所需的最少硬币数
。
N<=500,T<=10000.
分析
设F[i]表示需要找的钱数为i时所需要的最少钱币 数。显然有:
F[i]=Min{F[ i - A[j] ] + 1} { i≤ T,1≤j≤N} 初始值:F[0]=0。 A[j]表示其中 第j种钱币的面值。 时间复杂度为O(N*T)。
如果前x-1条流水线只要生产i’汉堡,j’个薯条,生产的饮料为f(x1,i’,j’)
因此有第x条流水线必须生产了i-i’个汉堡,j-j’个薯条,剩下的时间生 产k个饮料。
因为前x条流水线生产的饮料= 前x-1条流水线生产的饮料 + 第x条流水线生产的饮料
所以有,f(x,i,j)=max{f(x-1,i’,j’)+k}
然后对所有的物品采用动态规划即可。 F(i,j)=max{ f(i-1,j-k*w[i]) + k*c[i] } 0<=k*w[i]<=j
完全背包问题
有N件物品; 第i件物品Wi公斤; 第i件物品价值Ci元; 现有一辆载重M公斤的卡车; 每次可以选取某种物品的任意多件装载; 问选取装载哪些物品,使得卡车运送的总价值最
据相关
思考题4:快餐问题
套餐由由A个汉堡,B个薯条和C个饮料组成 生产汉堡、薯条、饮料的时间为p1,p2,p3 有N条流水线,N<=10,第i条流水线生产时间为
Ti 每条流水线都可生产汉堡、薯条和饮料 每天汉堡、薯条和饮料个数不超过100 如何安排生产使得生产套餐数量最多。
end;
在这里为了使得每个物品只取1个或不取,采用了每次取j都是与i-1进行 比较,实际上保存了每1步取不同j的值
改进程序
事实上,我们只关心剩余背包的最大值,也就是仅仅关心 f(j),因此,在对f(j)更新时,只要背包容量可以,那么可以 反复更新。程序如下:
for i:=1 to n do
// 动态规划,递推求f
样例
输入文件格式:
第一行:n C 第二行:C1 P1(0)
… 第n 行:Cn Pn(0)
P1(1) … P1(X1) (0<=X1<=[C/Ck]) Pn(1) … Pn(Xn) (0<=Xn<=[C/Cn])
输入:2 20 3 0.6 0.65 0.7 0.75 0.8 0.85 0.9 5 0.7 0.75 0.8 0.8 0.9 0.95
总结
第1步:采用优化方法3,将每条流水线的 部分时间按成 套生产,设第i条流水线生产套餐Wi套,剩下的时间为Ti ;
第2步,对每条流水线的剩下时间进行动态规划,并采用优 化1,2;
第3步,求总套数 = 贪心总套数X + 动态规划的套数Y。 其中X,Y计算如下,
流水线资源分配图
思考?
f(x,i,j)=max{f(x-1,i’,j’)+k} 1<=x<=n<=10,0<=i’<=i<=100, 0<=j’<=j<=100
k可以实时求出 时间复杂度为10*1002*1002=109 显然超时!
优化
1. 求出最多可能生产多少套,减少不必要循环。 2. 淘汰一些没有意义状态,比如生产了过多第三种
第六讲-动态规划背包问题.ppt
经典的背包问题(01背包)
有N件物品; 第i件物品Wi公斤; 第i件物品价值Ci元; 现有一辆载重M公斤的卡车; 问选取装载哪些物品,使得卡车运送的总价值
最大?
动态规划
可以按每个物品进行规划,同样每种物品有选和不选两种 选择
设F(i,j)表示前i件物品载重为j的最大效益,则有
物质,却没把前两种生产满。 3. 让每条流水线大多数时间按成套时间生产,留下
一些时间进行动态规划,这样将在动态规划时, 极大地减少每种物品的产量从而极大地减少动态 规划的状态数。
说明
利用前两个优化基本可以出解 第3个优化,对每条流水线进行动态规划的剩余时间多少比较难确定
,否则正确性难以保证,剩余时间越多,正确率越高,速度越慢。下 图是对第3个优化的说明:
for j:=0 to m do
begin
if j>=w[i] then //背包容量够大
f[j]:=max(f[j-w[i]]+c[i],f[j])
end;
思考题1:机器分配
M台设备,分给N个公司。 若公司i获得j台设备,则能产生Aij效益 问如何分配设备使得总效益最大? M<=15,N<=10。
1<=i<=N, 0<=j<=M 时间复杂度O(NM)
多层背包问题
有N件物品; 第i件物品Wi公斤; 第i件物品价值Ci元; 现有一辆载重M公斤的卡车; 第i件物品限制最多只能取Xi个; 问选取装载哪些物品,使得卡车运送的总价值最
大?
分析
我们可以类似01背包问题,将第i种物品拆分成x[i]个, 这样每个物品只有1件了,如下图:
1<=i<=N, 0<=j<=N 初值:F(0,j)=0 F(N,M)即答案 显然时间复杂度为O(NM)
主程序如下
for i:=1 to m do f[0,i]:=0; //初始化
for i:=1 to n do f[i,0]:=0;
for i:=1 to n do
// 动态规划,递推求f
进一步
for i:=1 to n do
// 动态规划,递推求f
for j:=m downto 1 do
begin
if j>=w[i] then //背包容量够大
f[i,j]:=max(f[i-1,j-w[i]]+c[i],f[i-1,j])
else
//背包容量不足
f[i,j]:=f[i-1,j];
输出:0.6375
分析
设f(i,j)表示将j的资金用到前i项备用件中去的 最大可靠性,则有 F(i,j)= max{F(i-1,j–k*Cost[i])*P[i,k]}
0<=i<=n, 0<=j<=C,0<=k<j div Cost(i) 初始: F(0,0)=0 目标: F(n,C) 时间复杂度:O(k*n*C),这里k是常数因子,与数
分析
对于每条流水线,它的生产时间是一定的,我们 如果知道了生产汉堡和薯条的个数,就很容易计 算出生产饮料的个数。因此,
假设第i条流水线生产了i’个汉堡,j’个薯条,那么 还能生产饮料个数为: k’=(Ti-i’*p1-j’*p2)/p3
动态规划
设f(x,i,j)表示前x条流水线生产i个汉堡,j个薯条最多还能生产饮料个 数。