模具的热处理
模具表面的化学热处理技术

甲醇+丙酮
风扇电动机 废气火焰 炉盖 砂封 电阻丝 耐热罐 工件 炉体
图 4-2 滴注式气体渗碳炉工作示意图
4.2.1.3 真空渗碳 真空渗碳是一个不平衡的增碳扩散型渗碳工艺,被处 理的工件在真空中加热到奥氏体化,并在渗碳气氛中渗碳, 然后扩散、淬火。由于渗碳前是在真空状态下加热,钢的 表面很干净,非常有利于碳原子的吸附和扩散。与气体渗 碳相比,真空渗碳的温度高,渗碳时间可明显缩短。
渗碳工艺应用于模具表面强化,主要体现在两个方面。 一方面用于低、中碳钢的渗碳。例如,塑料制品模具的形 状复杂,表面粗糙度要求高,常用冷挤压反印法来制造模 具的型腔。因此,可采用碳含量较低、塑性变形性能好的 塑料模具钢,如20、20Cr、12CrNi3A钢以及美国的P2、 P3、P4、P5钢等。先将退火状态的模具钢冷挤压反印法 成形,再进行渗碳或碳氮共渗处理。
4.2 模具表面的化学热处理技术 化学热处理是指将钢件置于特定的活性介质中加 热和保温,使一种或几种元素渗入工件表面,以改变 表层的化学成分、组织,使表层具有与心部不同的力 学性能或特殊的物理、化学性能的热处理工艺。化学 热处理的种类很多,一般都以渗入的元素来命名,常 用的化学热处理方法有渗碳、渗氮、碳氮共渗/氮碳 共渗、渗硼、渗金属等。
4.2.1.4 CD渗碳 CD渗碳是20世纪80年代后期出现的渗碳方法。CD渗 碳法采用含有大量强碳化物形成元素(如Cr、Ti、Mo、V) 的模具钢在渗碳气氛中加热,在碳原子自表面向内部扩散 的同时,渗层中沉淀出大量弥散合金碳化物,弥散碳化物 含量达50%以上,呈细小均匀分布,淬火、回火后可获得 很高的硬度和耐磨性。 经CD渗碳的模具心部没有像Cr12型模具钢和高速钢中 出现粗大共晶碳化物和严重的碳化物偏析,因而其心部韧 性比Cr12MoV钢提高3~5倍。实践表明,CD渗碳模具的使 用寿命大大超过Cr12型冷作模具钢和高速钢。
模具材料三大热处理表面淬火、退火工艺、正火工艺区别

学习模具一定要了解模具材料的热处理 大家好好学习 天天向上 !
表面淬火? 钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表பைடு நூலகம்层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。? 感应加热表面淬火感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点:1.热源在工件表层,加热速度快,热效率高2.工件因不是整体加热,变形小3.工件加热时间短,表面氧化脱碳量少4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命5.设备紧凑,使用方便,劳动条件好6.便于机械化和自动化7.不仅用在表面淬火还可用在穿透加热与化学热处理等。? 感应加热的基本原理将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。? 感应表面淬火后的性能1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高 2~3 个单位(HRC)。2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。
模具热处理pvd

模具热处理pvdPVD(Physical Vapor Deposition)是一种常用的模具热处理技术。
在模具制造过程中,通过PVD技术可以对模具表面进行镀膜,提高其硬度和耐磨性,延长其使用寿命。
本文将从人类的视角出发,详细介绍模具热处理PVD技术的原理、应用以及优势。
一、PVD技术的原理PVD技术是一种将固态材料通过物理过程转变为蒸气态,再通过沉积在基材表面形成薄膜的方法。
这种技术主要通过两种方式实现:蒸发和溅射。
蒸发是将固态材料加热到一定温度,使其转变为蒸气态,然后沉积在模具表面形成薄膜。
溅射则是通过将固态材料置于高能离子轰击下,使其离子化并沉积在基材表面。
二、PVD技术的应用PVD技术在模具热处理中有着广泛的应用。
首先,它可以提高模具表面的硬度,增强其抗磨性和耐腐蚀性能,从而延长模具的使用寿命。
其次,PVD技术可以使模具表面形成均匀、致密的薄膜,提高模具的加工精度和表面质量。
此外,PVD技术还可以改善模具的润滑性能,减少摩擦损失,提高模具的工作效率。
三、PVD技术的优势相比其他模具热处理技术,PVD技术具有以下优势。
首先,PVD技术可以在低温下进行,避免了模具热处理过程中可能引起的变形和残余应力问题。
其次,PVD技术可以在模具表面形成具有良好附着力的薄膜,不易剥落和脱落。
此外,PVD技术还可以选择不同的材料进行镀膜,以满足不同模具的需求。
PVD技术在模具热处理中起着重要作用。
通过PVD技术可以提高模具的硬度和耐磨性,延长其使用寿命;可以提高模具的加工精度和表面质量,提高工作效率;还可以改善模具的润滑性能,减少摩擦损失。
随着科技的不断进步,PVD技术在模具热处理领域的应用前景将更加广阔。
期待未来PVD技术能够不断创新,为模具制造业带来更多的发展机遇和挑战。
热作模具钢热处理

热作模具钢热处理
热作模具钢的热处理主要包括预热处理、球化退火、淬火和回火等步骤。
1. 预热处理:为了使工件在加热过程中均匀地膨胀和收缩,减少开裂,通常需要将工件预热至700~800℃。
2. 球化退火:通过将工件加热至略高于钢的AC1点,使其完全奥氏体化,然后以缓慢冷却速度(通常是随炉冷却)冷却,可使其组织转变成均匀的球状珠光体,以消除加工应力、提高模具韧性及抗蚀性,适用于以减小零件变形及改善切削加工性能为主要目的退火工艺。
3. 淬火:目的是为了使热作模具钢的钢的显微组织转变为马氏体,并得到高硬度的马氏体组织。
淬火温度通常选择在钢的AC3或略高于AC3的某一温度。
然后将模具缓慢冷却至200℃左右出炉,可使模具表面上的残余奥氏体转变为马氏体,从而提高其硬度及耐磨性。
4. 回火:回火是将淬火后的模具加热到低于AC1的温度,以消除或减少淬火引起的内应力,并使钢的组织趋于稳定。
根据需要,可以选择不同的回火温度和时间。
以上信息仅供参考,如需了解更多信息,建议查阅专业书籍或咨询专业人士。
模具热处理

模具热处理1、H13模具钢如何热处理硬度才能达到58℃?进行1050~1100℃加热淬火,油淬,可以达到要求,但一般热作模具是不要求这么高的硬度的,这么高的硬度性能会很差,不好用,一般在HRC46~50性能好、耐用。
2、模具热处理过后表面用什么洗白?问题补充:一般模具都用油石先打过再拿去渗氮,渗氮回来又要用油石把那一层黑的擦白,再抛光很麻烦,不擦白打不出镜面来,材料有H13的,有进口的好多种,如果有药水能洗白的话,就可以直接抛光了。
(1)可以用不锈钢酸洗液,或者盐酸清洗。
喷砂处理也可以。
磨床磨的话费用高,而且加工量大,有可能使尺寸不达标的。
盐酸洗不掉的话,估计您用的是高铬的模具钢?是D2还是H13?高铬模具钢的氧化层比较难洗掉。
用不锈钢酸洗液应该可以,磨具商店或者不锈钢商店都有卖的。
(2)你们没有不锈钢酸洗膏吗?那种可以。
H13这类含铬比较高的模具钢,氧化层是难以用盐酸洗掉的。
还有一个办法,模具既然已经油石磨过,表面就是比较光滑的。
实际上,可以先只用粗的油石打磨,或者用砂带打磨,之后就去热处理。
回来之后再用细油石打磨。
也可以用纤维轮先打磨,就可以有效的把黑皮去除,再研磨抛光。
或者喷砂,用800目的碳化硼做一遍喷砂试试,应该就能够去除黑皮,还不需要化太多功夫重磨。
3、热处理厂对金属是怎么热处理的?热处理厂的设备非常多,炉子大概有箱式炉,井式炉,箱式炉用的最多,很多热处理都可以在这里面处理,比如退火,正火和淬火的加热过程,回火这些常见的热处理。
其实就是一个用电加热的炉子,先将炉子升温到预定温度,然后把工件丢进去,等待一段时间到预定温度,然后保温一段时间,然后取出,或者在炉子里一起冷却,井式炉一般是作为渗碳处理设备,是一个埋到地下的炉子,工件放进去之后,密封,然后往炉子里面滴入一些富碳液体,比如煤油或则甲醇,然后在高温下这些液体分解成碳原子渗入工件表面。
淬火池是淬火的场所,就是一个池子,里面有水溶液或者是油,就是箱式炉出来的工件淬火的冷却的地方,一般就是直接丢进去,然后等一段时间捞出来。
模具热处理

模具热处理1、退火处理:将工件加热到临界温度(固态金属发生相变的温度)以上某一温度,经保温一段时间后,随暖炉缓慢冷却至500℃一下,然后在空气中冷却的一种热处理工艺。
目的:降低钢的硬度,改善切削性能,细化晶粒,减少组织不均匀性。
同时可消除内应力,稳定工件尺寸,减少工件的变形与开裂。
2、正火处理:将工件加热到临界温度以上的某一温度值,保温一段时间后从炉中取出在空气中自然冷却的一种热处理工艺。
目的:与退火相似,区别在于冷却速度比退火快,同样的工件正火后的强度、硬度比退火后要高。
注:低碳正火可适当提高其硬度,改善切削加工性能。
对于性能要求不高的零件,正火可作为最终热处理。
一些高碳钢件可利用正火来消除网状渗碳体,为以后热处理做好组织准备。
3、淬火热处理:将工件加热到临界温度以上的某一温度,保持一定时间后,在水、盐水或油中急剧冷却的一种热处理工艺。
目的:提高钢的硬度和耐磨性。
(淬硬性、淬透性)4、回火处理:把淬火后的工件从新加热到临界温度一下的某一温度,保证后再以适当冷却速度冷却到室温的热处理工艺。
目的:稳定组织和尺寸,减低脆度,消除内应力:调整硬度,提高韧性,获得优良的力学性能和使用性能。
5、表面淬火处理:利用快速加热的方法,将工件表面温度迅速升温至淬火温度,待热量传至心部之前立即给予冷却使得表面得以淬硬。
目的:获得高硬度和耐磨性,而心部仍保持原来的组织结构,使其具有良好的塑性和韧性。
注:这种热处理适用于要求外硬内韧的机械零件,如凸轮、齿轮、曲轴、花键轴等。
零件表面淬火前需进行正火或调质处理,表面淬火后进行低温回火。
6、化学热处理:将钢件放在某种化学介质中,通过加热和保温使介质中的一种或几种元素渗入钢的表面,以改变表面化学成分、组织及性能的热处理工艺。
2012-01-20程志鹏。
模具热处理工艺

模具热处理工艺模具热处理是指将模具制造过程中的金属材料经过一定的加热、保温、冷却等工艺处理,以改善其组织性能和机械性能,以达到更高的使用寿命和更好的加工效果的目的。
模具热处理工艺是模具制造中非常重要的一个环节,对模具的质量、寿命和稳定性等方面均有着直接的影响。
本文将详细介绍模具热处理工艺。
模具热处理工艺主要分为常规热处理和表面处理两类。
1、常规热处理常规热处理是指对模具材料进行正火、淬火、回火等热处理工艺,使模具材料获得更优良的机械性能和耐磨性能,提高模具的使用寿命和稳定性。
常规热处理的工艺往往需要经过加热、保温、冷却等几个步骤,每一步的工序都需要严格控制温度、时间、冷却速度等参数,以达到理想的热处理效果。
2、表面处理表面处理是指对模具表面进行特殊处理,以提高其表面性能,如耐磨性、防腐性、硬度等等。
表面处理工艺有电镀、镀膜、喷涂、氮化等多种形式,每一种形式都有各自的工艺流程和特点,可以根据实际需要进行选择。
常规热处理主要包括正火、淬火和回火三个步骤。
1、正火正火主要是对模具材料进行加热,使其达到一定的温度,然后进行保温,使其结晶粗化、晶粒均匀化,以获得更高的硬度和强度。
正火的温度、时间、冷却速度等因素对热处理效果有着决定性的影响,需要进行严格的控制。
2、淬火淬火是将正火后的模具材料快速冷却,以使其组织结构发生相变,从而获得更高的硬度和强度。
淬火的冷却速度很快,一般采用水、油、盐水等淬火介质,以达到理想的淬火效果。
淬火后的模具材料仍然存在一定的脆性,需要进行回火处理。
3、回火回火主要是对淬火后的模具材料进行加热,温度一般在200-600度之间,然后进行保温,使其组织结构重新变得稳定,降低其硬度和强度,提高其韧性和抗冲击性,以减少其脆性,从而达到更好的使用效果。
表面处理工艺主要包括电镀、镀膜、喷涂、氮化等多种形式。
1、电镀电镀主要是通过电解沉积的方法,在模具表面形成一层金属膜,以提高模具表面的硬度、耐磨性和防腐性能。
模具热处理工艺技术规范

模具热处理工艺技术规范一、火焰表面淬火:火焰表面淬火工艺是利用可燃气体(C2H2)与氧气混合燃烧的火焰所产生的高温,将工件表面加热到淬火温度,随后用冷水和其它冷却介质急速进行冷却的工艺过程。
通过表面淬火的工件表面可获得很高的硬度和耐磨性,提高了工件的力学性能。
火焰表面淬火的优点:模具的韧性好、减少加工工序、降底热处量费用、模具容易焊接修补。
火焰表面淬火的缺陷:①火焰表面淬火是手工操作,需要比较熟练的技术,往往需要目测加工钢材的颜色来确定钢材的温度,要求操作者的技术具有一定的熟练程度;②选用合适的模具材料是火焰表面淬火工艺的前提条件。
对模具的工作条件应认真地进行分析,所选用的材料经火焰表面淬火后要满足模具的力学性能,并保证有足够的寿命。
对结构复杂、寿命要求很高的模具不适宜采用火焰表面淬火工艺。
二、模具半精铣后钳工热处理的内容及要求:1.拉延模3D型面在半精铣加工后,钳工要进行热处理,外板件的凸模切边线以外,压边圈(包括管理面)和上模的凸R角要进行热处理,硬度为HRC54-56度;内板件的模具凸模、压边圈、上模所有凸R角都要进行热处理,硬度为HRC54-56度。
否则二次加工掉0.3毫米后会导致硬度不足;热处理时工作者应测试一小段,由质检员确认达到硬度后才能进行后续的火焰处理,同时热处理过程中必须经常有质检员采聚检测点,而且要密切注意处理过程是否有裂纹、气泡产生。
(若有可考虑用水冷或风冷测试而最终决定冷却方案)2.切边、冲孔(落料):下模凸模半精铣完成后留0.30mm余量转钳工进行热处理,切边刀口10*10热处理,硬度HRC54-56,上模刀块不热处理。
(钳工配完刀块后才进行热处理)。
3.翻边、整型:凸模半精铣完成后留0.30mm余量转钳工进行热处理,硬度HRC54-56,侧面、整型面的工作面要进行热处理,上模刀块半精铣完成后留0.30mm 余量转钳工进行热处理,硬度HRC54-56。
三、模具材料及热处理硬度:⑴拉延模:板料厚度t≤1.2mm,凸、凹模及压边圈采用Mo-Cr合金铸铁(GM246或GM241),表面火焰处理,其硬度不低于HRC50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模具的热处理
模具是工业生产中不可或缺的一种工具,它的质量直接影响到产品的质量和生产效率。
而模具的热处理是模具制造过程中不可或缺的一环,它可以提高模具的硬度、耐磨性和耐腐蚀性,从而延长模具的使用寿命。
本文将从模具的热处理原理、热处理工艺和热处理后的模具质量三个方面来介绍模具的热处理。
一、模具的热处理原理
模具的热处理是指将模具加热到一定温度,然后在一定时间内保温,最后冷却到室温的过程。
热处理的目的是改变模具的组织结构和性能,从而达到提高模具硬度、耐磨性和耐腐蚀性的目的。
模具的热处理原理主要包括以下几个方面:
1.相变原理:模具的热处理过程中,当温度达到一定值时,模具内部的晶体结构会发生相变,从而改变模具的性能。
2.固溶原理:模具的热处理过程中,将模具加热到一定温度,使其中的合金元素溶解在基体中,从而提高模具的硬度和强度。
3.析出原理:模具的热处理过程中,将模具加热到一定温度,使其中的合金元素析出在基体中,从而提高模具的硬度和耐磨性。
二、模具的热处理工艺
模具的热处理工艺是指模具在热处理过程中所需要的温度、时间和冷却方式等参数。
不同的模具材料和要求需要不同的热处理工艺。
一般来说,模具的热处理工艺包括以下几个步骤:
1.预热:将模具加热到一定温度,使其中的水分和氧化物等杂质挥发掉,从而减少模具表面的氧化和脱碳。
2.加热:将模具加热到一定温度,使其中的合金元素溶解在基体中或析出在基体中,从而提高模具的硬度和强度。
3.保温:将模具保持在一定温度下,使其中的合金元素充分溶解或析出,从而达到最佳的热处理效果。
4.冷却:将模具冷却到室温,使其中的合金元素固定在基体中,从而保持模具的硬度和耐磨性。
三、热处理后的模具质量
模具的热处理后,其质量主要表现在以下几个方面:
1.硬度:模具的硬度是指模具表面的抗压能力,硬度越高,模具的耐磨性和耐腐蚀性就越好。
2.耐磨性:模具的耐磨性是指模具表面的抗磨损能力,耐磨性越好,模具的使用寿命就越长。
3.耐腐蚀性:模具的耐腐蚀性是指模具表面的抗腐蚀能力,耐腐蚀性越好,模具的使用寿命就越长。
4.尺寸稳定性:模具的尺寸稳定性是指模具在使用过程中尺寸的变化情况,尺寸稳定性越好,模具的精度就越高。
模具的热处理是模具制造过程中不可或缺的一环,它可以提高模具的硬度、耐磨性和耐腐蚀性,从而延长模具的使用寿命。
在实际生产中,我们应该根据不同的模具材料和要求,选择合适的热处理工艺,以达到最佳的热处理效果。