专题17 立体几何综合 (学生版)2010-2020高考试题分类汇编
十年高考真题分类汇编(2010-2019) 数学 专题10 立体几何

十年高考真题分类汇编(2010—2019)数学专题10立体几何1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.2.(2019·全国1·理T12)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别是PA,AB 的中点,∠CEF=90°,则球O 的体积为( ) A.8√6π B.4√6π C.2√6π D.√6π【答案】D【解析】设PA=PB=PC=2x. ∵E,F 分别为PA,AB 的中点, ∴EF ∥PB,且EF=12PB=x.∵△ABC 为边长为2的等边三角形, ∴CF=√3.又∠CEF=90°,∴CE=√3-x 2,AE=12PA=x. 在△AEC 中,由余弦定理可知cos ∠EAC=x 2+4-(3-x 2)2×2·x .作PD ⊥AC 于点D,∵PA=PC,∴D 为AC 的中点,cos ∠EAC=AD PA =12x . ∴x 2+4-3+x 24x=12x. ∴2x 2+1=2.∴x 2=12,即x=√22. ∴PA=PB=PC=√2. 又AB=BC=AC=2, ∴PA ⊥PB ⊥PC. ∴2R=√2+2+2=√6. ∴R=√62. ∴V=43πR 3=43π×6√68=√6π.故选D.3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知,“α内有两条相交直线与β平行”是“α∥β”的充分条件.由面面平行的性质知,“α内有两条相交直线与β平行”是“α∥β”的必要条件,故选B.4.(2019·全国3·理T8文T8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD,M 是线段ED 的中点,则( ) A.BM=EN,且直线BM,EN 是相交直线B.BM ≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM,EN 是异面直线D.BM ≠EN,且直线BM,EN 是异面直线 【答案】B【解析】如图,连接BD,BE.在△BDE 中,N 为BD 的中点,M 为DE 的中点, ∴BM,EN 是相交直线,排除选项C 、D. 作EO ⊥CD 于点O,连接ON. 作MF ⊥OD 于点F,连接BF.∵平面CDE ⊥平面ABCD,平面CDE ∩平面ABCD=CD,EO ⊥ CD,EO ⊂平面CDE,∴EO ⊥平面ABCD. 同理,MF ⊥平面ABCD.∴△MFB 与△EON 均为直角三角形. 设正方形ABCD 的边长为2,易知 EO=√3,ON=1,MF=√32,BF=√22+94=52, 则EN=√3+1=2,BM=√34+254=√7,∴BM ≠EN.故选B.5.(2019·浙江·T8)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B 的平面角为γ,则( ) A.β<γ,α<γ B.β<α,β<γ C.β<α,γ<α D.α<β,γ<β 【答案】B【解析】如图G 为AC 中点,点V 在底面ABC 上的投影为点O,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE,易得PE ∥VG,过点P 作PF ∥AC 交VG 于点F,过点D 作DH ∥AC,交BG 于点H,则α=∠BPF,β=∠PBD,γ=∠PED,所以cos α=PFPB=EG PB=DH PB<BDPB=cos β,所以α>β,因为tan γ=PDED>PDBD=tan β,所以γ>β.故选B.6.(2018·全国3·理T10文T12)设A,B,C,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( ) A.12√3 B.18√3C.24√3D.54√3【答案】B【解析】由△ABC 为等边三角形且面积为9√3,设△ABC 边长为a,则S=12a ·√32a=9√3.∴a=6,则△ABC 的外接圆半径r=√32×23a=2√3<4. 设球的半径为R,如图,OO 1=√R 2-r 2=√42-(2√3)2=2.当D 在O 的正上方时,V D-ABC =1S △ABC ·(R+|OO 1|)=1×9√3×6=18√3,最大.故选B.7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.2√17 B.2√5 C.3 D.2【答案】B【解析】如图所示,易知N 为CD⏜的中点,将圆柱的侧面沿母线MC 剪开,展平为矩形MCC'M',易知CN=14CC'=4,MC=2,从M 到N 的路程中最短路径为MN.在Rt△MCN中,MN=√MC2+NC2=2√5.8.(2018·全国3·理T3文T3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应为A中图形.9.(2018·北京·理T5文T6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4【答案】C【解析】由该四棱锥的三视图,得其直观图如图.由正视图和侧视图都是等腰直角三角形,知PD⊥平面ABCD,所以侧面PAD和PDC都是直角三角形.由俯视图为直角梯形,易知DC⊥平面PAD.又AB∥DC,所以AB⊥平面PAD,所以AB⊥PA,所以侧面PAB也是直角三角形.易知PC=2√2,BC=√5,PB=3,从而△PBC不是直角三角形.故选C.10.(2018·上海·T15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图.若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.16【答案】D【解析】设正六棱柱为ABCDEF-A1B1C1D1E1F1,以侧面AA1B1B,AA1F1F为底面矩形的阳马有E-AA 1B 1B,E 1-AA 1B 1B,D-AA 1B 1B,D 1-AA 1B 1B,C-AA 1F 1F,C 1-AA 1F 1F,D-AA 1F 1F,D 1-AA 1F 1F,共8个,以对角面AA 1C 1C,AA 1E 1E 为底面矩形的阳马有F-AA 1C 1C,F 1-AA 1C 1C,D-AA 1C 1C,D 1-AA 1C 1C,B-AA 1E 1E,B 1-AA 1E 1E,D-AA 1E 1E,D 1-AA 1E 1E,共8个,所以共有8+8=16(个),故选D.11.(2018·全国1·文T10)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A.8 B.6√2 C.8√2 D.8√3【答案】C【解析】在长方体ABCD-A 1B 1C 1D 1中,AB ⊥平面BCC 1B 1,连接BC 1,则∠AC 1B 为AC 1与平面BB 1C 1C 所成的角,∠AC 1B=30°,所以在Rt △ABC 1中,BC 1=AB tan∠AC 1B =2√3,又BC=2,所以在Rt △BCC 1中,CC 1=√(2√3)2-22=2√2, 所以该长方体体积V=BC ×CC 1×AB=8√2.12.(2018·全国2·理T9)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=√3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15B.√56C.√55D.√22【答案】C【解析】以DA,DC,DD 1所在直线为坐标轴建立空间直角坐标系如图, 则D 1(0,0,√3),A(1,0,0),D(0,0,0),B 1(1,1,√3).∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√3),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3).设异面直线AD 1与DB 1所成的角为θ. ∴cos θ=|AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·DB1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||DB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||=|2×√5|=√55.∴异面直线AD 1与DB 1所成角的余弦值为√55.13.(2018·全国2·文T9)在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A.√22 B.√32C.√52D.√72【答案】C【解析】如图,因为AB∥CD,所以AE与CD所成的角为∠EAB. 在Rt△ABE中,设AB=2,则BE=√5,则tan∠EAB=BEAB =√52,所以异面直线AE与CD所成角的正切值为√52.14.(2018·全国1·文T5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.12√2πB.12πC.8√2πD.10π【答案】B【解析】过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=2√2,r=√2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.15.(2018·浙江·T3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2B.4C.6D.8【答案】C【解析】由三视图可知该几何体为直四棱柱.∵S底=12×(1+2)×2=3,h=2,∴V=Sh=3×2=6.16.(2017·全国2·理T4文T6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【答案】B【解析】由三视图知,该几何体是一个圆柱截去一部分所得,如图所示.其体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V=π×32×4+π×32×6×12=63π.17.(2017·全国1·理T7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A.10B.12C.14D.16【答案】B【解析】由三视图可还原出几何体的直观图如图所示.该五面体中有两个侧面是全等的直角梯形,且该直角梯形的上底长为2,下底长为4,高为2,则S 梯=(2+4)×2÷2=6,所以这些梯形的面积之和为12.18.(2017·全国2·理T10)已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.√32 B.√155C.√105D.√33【答案】C【解析】方法一:把三棱柱ABC-A 1B 1C 1补成四棱柱ABCD-A 1B 1C 1D 1,如图, 连接C 1D,BD,则AB 1与BC 1所成的角为∠BC 1D. 由题意可知BC 1=√2,BD=√22+12-2×2×1×cos60°=√3,C 1D=AB 1=√5.可知B C 12+BD 2=C 1D 2,所以cos ∠BC 1D=√2√5=√105,故选C.方法二:以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图所示. 由已知条件知B 1(0,0,0),B(0,0,1),C 1(1,0,0),A(-1,√3,1),则BC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,-√3,-1).所以cos<AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|=√5×√2=√105.所以异面直线AB 1与BC 1所成角的余弦值为√105.19.(2017·北京·理T7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3√2B.2√3C.2√2D.2【答案】B【解析】由题意可知,直观图为四棱锥A-BCDE(如图所示),最长的棱为正方体的体对角线AE=√22+22+22=2√3.故选B.20.(2017·全国3·理T8文T9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B.3π4C.π2D.π4【答案】B【解析】由题意可知球心即为圆柱体的中心,画出圆柱的轴截面如图所示,则AC=1,AB=12,底面圆的半径r=BC=√32,所以圆柱的体积是V=πr 2h=π×(√32)2×1=3π4,故选B.21.(2017·全国1·文T6)如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )【答案】A【解析】易知选项B 中,AB ∥MQ,且MQ ⊂平面MNQ,AB ⊄平面MNQ,则AB ∥平面MNQ;选项C 中,AB ∥MQ,且MQ ⊂平面MNQ,AB ⊄平面MNQ,则AB ∥平面MNQ;选项D 中,AB ∥NQ,且NQ ⊂平面MNQ,AB ⊄平面MNQ,则AB ∥平面MNQ,故排除选项B,C,D;故选A.4.(2016·浙江·理T2文T2)已知互相垂直的平面α,β交于直线l,若直线m,n 满足m ∥α,n ⊥β,则( ) A.m ∥l B.m ∥nC.n ⊥lD.m ⊥n 【答案】C【解析】对于选项A,∵α∩β=l ,∴l ⊂α,∵m ∥α,∴m 与l 可能平行,也可能异面,故选项A 不正确; 对于选项B,D,∵α⊥β,m ∥α,n ⊥β,∴m 与n 可能平行,可能相交,也可能异面,故选项B,D 不正确. 对于选项C,∵α∩β=l ,∴l ⊂β. ∵n ⊥β,∴n ⊥l.故选C.22.(2016·天津·文T3)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】由题意得该长方体沿相邻三个面的对角线截去一个棱锥,如下图所示.易知其左视图为B 项中图.故选B.23.(2016·全国3·理T10文T11)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC,AB=6,BC=8,AA 1=3,则V 的最大值是( ) A.4π B.9π2C.6πD.32π3【答案】B【解析】先计算球与直三棱柱三个侧面相切的球的半径,再和与直三棱柱两底面相切的球的半径相比较,半径较小的球即为所求.设球的半径为R,∵AB ⊥BC,AB=6,BC=8,∴AC=10.当球与直三棱柱的三个侧面相切时,有12(6+8+10)×R=12×6×8,此时R=2;当球与直三棱柱两底面相切时,有2R=3,此时R=32.所以在封闭的直三棱柱中,球的最大半径只能为32,故最大体积V=4π(3)3=9π.24.(2016·全国1·文T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB. πC.8πD.4π【答案】A【解析】设正方体的棱长为a,由a3=8,得a=2.由题意可知,正方体的体对角线为球的直径,故2r=2则r=√3.所以该球的表面积为4π×(√3)2=12π,故选A.25.(2016·全国1·理T11文T11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.√32B.√22C.√33D.13【答案】A【解析】∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,∴m∥B1D1.∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,∴n∥CD1.∴B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.∵△B1D1C为正三角形,∴∠B1D1C=60°,∴m,n所成的角的正弦值为√32.26.(2016·全国1·理T6文T7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π【答案】A【解析】由三视图可知该几何体是球截去18后所得几何体,则78×4π3×R 3=28π3,解得R=2,故其表面积为78×4πR 2+34×πR 2=14π+3π=17π. 27.(2016·全国2·理T6文T7)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ( )A.20πB.24πC.28πD.32π 【答案】C【解析】因为原几何体由同底面的一个圆柱和一个圆锥构成,所以其表面积为S=π×(42)2+4π×4+12×4π×√(2√3)2+22=28π,故选C.28.(2016·全国3·理T9文T10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A.18+36√5 B.54+18√5 C.90D.81【答案】B【解析】由题意知该几何体为四棱柱,且四棱柱的底面是边长为3的正方形,侧棱长为3√5,所以所求表面积为(3×3+3×6+3×3√5)×2=54+18√5,故选B.29.(2016·山东·理T5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为( ) A.1+2πB.1+√2πC.1+√2πD.1+√2π【答案】C【解析】由三视图可知,上面是半径为√22的半球,体积为V 1=12×43π×(√22)3=√2π6,下面是底面积为1,高为1的四棱锥,体积V 2=13×1×1=13,故选C.30.(2016·北京·理T6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1【答案】A【解析】由三视图可得,三棱锥的直观图如图,则该三棱锥的体积V=13×12×1×1×1=16,故选A.31.(2015·全国1·理T6文T6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛 【答案】B【解析】设底面圆弧半径为R,∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π. ∴体积V=14×13π×(16π)2×5.∵π≈3,∴V ≈3209(尺3).∴堆放的米约为3209×1.62≈22(斛). 32.(2015·全国2·理T6文T6)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】D【解析】由题意知该正方体截去了一个三棱锥,如图所示,设正方体棱长为a,则V 正方体=a 3,V 截去部分=16a 3,故截去部分体积与剩余部分体积的比值为16a 3∶56a 3=1∶5.33.(2015·重庆·理T5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2πD.23+2π【答案】A【解析】由题中三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V 1=13×12×2×1×1=13;其右边是一个半圆柱,底面半径为1,高为2,所以体积V 2=π·12·2·12=π,所以该几何体的体积V=V 1+V 2=13+π.34.(2015·浙江·理T2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8 cm 3 B.12 cm 3C.323 cm 3D.403 cm 3【答案】C【解析】由题中三视图知该几何体是一个正方体与正四棱锥的组合体,其中正方体与正四棱锥的底面边长为2 cm,正四棱锥的高为2 cm,则该几何体的体积V=2×2×2+13×2×2×2=323(cm 3),故选C.35.(2015·山东·理T7)在梯形ABCD 中,∠ABC=π2,AD ∥BC,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π【答案】C【解析】由题意可得旋转体为一个圆柱挖掉一个圆锥,如图所示. V 圆柱=π×12×2=2π,V 圆锥=13×π×12×1=π3. ∴V 几何体=V 圆柱-V 圆锥=2π-π3=5π3.36.(2015·湖南·文T10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.827πC.24(√2-1)3πD.8(√2-1)3π【答案】A【解析】由三视图可知该几何体是一个圆锥,其底面半径r=1,母线长l=3,所以其高h=√l 2-r 2=2√2.故该圆锥的体积V=π3×12×2√2=2√2π3.由题意可知,加工后的正方体是该圆锥的一个内接正方体,如图所示.正方体ABCD-EFGH 的底面在圆锥的底面内,下底面中心与圆锥底面的圆心重合,上底面中心在圆锥的高线上,设正方体的棱长为x.在轴截面SMN 中,由O 1G ∥ON可得,O 1GON=SO 1SO ,即√22x 1=√2-2√2,解得x=2√23.所以正方体的体积为V 1=(2√23)3=16√227.所以该工件的利用率为V1V =16√22722π3=89π.故选A.37.(2015·全国1·理T11文T11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A.1 B.2 C.4D.8【答案】B【解析】由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S 表=2r ×2r+2×12πr 2+πr ×2r+12×4πr 2=5πr 2+4r 2=16+20π, 解得r=2.38.(2015·北京·理T5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A.2+√5B.4+√5C.2+2√5D.5【答案】C【解析】作出三棱锥的直观图如图,在△ABC 中,作AB 边上的高CD,连接SD.在三棱锥S-ABC 中,SC ⊥底面ABC,SC=1,底面三角形ABC 是等腰三角形,AC=BC=√5,AB 边上的高CD=2,AD=BD=1,斜高SD=√5.所以S 表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×√5+12×1×√5+12×2×√5=2+2√5. 39.(2015·陕西·理T5文T5)一个几何体的三视图如图所示,则该几何体的表面积为( ) A.3π B.4π C.2π+4 D.3π+4【答案】D【解析】由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S 1=C底·h=(π×1+2)×2=2π+4.几何体的底面积S 2=12π×12=12π.故该几何体的表面积为S=S 1+2S 2=2π+4+2×π2=3π+4.故选D.40.(2015·浙江·理T8)如图,已知△ABC,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A'CD,所成二面角A'-CD-B 的平面角为α,则( ) A.∠A'DB ≤α B.∠A'DB ≥α C.∠A'CB ≤α D.∠A'CB ≥α【答案】B【解析】设∠ADC=θ,设AB=2,则由题意AD=BD=1. 在空间图形中,设A'B=t.在△A'BD 中, cos ∠A'DB=A 'D 2+DB 2-AB 22A 'D×DB =12+12-t 22×1×1=2-t 22. 在空间图形中,过A'作A'N ⊥DC,过B 作BM ⊥DC,垂足分别为N,M.过N 作NP MB,连接A'P,所以NP ⊥DC. 则∠A'NP 就是二面角A'-CD-B 的平面角, 所以∠A'NP=α.在Rt △A'ND 中,DN=A'Dcos ∠A'DC=cos θ,A'N=A'Dsin ∠A'DC=sin θ. 同理,BM=PN=sin θ,DM=cos θ.故BP=MN=2cos θ. 显然BP ⊥面A'NP,故BP ⊥A'P.在Rt △A'BP 中,A'P 2=A'B 2-BP 2=t 2-(2cos θ)2=t 2-4cos 2θ.在△A'NP 中,cos α=cos ∠A'NP=A 'N 2+NP 2-A 'P 22A 'N×NP=sin 2θ+sin 2θ-(t 2-4cos 2θ)=2+2cos 2θ-t 22=2-t 22+cos 2θ2=12cos ∠A'DB+cos 2θ2. 因为1sin 2θ≥1,cos 2θsin 2θ≥0,所以cos α≥cos∠A'DB (当θ=π2时取等号),因为α,∠A'DB ∈[0,π],而y=cos x 在[0,π]上为递减函数,所以α≤∠A'DB.故选B.41.(2015·全国2·理T9文T10)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为 ( ) A.36π B.64π C.144π D.256π 【答案】C【解析】因为∠AOB=90°,所以S △AOB =12R 2. 因为V O-ABC =V C-AOB ,而△AOB 面积为定值,所以三棱锥底面OAB 上的高最大时,其体积最大.因为高最大为半径R,所以V C-AOB =13×12R 2×R=36,解得R=6,故S 球=4πR 2=144π.42.(2015·安徽·理T5)已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...与β平行的直线...,则在α内不存在D.若m,n不平行...垂直于同一平面...,则m与n不可能【答案】D【解析】A选项α,β可能相交;B选项m,n可能相交,也可能异面;C选项若α与β相交,则在α内平行于它们交线的直线一定平行于β;由垂直于同一个平面的两条直线一定平行,可知D选项正确.43.(2015·浙江·文T4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【答案】A【解析】若l⊥β,又l⊂α,由面面垂直的判定定理,得α⊥β,故选项A正确;选项B,l⊥m或l∥m或l与m 相交或异面都有可能;选项C,α∥β或α与β相交都有可能;选项D,l∥m或l与m异面都有可能.44.(2015·广东·文T6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【答案】D【解析】l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.45.(2014·浙江·理T3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2B.129 cm2C.132 cm2D.138 cm2【答案】D【解析】由题干中的三视图可得原几何体如图所示.故该几何体的表面积S=2×4×6+2×3×4+3×6+3×3+3×4+3×5+2××3×4=138(cm2).故选D.46.(2014·陕西·文T5)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A.4πB.3πC.2πD.π【答案】C【解析】依题意,知所得几何体是一个圆柱,且其底面半径为1,母线长也为1,因此其侧面积为2π×1×1=2π,故选C.47.(2014·辽宁·理T4文T4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【答案】B【解析】对A:m,n还可能异面、相交,故A不正确.对C:n还可能在平面α内,故C不正确.对D:n还可能在α内,故D不正确.对B:由线面垂直的定义可知正确.48.(2014·广东·理T7)在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【答案】D【解析】如图,在正方体ABCD-A1B1C1D1中,取l1为BC,l2为CC1,l3为C1D1.满足l1⊥l2,l2⊥l3.若取l4为A1D1,则有l1∥l4;若取l4为DD1,则有l1⊥l4.因此l1与l4的位置关系不确定,故选D.49.(2014·浙江·文T6)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【答案】C【解析】当m⊥n,n∥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故A选项错误;当m∥β,β⊥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故选项B错误;当m⊥β,n⊥β,n⊥α时,必有α∥β,从而m⊥α,故选项C正确;在如图所示的正方体ABCD-A1B1C1D1中,取m为B1C1,n为CC1,β为平面ABCD,α为平面ADD1A1,这时满足m⊥n,n ⊥β,β⊥α,但m⊥α不成立,故选项D错误.50.(2014·陕西·理T5)已知底面边长为1,侧棱长为√2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B.4π C.2π D.4π3【答案】D【解析】依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R,则2R=√12+12+(√2)2=2,解得R=1,所以V=4π3R 3=4π3.51.(2014·大纲全国·理T8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4B.16πC.9πD.27π4【答案】A【解析】由图知,R 2=(4-R)2+2, ∴R 2=16-8R+R 2+2,∴R=94, ∴S 表=4πR 2=4π×8116=814π,选A.52.(2014·湖南·理T7文T8)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) A.1 B.2 C.3 D.4【答案】B【解析】由三视图可得原石材为如右图所示的直三棱柱A 1B 1C 1-ABC,且AB=8,BC=6,BB 1=12.若要得到半径最大的球,则此球与平面A 1B 1BA,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆的半径相等,故半径r=6+8-102=2.故选B. 53.(2014·全国1·理T12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6√2B.6C.4√2D.4【答案】B【解析】如图所示的正方体ABCD-A1B1C1D1的棱长为4.取B1B的中点G,即三棱锥G-CC1D1为满足要求的几何体,其中最长棱为D1G,D1G=√(4√2)2+22=6.54.(2014·全国1·文T8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】由所给三视图可知该几何体是一个三棱柱(如图).55.(2014·北京·理T7)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, √2).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【答案】D【解析】三棱锥的各顶点在xOy 坐标平面上的正投影分别为A 1(2,0,0),B 1(2,2,0),C 1(0,2,0),D 1(1,1,0).显然D 1点为A 1C 1的中点,如图(1),正投影为Rt △A 1B 1C 1,其面积S 1=12×2×2=2.三棱锥的各顶点在yOz 坐标平面上的正投影分别为A 2(0,0,0),B 2(0,2,0),C 2(0,2,0),D 2(0,1,√2).显然B 2,C 2重合,如图(2),正投影为△A 2B 2D 2,其面积S 2=12×2×√2=√2.三棱锥的各顶点在zOx 坐标平面上的正投影分别为A 3(2,0,0),B 3(2,0,0),C 3(0,0,0),D 3(1,0,√2),由图(3)可知,正投影为△A 3D 3C 3,其面积S 3=12×2×√2=√2. 综上,S 2=S 3,S 3≠S 1.故选D.56.(2014·大纲全国·理T11)已知二面角α-l-β为60°,AB ⊂α,AB ⊥l,A 为垂足,CD ⊂β,C ∈l,∠ACD=135°,则异面直线AB 与CD 所成角的余弦值为( ) A.14B.√24C.√34D.12【答案】B【解析】如图,在平面α内过C 作CE ∥AB,则∠ECD 为异面直线AB 与CD 所成的角或其补角,不妨取CE=1,过E 作EO ⊥β于O. 在平面β内过O 作OH ⊥CD 于H, 连EH,则EH ⊥CD.因为AB ∥CE,AB ⊥l,所以CE ⊥l. 又因为EO ⊥平面β,所以CO ⊥l.故∠ECO 为二面角α-l-β的平面角,所以∠ECO=60°. 而∠ACD=135°,CO ⊥l,所以∠OCH=45°.在Rt △ECO 中,CO=CE ·cos ∠ECO=1·cos 60°=12.在Rt △COH 中,CH=CO ·cos ∠OCH=12·sin 45°=√24. 在Rt △ECH 中,cos ∠ECH=CHCE=√241=√24.所以异面直线AB 与CD 所成角的余弦值为√24.故选B.57.(2014·大纲全国·文T4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A.16B.√36C.13D.√33【答案】B【解析】如图所示,取AD 的中点F,连EF,CF,则EF ∥BD,∴异面直线CE 与BD 所成的角即为CE 与EF 所成的角∠CEF.由题知,△ABC,△ADC 为正三角形,设AB=2,则 CE=CF=√3,EF=12BD=1.∴在△CEF 中,由余弦定理, 得cos ∠CEF=CE 2+EF 2-CF 22CE ·EF=√3)22√3)22×√3×1=√36.故选B.58.(2014·全国2·理T6文T6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B.59C.1027D.13【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示. 切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3). 故所求比值为V1V 2=20π54π=1027.59.(2014·全国2·文T7)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为√3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为( )A.3B.32C.1D.√32【答案】C【解析】∵D 是等边△ABC 的边BC 的中点,∴AD ⊥BC. 又ABC-A 1B 1C 1为正三棱柱, ∴AD ⊥平面BB 1C 1C. 又四边形BB 1C 1C 为矩形,∴S △DB 1C 1=12S 四边形BB 1C 1C =12×2×√3=√3. 又AD=2×√32=√3,∴V A -B 1DC 1=13S △B 1DC 1·AD=13×√3×√3=1.60.(2013·全国1·理T8文T11)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π【答案】A【解析】该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱= π×22×4=8π,V 长方体=4×2×2=16. 所以所求体积为16+8π.故选A.61.(2013·浙江·文T5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( ) A.108 cm 3B.100 cm 3C.92 cm 3D.84 cm 3【答案】B【解析】由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×42=100(cm 3).故选B.62.(2013·山东·理T4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为9,底面是边长为√3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6【答案】B【解析】如图所示,由棱柱体积为94,底面正三角形的边长为√3,可求得棱柱的高为√3.设P 在平面ABC 上射影为O,则可求得AO 长为1,故AP 长为√12+(√3)2=2.故∠PAO=π3,即PA 与平面ABC 所成的角为π3.63.(2013·全国2·理T7文T9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为 ( )【答案】A【解析】该四面体在空间直角坐标系O-xyz 中的图象如图所示.则它在平面zOx 上的投影,即正视图为.64.(2013·湖南·理T7)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A.1 B.√2 C.√2-12 D.√2+12【答案】C【解析】当俯视图是面积为1的正方形时,其正视图的最小面积等于一个面的面积1,最大面积等于对角面的面积√2.故正视图面积S 的取值范围为1≤S≤√2. 因为√2-12<1,故选C.65.(2013·全国1·理T6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ) A.500π3 cm 3B.866π3 cm 3C.1372π3 cm 3D.2048π3cm 3【答案】A【解析】设球半径为R,由题可知R,R-2,正方体棱长的一半可构成直角三角形,即△OBA 为直角三角形,如图. BC=2,BA=4,OB=R-2,OA=R, 由R 2=(R-2)2+42,得R=5,所以球的体积为4π3×53=5003π(cm 3),故选A.66.(2013·辽宁·理T10)已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( ) A.3√172 B.2√10C.132D.3√10【答案】C。
高中数学立体几何大题综合归类(原卷版)

高中数学立体几何大题综合归类(原卷版)目录题型01平行:无交线型 (1)题型02平行:线面平行探索性 (3)题型03平行:面面平行探索性 (4)题型04垂直:线面垂直探索性 (5)题型05垂直:面面垂直翻折探索性 (7)题型06证明与建系:斜棱柱垂面法建系 (8)题型07证明与建系:斜棱柱垂线法建系 (10)题型08证明与建系:三棱柱投影法建系 (12)题型09证明与建系:角平分线法建系 (13)题型10二面角延长线法 (15)题型11翻折型 (16)题型12台体型 (18)高考练场..............................................................................................................................................................................19热点题型归纳题型01平行:无交线型【解题攻略】两个平面相交:1.两点确定一条直线,只需确定两平面的两个公共点即可2.由于两平面有一个公共点A ,再找一个公共点即可确定交线3.一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行,在平面内,过两平面的公共点作直线与已知直线平行,则此直线即为两平面的交线【典例1-1】如图,在平行四边形ABCD 中,60ABC ∠=︒,24==A D A B ,E 为AD 的中点,以EC 为折痕将CDE △折起,使点D 到达点P 的位置,且=10PB ,F ,G 分别为BC ,PE 的中点.(1)证明://PB 平面AFG .(2)若平面PAB 与平面PEF 的交线为l ,求直线l 与平面PBC 所成角的正弦值.【变式1-1】如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,24AB CD ==,0=60BAD ∠,侧棱1DD ⊥底面ABCD 且1DD DC =.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明);(2)求点B 到平面1ADB 的距离.【变式1-2】如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径4AB =,母线22PH =,M 是PB 的中点,四边形OBCH 为正方形.设平面POH ⋂平面PBC l =,证明://l BC ;.题型02平行:线面平行探索性【解题攻略】平行的常用构造方法①三角形中位线法;②平行四边形线法;③比例线段法.注意:平行构造主要用于:①异面直线求夹角;②平行关系的判定.【典例1-1】如图,在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AC A C A A ===,AB BC =,且AB BC ⊥,O 为AC 中点.(1)求证AC ⊥平面1A OB(2)在1BC 上是否存在一点E ,使得OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置.【变式1-1】如图,四边形ABCD 中,AB AD ⊥,//AD BC ,6AD =,24BC AB ==,E ,F 分别在BC ,AD 上,//EF AB ,现将四边形ABCD 沿EF 折起,使BE EC ⊥.(1)若1BE =,在折叠后的线段AD 上是否存在一点P ,使得//CP 平面ABEF ?若存在,求出AP PD 的值;若不存在,说明理由.(2)求三棱锥A CDF -的体积的最大值,并求出此时点F 到平面ACD 的距离.【变式1-2】如图,在直角梯形ABCD 中,AB ∥DC ,∠BAD =90°,AB =4,AD =2,DC =3,点E 在CD 上,且DE =2,将△ADE 沿AE 折起,使得平面ADE ⊥平面ABCE ,G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D -ABCE 的体积;(3)在线段BD 上是否存在点P ,使得CP ∥平面ADE ?若存在,求BP BD的值;若不存在,请说明理由.题型03平行:面面平行探索性【解题攻略】证明平行(1)线线平行:设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)线面平行:设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(3)面面平行:设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.【典例1-1】在三棱柱111ABC A B C 中,(1)若,,,E F G H 分别是1111,,,AB AC A B AC 的中点,求证:平面1//EFA 平面BCHG .(2)若点1,D D 分别是11,AC AC 上的点,且平面1//BC D 平面11AB D ,试求AD DC 的值.【变式1-1】.在长方体1111ABCD A B C D -中,1222AB BC AA ===,P 为11A B 的中点.已知过点1 A的平面α与平面1BPC 平行,平面α与直线11,AB C D 分别相交于点M ,N ,请确定点M ,N的位置;【变式1-2】已知正方体1111ABCD A B C D -中,P 、Q 分别为对角线BD 、1CD 上的点,且123CQ BP QD PD ==.(1)求证://PQ 平面11A D DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面//PQR 平面11A D DA ?请给出证明.题型04垂直:线面垂直探索性【解题攻略】垂直的常见构造:①等腰三角形三线合一法;②勾股定理法;③投影法.④菱形的对角线互相垂直【典例1-1】已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别是1AA 、11A B 、11AD 的中点.(1)求证://EF 平面1BC D ;(2)在线段BD 上是否存在点H ,使得EH ⊥平面1BC D ?若存在,求线段BH 的长;若不存在,请说明理由;(3)求EF 到平面1BC D 的距离.【变式1-1】如图,在四棱锥S -ABCD 中,四边形ABCD 是边长为2的菱形,∠ABC =60°,△SAD 为正三角形.侧面SAD ⊥底面ABCD ,E ,F 分别为棱AD ,SB 的中点.(1)求证:AF ∥平面SEC ;(2)求证:平面ASB ⊥平面CSB ;(3)在棱SB 上是否存在一点M ,使得BD ⊥平面MAC ?若存在,求BMBS 的值;若不存在,请说明理由.【变式1-2】如图,在直三棱柱111ABC A B C -中,90ABC ∠= ,1AB BC ==,13AA =,M 为棱AC 上靠近A 的三等分点,N 为棱11AB 上靠近1A 的三等分点.(1)证明://MN 平面11BB C C ;(2)在棱1BB 上是否存在点D ,使得1C D ⊥面1B MN ?若存在,求出1B D 的大小并证明;若不存在,说明理由.题型05垂直:面面垂直翻折探索性【解题攻略】翻折1.翻折前后,在同一平平面内的点线关系不变2.翻折过程中是否存在垂直或者平行等特殊位置关系3.翻折过程中,角度是否为定值4.翻折过程中,体积是否存在变化【典例1-1】如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =BC =3,AD =CD =1,∠ADC =120°,点M是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB .(1)证明:MN //平面PDC ;(2)在线段BC 上是否存在一点Q ,使得平面MNQ ⊥平面PAD ,若存在,求出点Q 的位置;若不存在,请说明理由.【变式1-1】如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【变式1-2】如图(1),点E是直角梯形ABCD底边CD上的一点,∠ABC=90°,BC=CE=1,AB=DE =2,将DAE沿AE折起,使得D-AE-B成直二面角,连接CD和BD,如图(2).(1)求证:平面ABD 平面BCD;(2)在线段BD上确定一点F,使得CF∥平面ADE.题型06证明与建系:斜棱柱垂面法建系【解题攻略】斜棱柱垂线型建系如果存在垂线(投影型)斜棱柱,则可以直接借助垂线作为z轴建系,下底面,可以寻找或者做出一对垂线作为xy轴。
2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)课标理数12.G1[2020·福建卷] 三棱锥P -ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.课标理数12.G1[2020·福建卷] 【答案】 3【解析】 由已知,S △ABC =12×22sin π3=3,∴ V P -ABC =13S △ABC ·PA =13×3×3=3,即三棱锥P -ABC 的体积等于 3.课标文数8.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80课标文数8.G2[2020·安徽卷] C 【解析】 由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.课标理数6.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80图1-3课标理数7.G2[2020·北京卷] 某四面体的三视图如图1-3所示,该四面体四个面的面积中最大的是( )A .8B .6 2C .10D .8 2课标理数7.G2[2020·北京卷] C 【解析】 由三视图可知,该四面体可以描述为SA ⊥平面ABC ,∠ABC =90°,且SA =AB =4,BC =3,所以四面体四个面的面积分别为10,8,6,62,从而面积最大为10,故应选C.图1-4课标文数5.G2[2020·北京卷] 某四棱锥的三视图如图1-1所示,该四棱锥的表面积是( )图1-1A .32B .16+16 2C .48D .16+32 2课标文数5.G2[2020·北京卷] B 【解析】 由题意可知,该四棱锥是一个底面边长为4,高为2的正四棱锥,所以其表面积为4×4+4×12×4×22=16+162,故选B.课标理数7.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )图1-2A .6 3B .9 3C .12 3D .18 3课标理数7.G2[2020·广东卷] B 【解析】 由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3,所以V =9 3.课标文数9.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2课标文数9.G2[2020·广东卷] C 【解析】 由三视图知该几何体为四棱锥,棱锥高h=232-32=3,底面为菱形,对角线长分别为23,2,所以底面积为12×23×2=23,所以V =13Sh =13×23×3=2 3.图1-1课标理数3.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18课标理数3.G2[2020·湖南卷] B 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,则其体积为:V =V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18, 故选B.课标文数4.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )图1-1A .9π+42B .36π+18 C.92π+12 D.92π+18 课标文数4.G2[2020·湖南卷] D 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3高为2的长方体所构成的几何体,则其体积为: V=V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18,故选D.课标理数6.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标理数 6.G2 [2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如下图,故侧视图选D.图1-5课标理数15.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-5所示,左视图是一个矩形,则这个矩形的面积是________.课标理数15.G2[2020·辽宁卷] 2 3 【解析】 由俯视图知该正三棱柱的直观图为图1-6,其中M ,N 是中点,矩形MNC 1C 为左视图.由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为2 3.图1-6图1-3课标文数8.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-3所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3课标文数8.G2[2020·辽宁卷] B 【解析】 由俯视图知该正三棱柱的直观图为下图,其中M ,N 是中点,矩形MNC 1C 为左视图.图1-4 由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为23,故选B.课标文数8.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标文数8.G2[2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D.图1-4图1-2课标理数11.G2[2020·山东卷] 如图1-2是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-2;②存在四棱柱,其正(主)视图、俯视图如图1-2;③存在圆柱,其正(主)视图、俯视图如图1-2.其中真命题的个数是( )A .3B .2C .1D .0课标理数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.图1-3课标文数11.G2[2020·山东卷] 如图1-3是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-3;②存在四棱柱,其正(主)视图、俯视图如图1-3;③存在圆柱,其正(主)视图、俯视图如图1-3.其中真命题的个数是( )A .3B .2C .1D .0课标文数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.课标理数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积是( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标理数5.G2[2020·陕西卷] A 【解析】 分析图中所给的三视图可知,对应空间几何图形,应该是一个棱长为2的正方体中间挖去一个半径为1,高为2的圆锥,则对应体积为:V =2×2×2-13π×12×2=8-23π.课标文数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积为( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标文数5.G2[2020·陕西卷] A 【解析】 主视图与左视图一样是边长为2的正方形,里面有两条虚线,俯视图是边长为2的正方形与直径为2的圆相切,其直观图为棱长为2的正方体中挖掉一个底面直径为2的圆锥,故其体积为正方体的体积与圆锥的体积之差,V正=23=8,V 锥=13πr 2h =2π3(r =1,h =2),故体积V =8-2π3,故答案为A.课标理数10.G2[2020·天津卷] 一个几何体的三视图如图1-5所示(单位:m),则该几何体的体积为________ m 3.图1-5课标理数10.G2[2020·天津卷] 6+π 【解析】 根据图中信息,可得该几何体为一个棱柱与一个圆锥的组合体,V =3×2×1+13π×1×3=6+π.课标文数10.G2[2020·天津卷] 一个几何体的三视图如图1-4所示(单位:m),则该几何体的体积为________ m 3.图1-4课标文数10.G2[2020·天津卷] 4 【解析】 根据三视图还原成直观图,可以看出,其是由两个形状一样的,底面长和宽都为1,高为2的长方体叠加而成,故其体积V =2×1×1+1×1×2=4.图1-2课标理数3.G2[2020·浙江卷] D 【解析】由正视图可排除A、B选项,由俯视图可排除C选项.课标文数7.G2[2020·浙江卷] 若某几何体的三视图如图1-1所示,则这个几何体的直观图可以是( )图1-1图1-2课标文数7.G2[2020·浙江卷] B 【解析】由正视图可排除A,C;由侧视图可判断该该几何体的直观图是B.大纲理数3.G3[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲理数3.G3[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线时而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.图1-5【解答】 (1)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA=1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与线段FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B ,C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF .(向量法)过点F 作FQ ⊥AD ,交AD 于点Q ,连QE .由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED .以Q 为坐标原点,QE →为x 轴正向,QD →为y 轴正向,QF →为z 轴正向,建立如图所示空间直角坐标系.图1-6由条件知E (3,0,0),F (0,0,3),B ⎝ ⎛⎭⎪⎫32,-32,0,C ⎝ ⎛⎭⎪⎫0,-32,32.则有BC →=⎝ ⎛⎭⎪⎫-32,0,32,EF →=(-3,0,3).所以EF →=2BC →,即得BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S 四边形OBED =S △EOB +S △OED =332.过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标文数17.G4[2020·北京卷]图1-4如图1-4,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.课标文数17.G4[2020·北京卷] 【解答】 (1)证明:因为D ,E 分别为AP ,AC 的中点,图1-5所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP , 所以DE ∥平面BCP .(2)因为D 、E 、F 、G 分别为AP 、AC 、BC 、PB 的中点, 所以DE ∥PC ∥FG , DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG ,所以平行四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下: 连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC 、AB 的中点M ,N ,连接ME 、EN 、NG 、MG 、MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG .所以Q 为满足条件的点.图1-3课标文数15.G4[2020·福建卷] 如图1-3,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.课标文数15.G4[2020·福建卷] 2 【解析】 ∵ EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线,∴EF =12AC =12×22= 2.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD ,因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD =AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .课标文数4.G4[2020·浙江卷] 若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交课标文数4.G4[2020·浙江卷] B 【解析】 在α内存在直线与l 相交,所以A 不正确;若α内存在直线与l 平行,又∵l ⊄α,则有l ∥α,与题设相矛盾,∴B 正确,C 不正确;在α内不过l 与α交点的直线与l 异面,D 不正确.图1-6课标理数16.G5,G11[2020·北京卷] 如图1-6,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.课标理数16.G5,G11[2020·北京卷] 【解答】 (1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为PA ⊥平面ABCD , 所以PA ⊥BD ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,OB 、OC 所在直线及点O 所在且与PA 平行的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).图1-7所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. (3)由(2)知BC →=(-1,3,0). 设P (0,-3,t )(t >0), 则BP →=(-1,-3,t ).设平面PBC 的法向量m =(x ,y ,z ), 则BC →·m =0,BP →·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0,令y =3,则x =3,z =6t, 所以m =⎝ ⎛⎭⎪⎫3,3,6t .同理,可求得平面PDC 的法向量n =⎝ ⎛⎭⎪⎫-3,3,6t .因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t2=0.解得t = 6.所以当平面PBC 与平面PDC 垂直时,PA = 6.大纲理数6.G5、G11[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( )A.23B.33C.63D .1 大纲理数6.G5、G11[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则平面ABC ⊥β,在平面β内过D 作DE ⊥BC ,则DE ⊥平面ABC ,DE 即为D 到平面ABC 的距离,在△DBC 中,运用等面积法得DE =63,故选C.大纲理数19.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.图1-1大纲理数19.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角. 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32. 作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB =217,α=arcsin 217.解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ), 则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin 217.大纲文数8.G5[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( )A .2 B. 3 C. 2 D .1 大纲文数8.G5[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则AC ⊥CB ,∵AB =2,AC =1,可得BC =3,又BD ⊥l ,BD =1,∴CD =2,故选C.大纲文数20.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,图1-1AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1. (1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.大纲文数20.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角.由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB=217,α=arcsin 217. 解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ),则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin217.课标理数20.G5,G10,G11[2020·福建卷] 如图1-7,四棱锥P -ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,图1-7AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°. (1)求证:平面PAB ⊥平面PAD ; (2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到P 、B 、C 、D 的距离都相等?说明理由. 课标理数20.G5,G10,G11 [2020·福建卷] 【解答】图1-8(1)证明:因为PA ⊥平面ABCD , AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .图1-9(2)①以A 为坐标原点,建立空间直角坐标系A -xyz (如图1-9). 在平面ABCD 内,作CE ∥AB 交AD 于点E , 则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD →,n ⊥PD →,得⎩⎪⎨⎪⎧-x +y =0.4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又PB →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得c os60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|PB →|, 即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12. 解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →=(0,-m ,t ).由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;① 由|GD →|=|GP →|得(4-t -m )2=m 2+t 2.②由①、②消去t ,化简得m 2-3m +4=0.③由于方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 法二:假设在线段AD 上存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,图1-12从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABG 中, GB =AB 2+AG 2=λ2+3-λ2=2⎝⎛⎭⎪⎫λ-322+92>1.这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.课标理数18.G5,G10[2020·广东卷] 如图1-3,在锥体P -ABCD 中,ABCD 是边长为1的菱形,且∠DAB =60°,PA =PD =2,PB =2,E ,F 分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ;(2)求二面角P -AD -B 的余弦值.图1-3课标理数18.G5,G10[2020·广东卷] 【解答】 法一:(1)证明:设AD 中点为G ,连接PG ,BG ,BD .图1-1因PA =PD ,有PG ⊥AD ,在△ABD 中,AB =AD =1,∠DAB =60°,有△ABD 为等边三角形,因此BG ⊥AD ,BG ∩PG =G ,所以AD ⊥平面PBG ,所以AD ⊥PB ,AD ⊥GB .又PB ∥EF ,得AD ⊥EF ,而DE ∥GB 得AD ⊥DE ,又FE ∩DE =E ,所以AD ⊥平面DEF . (2)∵PG ⊥AD ,BG ⊥AD ,∴∠PGB 为二面角P -AD -B 的平面角.在Rt △PAG 中,PG 2=PA 2-AG 2=74,在Rt △ABG 中,BG =AB ·sin60°=32, ∴cos ∠PGB =PG 2+BG 2-PB 22PG ·BG=74+34-42·72·32=-217. 法二:(1)证明:设AD 中点为G ,因为PA =PD ,所以PG ⊥AD , 又AB =AD ,∠DAB =60°,所以△ABD 为等边三角形,因此,BG ⊥AD ,从而AD ⊥平面PBG . 延长BG 到O 且使PO ⊥OB ,又PO ⊂平面PBG ,所以PO ⊥AD ,又AD ∩OB =G ,所以PO ⊥平面ABCD .以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD 的直线为y 轴,建立如图1-2所示的空间直角坐标系.设P (0,0,m ),G (n,0,0),则A ⎝⎛⎭⎪⎫n ,-12,0,D ⎝ ⎛⎭⎪⎫n ,12,0.图1-2∵|GB →|=|AB →|sin60°=32,∴B ⎝ ⎛⎭⎪⎫n +32,0,0,C ⎝ ⎛⎭⎪⎫n +32,1,0,E ⎝⎛⎭⎪⎫n +32,12,0,F ⎝ ⎛⎭⎪⎫n 2+34,12,m 2. ∴AD →=(0,1,0),DE →=⎝ ⎛⎭⎪⎫32,0,0,FE →=⎝ ⎛⎭⎪⎫n 2+34,0,-m 2,∴AD →·DE →=0,AD →·FE →=0, ∴AD ⊥DE ,AD ⊥FE ,又DE ∩FE =E ,∴AD ⊥平面DEF .(2)∵PA →=⎝ ⎛⎭⎪⎫n ,-12,-m ,PB →=⎝ ⎛⎭⎪⎫n +32,0,-m , ∴m 2+n 2+14=2,⎝⎛⎭⎪⎫n +322+m 2=2,解得m =1,n =32. 取平面ABD 的法向量n 1=(0,0,-1), 设平面PAD 的法向量n 2=(a ,b ,c ),由PA →·n 2=0,得32a -b 2-c =0,由PD →·n 2=0,得32a +b 2-c =0,故取n 2=⎝ ⎛⎭⎪⎫1,0,32.∴cos〈n1,n2〉=-32 1·74=-217.即二面角P-AD-B的余弦值为-217.课标理数18.G5,G11[2020·湖北卷] 如图1-4,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tanθ的最小值.图1-4课标理数18.G5,G11[2020·湖北卷] 【解答】解法1:过E作EN⊥AC于N,连结EF.(1)如图①,连结NF、AC1,由直棱柱的性质知,底面ABC⊥侧面A1C,又底面ABC∩侧面A1C=AC,且EN⊂底面ABC,所以EN⊥侧面A1C,NF为EF在侧面A1C 内的射影,在Rt△CNE中,CN=CE co s60°=1,则由CFCC1=CNCA=14,得NF∥AC1.又AC1⊥A1C,故NF⊥A1C,由三垂线定理知EF⊥A1C.(2)如图②,连结AF,过N作NM⊥AF于M,连结ME,由(1)知EN⊥侧面A1C,根据三垂线定理得EM⊥AF,所以∠EMN是二面角C-AF-E的平面角,即∠EMN=θ,设∠FAC=α,则0°<α≤45°.在Rt△CNE中,NE=EC·sin60°=3,在Rt△AMN中,MN=AN·sinα=3sinα,故tanθ=NEMN=33sinα.又0°<α≤45°,∴0<sinα≤22,故当sinα=22,即当α=45°时,tanθ达到最小值,tanθ=33×2=63,此时F与C1重合.解法2:(1)建立如图③所示的空间直角坐标系,则由已知可得A(0,0,0),B(23,2,0),C(0,4,0),A1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1), 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0,故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ),AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0,取m =(3λ,-λ,4),又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2, 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63, 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.图1-2课标文数18.G5,G11[2020·湖北卷] 如图1-2,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2.(1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.课标文数18.G5,G11[2020·湖北卷]【解答】 解法1:(1)证明:由已知可得CC 1=32,CE =C 1F =22+222=23,EF =C 1E =22+22= 6.于是有EF 2+C 1E 2=C 1F 2,CE 2+C 1E 2=CC 21. 所以C 1E ⊥EF ,C 1E ⊥CE .又EF ∩CE =E ,所以C 1E ⊥平面CEF . 又CF ⊂平面CEF ,故CF ⊥C 1E .(2)在△CEF 中,由(1)可得EF =CF =6,CE =23,于是有EF 2+CF 2=CE 2,所以CF ⊥EF . 又由(1)知CF ⊥C 1E ,且EF ∩C 1E =E , 所以CF ⊥平面C 1EF .又C 1F ⊂平面C 1EF ,故CF ⊥C 1F .于是∠EFC 1即为二面角E -CF -C 1的平面角.由(1)知△C 1EF 是等腰直角三角形,所以∠EFC 1=45°,即所求二面角E -CF -C 1的大小为45°图1-3解法2:建立如图1-3所示的空间直角坐标系,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2).(1)C 1E →=(0,-2,-2),CF →=(3,-1,2), ∴C 1E →·CF →=0+2-2=0, ∴CF ⊥C 1E . (2)CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ). 由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧m ·CE →=0,m ·CF →=0,即⎩⎨⎧-2y +22z =0,3x -y +2z =0,可取m =(0,2,1).设侧面BC 1的一个法向量为n ,由n ⊥CB →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32),可取n =(1,3,0),设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得cos θ=|m·n ||m ||n |=63×2=22,所以θ=45°,即所求二面角E -CF -C 1的大小为45°.图1-6课标理数19.G5,G11[2020·湖南卷] 如图1-6,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ; (2)求二面角B -PA -C 的余弦值.课标理数19.G5,G11[2020·湖南卷] 【解答】 解法一:(1)连结OC ,因为OA =OC ,D 是AC 的中点,所以AC ⊥OD .图1-7又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO .因为OD ,PO 是平面POD 内的两条相交直线,所以AC ⊥平面POD ,而AC ⊂平面PAC ,所以平面POD ⊥平面PAC .(2)在平面POD 中,过O 作OH ⊥PD 于H ,由(1)知,平面POD ⊥平面PAC ,所以OH ⊥平面PAC . 又PA ⊂面PAC ,所以PA ⊥OH .在平面PAO 中,过O 作OG ⊥PA 于G ,连结HG ,则有PA ⊥平面OGH .从而PA ⊥HG . 故∠OGH 为二面角B -PA -C 的平面角.在Rt △ODA 中,OD =OA ·sin45°=22.在Rt △POD 中,OH =PO ·ODPO 2+OD 2=2×222+12=105.在Rt △POA 中,OG =PO ·OA PO 2+OA 2=2×12+1=63.在Rt △OHG 中,sin ∠OGH =OH OG =10563=155. 所以cos ∠OGH =1-sin 2∠OGH =1-1525=105. 故二面角B -PA -C 的余弦值为105. 解法二:(1)如图1-8所示,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则图1-8O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0.设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1.取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2.从而平面POD ⊥平面PAC . (2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量为n 3=(0,1,0).由(1)知,平面PAC 的一个法向量为n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2|·|n 3|=25=105.由图可知,二面角B -PA -C 的平面角与θ相等,所以二面角B -PA -C 的余弦值为105.课标文数19.G5,G11[2020·湖南卷] 如图1-5,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30°,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面PAC 所成角的正弦值.图1-5课标文数19.G5,G11[2020·湖南卷] 【解答】 (1)因为OA =OC ,D 是AC 的中点,所以AC ⊥OD . 又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO . 而OD ,PO 是平面POD 内的两条相交直线, 所以AC ⊥平面POD .(2)由(1)知,AC ⊥平面POD ,又AC ⊂平面PAC , 所以平面POD ⊥平面PAC .在平面POD 中,过O 作OH ⊥PD 于H ,则OH ⊥平面PAC .图1-6连结CH ,则CH 是OC 在平面PAC 上的射影, 所以∠OCH 是直线OC 和平面PAC 所成的角.在Rt △ODA 中,OD =OA ·sin30°=12.在Rt △POD 中,OH =PO ·OD PO 2+OD 2=2×122+14=23.在Rt △OHC 中,sin ∠OCH =OH OC =23. 故直线OC 和平面PAC 所成角的正弦值为23.图1-9课标理数18.G5,G10,G11[2020·课标全国卷] 如图1-9,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.课标理数18.G5,G10,G11[2020·课标全国卷] 【解答】 (1)因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD .故PA ⊥BD .图1-10(2)如图,以D 为坐标原点,AD 的长为单位长,DA 、DB 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1), AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.图1-8课标文数18.G5,G11[2020·课标全国卷] 如图1-8,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)设PD =AD =1,求棱锥D -PBC 的高.课标文数18.G5,G11[2020·课标全国卷] 【解答】 (1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD ,故PA ⊥BD . (2)如图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD ,则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD.图1-9故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =3,PB =2.根据DE ·PB =PD ·BD 得DE =32.即棱锥D -PBC 的高为32. 课标理数16.G5,G9[2020·陕西卷] 如图1-6,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.图1-6(1)证明:平面ADB ⊥平面BDC;(2)设E 为BC 的中点,求AE →与DB →夹角的余弦值.课标理数16.F2[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D , ∴AD ⊥平面BDC , ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .cos 〈AE →,DB →〉=AE →·DB →|AE →|·|DB →|=121×224=2222.课标文数16.G5[2020·陕西卷] 如图1-8,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)若BD =1,求三棱锥D -ABC 的表面积.图1-8课标文数16.G5[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D . ∴AD ⊥平面BDC . ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .(2)由(1)知,DA ⊥DB ,DB ⊥DC ,DC ⊥DA , DB =DA =DC =1. ∴AB =BC =CA = 2.从而S △DAB =S △DBC =S △DCA =12×1×1=12.S △ABC =12×2×2×sin60°=32. ∴表面积S =12×3+32=3+32.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.大纲文数6.G5[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲文数6.G5[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标理数4.G5[2020·浙江卷] 下列命题中错误..的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β课标理数4.G5[2020·浙江卷] D 【解析】若面α⊥面β,在面α内与面β的交线不相交的直线平行于平面β,故A正确;B中若α内存在直线垂直平面β,则α⊥β,与题设矛盾,所以B正确;由面面垂直的性质知选项C正确.由A正确可推出D错误.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标理数17.G4,G7[2020·安徽卷]如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、。
2020年高考试题分类汇编(立体几何)

2020年高考试题分类汇编(立体几何)考法1空间中的点、线、面的位置关系1.(2020·全国卷Ⅰ·文理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状科视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥的一个侧面三角形的面积,则其侧面三角形底边上的高于底面正方形的边长的比值为 A .514- B .512- C .514+ D .512+2.(2020·全国卷Ⅰ·理科)如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥, 30CAE ∠=,则cos FCB ∠= .3.(2020·全国卷Ⅱ·文理科)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一个平面内. 2p :过空间任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则l m ⊥.则下列命题中所以真命题的序号是 .①14p p ∧ ②12p p ∧ ③23()p p ⌝∨ ④34()()p p ⌝∨⌝ 4.(2020·浙江卷)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,ABCD (P )E (P )F (P )l 在同一平面”是“m ,n ,l 两两相交”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 考法2三视图1.(2020·全国卷Ⅱ·理科)右图是一个多面体的三视图,这个多面体某天棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H2.(2020·全国卷Ⅲ·文理科)右图为某几何体的三视图,则该几何体的表面积为A .642+B .442+C .623+D .423+3.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几 何体的体积(单位:3cm )是A .73B .143C .3D .64.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱M N EF GH222的表面积为A .63+B .623+C .123+D .1223+考法3与球的组合体1.(2020·全国卷Ⅰ·文理科)已知A ,B ,C 为球O 的球面上三点,1O 为ABC ∆的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48π C .36π D .32π2.(2020·山东卷)日冕是中国古代用来测定时间的仪器,利用与冕面垂直的冕针投射到冕面的影子来测定时间,把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成的角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日冕,若冕面与赤道所在的平面平行,点A 的纬度为北纬40,则冕针与点A 处的水平面所成的角为A .20B .40C .50D .903.(2020·全国卷Ⅱ·文理科)已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的面积112正(主)视图 侧(左)视图俯视图AB .32C .1 D.24.(2020·全国卷Ⅲ·文理科)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .5.(2020·山东卷)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=.以1D11BCC B 的交线长为 .6.(2020·天津卷)若棱长为则该球的表面积为A .12πB .24πC .36πD .144π考法4解答题1.(2020·全国卷Ⅰ·理科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内角正三角形,P 为DO上一点,6PO DO =. (Ⅰ)证明:PA ⊥平面PBC ; (Ⅱ)求二面角B PC E --的余弦值.2.(2020·全国卷Ⅰ·文科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC ∆是底面的内角正三角形,P 为DO 上一点,90ABC ∠=. (Ⅰ)证明:平面PAB ⊥平面PAC ;(Ⅱ)设DO =,求三棱锥P ABC -的体积.P ABO E CDP ABO C D3.(2020·全国卷Ⅱ·理科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.4.(2020·全国卷Ⅱ·文科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若6AO AB ==,AO ∥平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.5.(2020·全国卷Ⅲ·理科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =. (Ⅰ)证明:点1C 在平面AEF 内;ABC E F O MNA 1B 1C 1PABC E FO MNA 1B 1C 1P(Ⅱ)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.6.(2020·全国卷Ⅲ·文科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =.(Ⅰ)当AB BC =时,EF AC ⊥. (Ⅱ)证明:点1C 在平面AEF 内;7.(2020·山东卷)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l . (Ⅰ)证明:l ⊥平面PDC ;(Ⅱ)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.A BCDEF A 1B 1C 1D 1ABCDEFA 1B 1C 1D 1PABCD8.(2020·天津卷)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,AC BC ⊥,2AC BC ==,13CC =,点D ,E 分别在棱1AA 和棱1CC 上,且1AD =,2CE =,M 为棱11A B 的中点. (Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(2020·浙江卷)如图,三棱台DEF ABC -中,面ADFC ⊥面ABC ,45ACB ACD ∠=∠=,DC =2BC .(Ⅰ)证明:EF DB ⊥;(Ⅱ)求DF 与面DBC 所成角的正弦值.A BCDEMB 1A 1C 1ABCDEF10.(2020·北京卷)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点. (Ⅰ)求证:1BC ∥平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.ABCDE A 1B 1C 1D 1。
专题17立体几何解答题【2023高考】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题17 立体几何解答题一、解答题1.(2022年全国甲卷理科·第18题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【答案】(1)证明见解析:; .解析:(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F ,因为//,1,2CD AB AD CD CB AB ====,所以四边形ABCD 为等腰梯形,所以12AE BF ==,故DE =BD ==,所以222AD BD AB +=,所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥,又PD AD D ⋂=,所以BD ⊥平面PAD ,又因PA ⊂平面PAD ,所以BD PA ⊥;(2)解:如图,以点D 为原点建立空间直角坐标系,BD =,则()()(1,0,0,,A B P ,则(((,0,,AP BP DP =-== ,设平面PAB 的法向量(),,n x y z = ,则有0{0n AP x n BP ⋅=-=⋅=+=,可取)n = ,则cos ,n DP n DP n DP ⋅== ,所以PD 与平面PAB.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国甲卷理科·第18题2.(2022年全国乙卷理科·第18题ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面A B D 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面A B D所成的角的正弦值为解析:【小问1详解】因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD 中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .【小问2详解】连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,B E 因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,0,0,0,1A B D ,所以()()1,0,1,1,0AD AB =-=- ,设平面A B D 的一个法向量为(),,n x y z = ,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y()3n = ,又因为()31,0,0,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以314CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,n CF n CF n CF ⋅=== ,设CF 与平面A B D 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面A B D.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国乙卷理科·第18题3.(2022新高考全国II 卷·第20题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --正弦值.【答案】(1)证明见解析 (2)1113解析:(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,的又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以4OA ==,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB =所以12AC =,所以()2,0O,()B,()2,3P ,()0,12,0C,所以32E ⎛⎫ ⎪⎝⎭,则32AE ⎛⎫= ⎪⎝⎭,()AB = ,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则3020n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩ ,令2z =,则3y =-,0x =,所以()0,3,2n =- ;设平面AEC 的法向量为(),,m a b c =,则302120m AE b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =-,0b =,所以)6m =- ;所以cos ,n m n m n m⋅=== 设二面角C AE B --为θ,由图可知二面角C AE B --为钝二面角,所以cos θ=,所以11sin 13θ==故二面角C AE B --的正弦值为1113;【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国II 卷·第20题4.(2022新高考全国I 卷·第19题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】解析:(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅== ,解得h = 所以点A 到平面1A BC;(2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =,所以12AA AB ==,1A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 的一个法向量(),,m x y z = ,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020m BD a b c m BC a ⎧⋅=++=⎨⋅==⎩ ,可取()0,1,1n =-r ,则1cos ,2m n m n m n⋅===⋅ ,所以二面角A BD C --=.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国I 卷·第19题5.(2021年新高考全国Ⅱ卷·第19题)在四棱锥Q ABCD -中,底面ABCD是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面;(2)求二面角B QD A --平面角的余弦值.【答案】解析:(1)取AD 的中点为O ,连接,QO CO .因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA =2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =,因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥,因为OC AD O = ,故QO⊥的平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=- .设平面QBD 的法向量(),,n x y z = ,则00n BQ n BD ⎧⋅=⎪⎨⋅=⎪⎩ 即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭ .而平面QAD 的法向量为()1,0,0m = ,故12cos ,3312m n ==⨯ .二面角B QD A --的平面角为锐角,故其余弦值为23.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考全国Ⅱ卷·第19题6.(2021年新高考Ⅰ卷·第20题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】解析:(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD 因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD(2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥MF 则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形因为2BE ED =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11111332BCD V AO S ∆=⋅=⨯⨯⨯=的【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考Ⅰ卷·第20题7.(2020年新高考I 卷(山东卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年新高考I 卷(山东卷)·第20题8.(2020新高考II 卷(海南卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l.(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩ ,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020新高考II 卷(海南卷)·第20题9.(2021年高考全国乙卷理科·第18题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】;解析:(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+=,解得a =2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP = ,由11110m AM x y m AP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z =,BM ⎛⎫= ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM x nBP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,cos ,m n m n m n⋅<>===⋅,所以,sin ,m n <>==因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国乙卷理科·第18题10.(2021年高考全国甲卷理科·第19题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =解析:因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.的以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国甲卷理科·第19题11.(2020年高考数学课标Ⅰ卷理科·第18题)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【答案】(1)证明见解析;.【解析】(1)由题设,知DAE △为等边三角形,设1AE =,则DO =,1122CO BO AE ===,所以PO ==PC PB ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,所以PA ⊥平面PBC ;(2)过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244E P B C ---,1(,4PC =-,1(4PB =-,1(,0,2PE =- ,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x =,得111,0z y =-=,所以1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨--=⎪⎩,令21x =,得22z y ==,所以m =故cos ,||||n m m n n m ⋅<>===⋅设二面角B PC E --的大小为θ,则cos θ=【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第18题12.(2020年高考数学课标Ⅱ卷理科·第20题)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;解析:(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA∴在ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF ∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMNEF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)连接NP//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP =∴//AO NP根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111A B C A N=∴//ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m >)可得:ON AP =,6NP AB m== O 为111A B C △的中心,且111A B C △边长为6m∴16sin 603ON =⨯⨯︒=故:ON AP ==//EF BC ∴AP EPAM BM =∴3EP =解得:EP m=在11B C 截取1B Q EP m ==,故2QN m= 1B Q EP =且1//B Q EP∴四边形1B QPE 是平行四边形,∴1//B E PQ由(1)11B C ⊥平面1A AMN故QPN ∠为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQ ===sin QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN 【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅱ卷理科·第20题13.(2020年高考数学课标Ⅲ卷理科·第19题)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;.解析:(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG、1C E 、1C F ,在在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG = ,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =-- ,()2,0,2AF =--,()10,1,2A E =- ,()12,0,1A F =- ,设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =- ,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,cos,m nm nm n⋅<>===⋅设二面角1A EF A--的平面角为θ,则cosθ=,sinθ∴==因此,二面角1A EF A--.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第19题14.(2019年高考数学课标Ⅲ卷理科·第19题)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见详解;(2)30 .【官方解析】(1)由已知得//AD DE ,//CG BE ,所以//AD CG ,故,AD CG 确定一个平面.从而,,,A C G D 四点共面.由已知得,AB BE AB BC ⊥⊥,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH BC ⊥,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,60EBC ∠=︒,可求得1,BH EH ==.以H 为坐标原点,HC的方向为x 轴的的正方向,建立如图所示的空间直角坐标系H xyz -,则(1,1,0),(1,0,0),(2,1,0)A C G CG AC -==-.设平面ACGD 的法向量为(,,)n x y z =,则CG n AC n ⎧=⎪⎨=⎪⎩即0,20.x x y ⎧=⎪⎨-=⎪⎩所以可取(3,6,n =- .图2图1AA又平面BCGE 的法向量可取为(0,1,0)m =,所以cos ,n mn m |n||m|〈〉=因此二面角B - CG - A 的大小为30︒.【点评】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标Ⅲ卷理科·第19题15.(2019年高考数学课标全国Ⅱ卷理科·第17题)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.()1证明:BE ⊥平面11EB C ;()2若1AE A E =,求二面角1B EC C --的正弦值.【答案】()1证明见解析;(2.【官方解析】证明:()1由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .()2由()1知190BEB ∠=︒.由题设知11Rt ABE Rt A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,DA 为单位长,建立如图所示的空间直角坐标系D xyz -,则()0,1,0C ,()1,1,0B ,()10,1,2C ,()1,0,1E ,()1,0,0CB = ,()1,1,1CE =- ,()10,0,2CC =.设平面EBC 的法向量为()111,,n x y z =,则00CB n CE n ⎧⋅=⎪⎨⋅=⎪⎩,即11110,0,x x y z =⎧⎨-+=⎩所以可取()0,1,1n =-- .设平面1ECC 的法向量为()222,,m x y z =,则100CC m CE m ⎧⋅=⎪⎨⋅=⎪⎩即222220,0z x y z =⎧⎨-+=⎩所以可取()1,1,0m = .于是1cos ,2n m n m n m⋅==-⋅.所以,二面角1B EC C --.【分析】()1利用长方体的性质,可以知道11B C ⊥侧面11A B BA ,利用线面垂直的性质可以证明出11B C EB ⊥,这样可以利用线面垂直的判定定理,证明出BE ⊥平面11EB C ;()2以点D 坐标原点,以1,,DA DC DD分别为,,x y z 轴,建立空间直角坐标系,设正方形ABCD 的边长为a ,1B B b =,求出相应点的坐标,利用1BE EC ⊥,可以求出,a b 之间的关系,分别求出平面EBC 、平面1ECC 的法向量,利用空间向量的数量积公式求出二面角1B EC C --的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角1B EC C --的正弦值.【解析】()1因为1111ABCD A B C D -是长方体,所以11B C ⊥侧面11A B BA ,而BE ⊂平面11A B BA ,所以11BE B C ⊥,又1BE EC ⊥,1111B C EC C = ,111,B C EC ⊂平面11EB C ,因此BE ⊥平面11EB C ;()2以点B坐标原点,以1,,BA BC BB分别为,,x y z 轴,建立如下图所示的空间直角坐标系,1(0,0,0),(0,,0),(0,,),(,0,)2b B C a C a b E a ,因为1BE EC ⊥,所以2210(,0,(,,002224b b b BE EC a a a a b a ⋅=⇒⋅-=⇒-+=⇒= ,所以(,0,)E a a ,1(,,),(0,0,2),(,0,)EC a a a CC a BE a a =--==,设111(,,)m x y z =是平面BEC 的法向量,所以111110,0,(1,0,1)0.0.ax az m BE m ax ay az m EC +=⎧⎧⋅=⇒⇒=-⎨⎨-+-=⋅=⎩⎩,设222(,,)n x y z =是平面1ECC 的法向量,所以2122220,0,(1,1,0)0.0.az n CC n ax ay az n EC =⎧⎧⋅=⇒⇒=⎨⎨-+-=⋅=⎩⎩,二面角1B EC C --12,所以二面角1B EC C --=【点评】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第17题16.(2019年高考数学课标全国Ⅰ卷理科·第18题)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60,,,AA AB BAD E M N ==∠=︒分别是BC ,1BB ,1A D的中点.D 1C 111(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.【答案】解:(1)连结1,B C ME .因为,M E 分别为1,BB BC 的中点,所以1//ME B C ,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =.由题设知11A B ,可得11B C A D ,故ME ND ,因此四边形MNDE 为平行四边形,//MN ED .又MN ⊄平面1C DE ,所以//MN 平面1C DE .(2)由已知可得DE DA ⊥.以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -,则1(2,0,0),(2,0,4),2),(1,0,2)A A M N ,1(0,0,4)A A =-,1(2)A M =-- ,1(1,0,2)A N =-,(0,MN =.设(,,)m x y z = 为平面1A MA 的法向量,则1100m A M m A A ⎧⋅=⎪⎨⋅=⎪⎩ ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取m =.设(,,)n p q r = 为平面1A MN 的法向量,则100n MN n A N ⎧⋅=⎪⎨⋅=⎪⎩ ,.所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)n =- .于是cos ,m n m n m n ⋅===⋅,所以二面角1A MA N --.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅰ卷理科·第18题17.(2018年高考数学课标Ⅲ卷(理)·第19题)(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD所在的平面垂直,M 是弧CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】【官方解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD因为BC CD ⊥,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC DM⊥因为M 为 CD上异于,C D 的点,且DC 为直径,所以DM CM ⊥又BC CM C = ,所以DM ⊥平面BMC而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz-当三棱锥M ABC -体积最大时,M 为 CD的中点,由题设得()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,1,1M ()2,1,1AM =- ,()0,2,0AB = ,()2,0,0DA = 设(),,n x y z = 是平面MAB 的法向量,则00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ ,即2020x y z y -++=⎧⎨=⎩可取()1,0,2n = 易知DA 是平面MCD的法向量,因此cos ,n DA n DA n DA⋅<>==⋅所以sin ,n DA <>== 所以面MAB 与面MCD【民间解析】(1)证明:因为面ABCD ⊥半圆面CMD ,且面ABCD 半圆面CMD CD=而四边形ABCD 为正方形,所以AD CD ⊥,所以AD ⊥平面MCD又CM ⊂平面MCD ,所以AD CM ⊥①又因为点M 在以CD 为直径的半圆上,所以CM MD ⊥②又MD 、AD ⊂面MAD ,且MD AD D = ③由①②③可得CM ⊥面MAD ,而CM ⊂平面BMC所以平面AMD ⊥平面BMC(2)如图,以DC 所在直线作为y 轴,以DC 中点为坐标原点O ,过点O 作DA 的平行线,作为x 轴,过点O 作面ABCD 的垂线,作为z轴,建立空间直角坐标系因为13M ABC ABC M ABC V S d --=⋅△,而12222ABC S =⨯⨯=△所以当点M 到平面ABCD 的距离最大时,三棱锥M ABC -的体积最大,此时MO CD⊥所以()0,0,1M ,()2,1,0AA -,()2,1,0B ;()0,1,0C ,()0,1,0D -设面MAB 的法向量为()111,,m x y z = ,易知面MCD 的法向量为()2,0,0n DA == 所以()2,1,1MA =-- ,()2,1,1MB =- 由00m MA m MB ⎧⋅=⎪⎨⋅=⎪⎩ 即1111112020x y z x y z --=⎧⎨+-=⎩,解得11102y z x =⎧⎨=⎩,可取()1,0,2m =所以cos ,m n m n m n ⋅<>=== 故所求面MAB 与面MCD==.【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅲ卷(理)·第19题18.(2018年高考数学课标Ⅱ卷(理)·第20题)(12分)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM所成角的正弦值.【答案】解析:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =.连接OB.因为AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知PO OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)A -,(0,2,0)C,P,AP =u u u r .取平面PAC 的法向量为(2,0,0)OB =u u u r .设(,2,0)(02)≤M a a a -<,则(,4,0)AM a a =-u u u r .设平面PAM 的法向量为(,,)x y z =n ,由0AP ⋅=u u u r n ,0AM ⋅=u u u r n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB <>=u u u r n,由已知可得cos ,OB <>=u u u r n PAB M COA=,解得4a =-(舍去),43a =.所以4()3n =-.又(0,2,PC =- ,所以cos ,n PC <>=u u u r .所以PC 与平面PAM .【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅱ卷(理)·第20题19.(2018年高考数学课标卷Ⅰ(理)·第18题)(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DCF ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】解析:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH EF ⊥,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H xyz -.由(1)可得,DE PE ⊥.又2DP =,1DE =,所以PE =.又1PF =,2EF =,故PE PF ⊥.可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --= 32HP = 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin ||||||HP DP HP DP θ⋅===⋅ .所以DP 与平面ABFD.【题目栏目】立体几何\空间角\直线与平面所成的角【题目来源】2018年高考数学课标卷Ⅰ(理)·第18题20.(2017年高考数学新课标Ⅰ卷理科·第18题)如图,在四棱锥中,,且.(1)证明:平面平面;(2)若,,求二面角的余弦值.【答案】(1)详见解析;(2)二面角的余弦值为. 【分析】(1)根据题设条件可以得出,,而,就可证明出平面.进而证明平面平面;(2)先找出的中点,找出相互垂直的线,建立以为坐标原点,的方向为轴的正方向,为单位长的空间直角坐标系,列出所需要的点的坐标,设是平面的法向量,是平面的法向量,根据垂直关系,求出和,利用数量积公式可求出二面角的平面角. 【解析】(1)由已知,得,由于,故,从而平面又平面,所以平面平面(2)在平面内做,垂足为,由(1)可知,平面,故,可得平面. P ABCD -//AB CD 90BAP CDP ∠=∠=︒PAB ⊥PAD PA PD AB DC ===90APD ∠=︒A PB C --A PB C --AB AP ⊥CD PD ⊥//AB CD AB ⊥ PAD PAB ⊥PAD AD F FA x AB (),,n x y z = PCB (),,m x y z = PAB (0,1,n =- ()1,0,1m = 90BAP CDP ∠=∠=︒AB AP ⊥CD PD ⊥//AB CD AB PD ⊥AB ⊥PAD AB ⊂PAB PAB ⊥PAD PAD PF AD ⊥F AB ⊥PAD AB PF ⊥PF ⊥ABCD以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,. 所以,,,. 设是平面的法向量,则,即,可取. 设是平面的法向量,则,即,可取. 则,所以二面角的余弦值为. 【考点】面面垂直的证明,二面角平面角的求解.【点评】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学新课标Ⅰ卷理科·第18题21.(2017年高考数学课标Ⅲ卷理科·第19题)如图,四面体中,是正三角形,是直角三角形,,.F FA x ||AB F xyz-APB (C(PC =CB =PA = (0,1,0)AB = (,,)x y z =n PCB 00PC CB ⎧⋅=⎪⎨⋅=⎪⎩ nn 00x y z ⎧+=⎪=(0,1,=-n (,,)x y z =m PAB 00PA AB ⎧⋅=⎪⎨⋅=⎪⎩ mm 00z y =⎪=⎩(1,0,1)=n cos ,||||⋅==<>n m n m n m A PB C --ABCD ABC ∆ACD ∆ABD CBD ∠=∠AB BD =(1)证明:平面平面;(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.【答案】(Ⅰ)证明略. 【解析】证明:(1)取的中点为,连接为等边三角形∴∴.∴,即为等腰直角三角形,为直角又为底边中点ACD ⊥ABC AC BD E AEC ABCD D AE C --AC O ,BO DO ABC ∆ BO AC ⊥AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆AD CD =ACD ∆ADC ∠O AC∴ 令,则 易得:,∴由勾股定理的逆定理可得即又∵ 由面面垂直的判定定理可得(2)由题意可知即,到平面的距离相等即为中点以为原点,为轴正方向,为轴正方向,为轴正方向,设,建立空间直角坐标系则,,,,DO AC ⊥AB a =AB AC BC BD a ====OD a=OB =222OD OB BD +=2DOB π∠=OD OB ⊥OD AC OD OB AC OB OAC ABC OB ABC ⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩ 平面平面OD ABC ∴⊥平面OD ADC ⊂平面ADC ABC ⊥平面平面V V D ACE B ACE --=B D ACE E BD O OA x OB y OD z AC a =()0,0,0O ,0,02a A ⎛⎫ ⎪⎝⎭0,0,2a D ⎛⎫ ⎪⎝⎭,0B ⎛⎫ ⎪ ⎪⎝⎭,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,, 设平面的法向量为,平面的法向量为, 则,解得 ,解得 若二面角为,易知为锐角,则.【考点】二面角的平面角;面面角的向量求法【点评】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cos θ|=|cos<m ,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学课标Ⅲ卷理科·第19题22.(2017年高考数学课标Ⅱ卷理科·第19题)如图,四棱锥 中,侧面 为等比三角形且垂直于底面 , 是 的中点.(1)证明:直线 平面;(2)点 在棱上,且直线 与底面 所成锐角为 ,求二面角 的余弦值.【答案】(1)证明略;,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭ ,0,22a a AD ⎛⎫=- ⎪⎝⎭ ,0,02a OA ⎛⎫= ⎪⎝⎭ AED 1n AEC 2n 1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩ 1n = 2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩ (20,1,n = D AE C --θθ1212cos n n n n θ⋅==⋅ ⋅m n m n P ABCD -PAD ABCD o 1,90,2AB BC AD BAD ABC =∠=∠=E PD //CE PAB M PC BM ABCD o 45M AB D --【基本解法1】(1)证明:取中点为,连接、因为,所以因为是的中点,所以,所以所以四边形为平行四边形,所以因为平面,平面所以直线平面(2)取中点为,连接因为△为等边三角形,所以因为平面平面,平面平面,平面所以平面因为,所以四边形为平行四边形,所以所以以分别为轴建立空间直角坐标系,如图设,则,所以设,则,因为点在棱上,所以,即所以,所以平面的法向量为因为直线与底面所成角为,所以解得设平面的法向量为,则令,则PA F EF AF90BADABC ∠=∠=︒12BC AD =BC 12AD E PD EF 12AD EF BCEFBC //EC BFBF ⊂PABEC ⊄PAB//CEPABAD O OC OP、PAD PO ⊥ADPAD ⊥ABCD PAD ABCD AD =PO ⊂PADPO ⊥ABCDAO BC OABC //AB OCOC AD⊥,,OC OD OP ,,x yz 1BC =(0,1,0),(1,1,0),(1,0,0)P A B C --(1,0,PC = (,,)M x y z (,,PM x y z =-(1,0,0)AB = M PC (01)PM PC λλ=≤≤ (,,(1,0,x y z λ=()M λ()BM λ=- ABCD (0,0,1)n = BM ABCD 45︒|||sin 45||cos ,|||||BM n BM n BM n ⋅︒=<>=== 1λ=-(BM = MAB (,,)m x y z = 00AB m x BM m x y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 1z =m =所以所以求二面角【基本解法2】(1)证明:取中点为,连接因为,所以,即所以四边形为平行四边形,所以因为平面,平面所以直线平面因为是的中点,所以因为平面,平面所以直线平面因为,所以平面平面因为平面所以直线平面(2)同上【命题意图】线面平行的判定,线面垂直的判定,面面垂直的性质,线面角、二面角的求解【知识拓展】线面平行的证明一般有两个方向,线面平行的判定或面面平行的性质。
2020年高考数学 立体几何试题分类汇编 理

2020年高考数学 立体几何试题分类汇编 理(安徽)(A ) 48 (B)32+817 (C) 48+817 (D) 80(北京)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C.10D .82(湖南)设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+ C .942π+ D .3618π+答案:B3 正视图侧视图解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
(广东)如图l —3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.63B.93C.123D.183(江西)已知321,,ααα是三个相互平行的平面,平面21,αα之间的距离为1d ,平面32,αα之间的距离为2d .直线l 与321,,ααα分别交于321,,P P P .那么”“3221P P P P =是”“21d d =的 ( ) A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案:C解析:平面321,,ααα平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P = 如果3221P P P P =,同样是根据两个三角形全等可知21d d =(辽宁)如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是 A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角(辽宁)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC的体积为 A .33B .32C .3D .1(全国2)已知直二面角l αβ--,点,A AC l α∈⊥,C 为垂足,,,B BD l D β∈⊥为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)2 (B)3 (C)6 (D) 1 【思路点拨】本题关键是找出或做出点D 到平面ABC 的距离DE ,根据面面垂直的性质不难证明AC ⊥平面β,进而β⊥平面平面ABC,所以过D 作DE BC ⊥于E ,则DE 就是要求的距离。
立体几何(学生版)--2025新高考数学新题型

立体几何题型01 空间几何体的有关计算题型02 点线面位置关系、空间角及距离题型03 内切球、外接球问题题型04 空间向量题型01 空间几何体的有关计算1(2024·山西晋城·统考一模)若一个正n棱台的棱数大于15,且各棱的长度构成的集合为{2,3},则n 的最小值为,该棱台各棱的长度之和的最小值为.2(2024·浙江·校联考一模)已知圆台的上下底面半径分别是1,4,且侧面积为10π,则该圆台的母线长为.3(2024·安徽合肥·合肥一六八中学校考一模)球O的半径与圆锥M的底面半径相等,且它们的表面积也相等,则圆锥M的侧面展开图的圆心角大小为,球O的体积与圆锥M的体积的比值为.4(2024·湖南长沙·雅礼中学校考一模)已知圆锥的母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.5(2024·广东深圳·校考一模)已知圆锥的侧面展开图是一个半径为4的半圆.若用平行于圆锥的底面,且与底面的距离为3的平面截圆锥,将此圆锥截成一个小圆锥和一个圆台,则小圆锥和圆台的体积之比为.6(2024·辽宁沈阳·统考一模)正方体的8个顶点分别在4个互相平行的平面内,每个平面内至少有一个顶点,且相邻两个平面间的距离为1,则该正方体的棱长为()A.2B.3C.2D.57(2024·云南曲靖·统考一模)为努力推进“绿美校园”建设,营造更加优美的校园环境,某校准备开展校园绿化活动.已知栽种某绿色植物的花盆可近似看成圆台,圆台两底面直径分别为18厘米,9厘米,母线长约为7.5厘米.现有2000个该种花盆,假定每一个花盆装满营养土,请问共需要营养土约为( )(参考数据:π≈3.14)A.1.702立方米B.1.780立方米C.1.730立方米D.1.822立方米8(2024·新疆乌鲁木齐·统考一模)某广场设置了一些石凳供大家休息,这些石凳是由棱长为40cm的正方体截去八个一样的四面体得到的,则()A.该几何体的顶点数为12B.该几何体的棱数为24C.该几何体的表面积为(4800+8003)cm 2D.该几何体外接球的表面积是原正方体内切球、外接球表面积的等差中项9(2024·山西晋城·统考一模)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,AA 1=4,C 1 E =3EC,平面ABE 将该正四棱柱分为上、下两部分,记上部分对应的几何体为Ω上,下部分对应的几何体为Ω下,则()A.Ω下的体积为2B.Ω上的体积为12C.Ω下的外接球的表面积为9πD.平面ABE 截该正四棱柱所得截面的面积为25题型02 点线面位置关系、空间角及距离10(2024·河北·校联考一模)已知直线l 、m 、n 与平面α、β,下列命题正确的是()A.若α⎳β,l ⊂α,n ⊂β,则l ⎳nB.若α⊥β,l ⊂α,则l ⊥βC.若l ⊥n ,m ⊥n ,则l ⎳mD.若l ⊥α,l ⎳β,则α⊥β11(2024·浙江·校联考一模)已知直线a ,b 和平面α,a ⊄α,b ∥α,则“a ∥b ”是“a ∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12(2024·广东深圳·校考一模)已知α,β是两个不同的平面,m ,n 是两条不同的直线,则下列说法正确的是()A.若m ⊥n ,m ⊥α,n ⊥β,则α⊥βB.若m ⎳n ,m ⎳α,n ⎳β,则α⎳βC.若m ⊥n ,m ⎳α,α⊥β,则n ⊥βD.若m ⎳n ,m ⊥α,α⊥β,则n ⎳β13(2024·吉林白山·统考一模)正八面体可由连接正方体每个面的中心构成,如图所示,在棱长为2的正八面体中,则有()A.直线AE与CF是异面直线B.平面ABF⊥平面ABEC.该几何体的体积为432 D.平面ABE与平面DCF间的距离为26314(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,∠BAD=120°,AC⊥BD,△BCD是等边三角形.(1)证明:平面PAD⊥平面PCD.(2)求二面角B-PC-D的正弦值.15(2024·辽宁沈阳·统考一模)如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,且BC=BD= BA,∠CBA=∠CBD=120°,点P在线段AC上,点Q在线段CD上.(1)求证:AD⊥BC;(2)若AC⊥平面BPQ,求BPBQ的值;(3)在(2)的条件下,求平面ABD与平面PBQ所成角的余弦值.16(2024·重庆·统考一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB= AP,AB⊥AD,AB+AD=6,CD=2,∠CDA=45°.(1)若E为PB的中点,求证:平面PBC⊥平面ADE;(2)若平面PAB与平面PCD所成的角的余弦值为66.(ⅰ)求线段AB的长;(ⅱ)设G为△PAD内(含边界)的一点,且GB=2GA,求满足条件的所有点G组成的轨迹的长度.17(2024·云南曲靖·统考一模)在图1的直角梯形ABCD中,∠A=∠D=90°,AB=BC=2,DC=3,点E是DC边上靠近于点D的三等分点,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1= 6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得二面角P-EB-C1的大小为45°?若存在,求出线段DP的长度,若不存在说明理由.18(2024·云南曲靖·统考一模)如图所示,正方体ABCD -A B C D 的棱长为1,E ,F 分别是棱AA ,CC 的中点,过直线EF 的平面分别与棱BB ,DD 交于点M ,N ,以下四个命题中正确的是()A.四边形EMFN 一定为菱形B.四棱锥A -MENF 体积为13C.平面EMFN ⊥平面DBB DD.四边形EMFN 的周长最小值为419(2024·山东济南·山东省实验中学校考一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PB 与底面ABCD 所成的角为π4,底面ABCD 为直角梯形,∠ABC =∠BAD =π2,AD =2,PA =BC =1,点E 为棱PD 上一点,满足PE =λPD0≤λ≤1 ,下列结论正确的是()A.平面PAC ⊥平面PCD ;B.在棱PD 上不存在点E ,使得CE ⎳平面PABC.当λ=12时,异面直线CE 与AB 所成角的余弦值为255;D.点P 到直线CD 的距离3;20(2024·新疆乌鲁木齐·统考一模)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA =AB ,点E ,F 分别是棱PB ,BC 的中点.(1)求直线AF 与平面PBC 所成角的正弦值;(2)在截面AEF 内是否存在点G ,使DG ⊥平面AEF ,并说明理由.21(2024·山西晋城·统考一模)如图,P 是边长为2的正六边形ABCDEF 所在平面外一点,BF 的中点O 为P 在平面ABCDEF 内的射影,PM =2MF.(1)证明:ME ⎳平面PBD .(2)若PA =2,二面角A -PB -D 的大小为θ,求cos2θ.22(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是AD 1的中点,点Q 是直线CD 1上的动点,则下列说法正确的是()A.△PBD 是直角三角形B.异面直线PD 与CD 1所成的角为π3C.当AB 的长度为定值时,三棱锥D -PBQ 的体积为定值D.平面PBD ⊥平面ACD123(2024·浙江·校联考一模)在三棱柱ABC-A1B1C1中,四边形BCC1B1是菱形,△ABC是等边三角形,点M是线段AB的中点,∠ABB1=60°.(1)证明:B1C⊥平面ABC1;(2)若平面ABB1A1⊥平面ABC,求直线B1C与平面A1MC1所成角的正弦值.24(2024·广东深圳·校考一模)如图,在圆锥SO中,AB是圆O的直径,且△SAB是边长为4的等边三角形,C,D为圆弧AB的两个三等分点,E是SB的中点.(1)证明:DE⎳平面SAC;(2)求平面SAC与平面SBD所成锐二面角的余弦值.25(2024·广西南宁·南宁三中校联考一模)在如图所示的五面体ABCDEF中,ABEF共面,△ADF是正三角形,四边形ABCD为菱形,∠ABC=2π3,EF⎳平面ABCD,AB=2EF=2,点M为BC中点.(1)证明:EM∥平面BDF;(2)已知EM=2,求平面BDF与平面BEC所成二面角的正弦值.26(2024·安徽合肥·合肥一六八中学校考一模)如图,菱形ABCD的对角线AC与BD交于点O,AB =5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H,将△DEF沿EF折到△DEF 位置,OD =10.(1)证明:D H⊥平面ABCD;(2)求平面BAD 与平面ACD 的夹角的余弦值.27(2024·安徽合肥·合肥一六八中学校考一模)设b、c表示两条直线,α、β表示两个平面,则下列命题正确的是()A.若b⎳α,c⊂α,则b⎳cB.若b⊂α,b⎳c,则c⊂αC.若c⎳α,α⊥β,则c⊥βD.若c⎳α,c⊥β,则α⊥β28(2024·吉林延边·统考一模)已知三棱柱ABC-A1B1C1,侧面AA1C1C是边长为2的菱形,∠CAA1 =πA1是矩形,且平面AA1C1C⊥平面ABB1A1,点D是棱A1B1的中点.3,侧面四边形ABB1(1)在棱AC上是否存在一点E,使得AD∥平面B1C1E,并说明理由;(2)当三棱锥B-A1DC1的体积为3时,求平面A1C1D与平面CC1D夹角的余弦值.29(2024·黑龙江齐齐哈尔·统考一模)如图1,在平面四边形PABC中,PA⊥AB,CD⎳AB,CD=2AB=2PD=2AD=4.点E是线段PC上靠近P端的三等分点,将△PDC沿CD折成四棱锥P-ABCD,且AP=22,连接PA,PB,BD,如图2.(1)在图2中,证明:PA⎳平面BDE;(2)求图2中,直线AP与平面PBC所成角的正弦值.30(2024·重庆·统考一模)如图,在边长为1的正方体ABCD-A1B1C1D1中,E是C1D1的中点,M是线段A1E上的一点,则下列说法正确的是()A.当M点与A1点重合时,直线AC1⊂平面ACMB.当点M移动时,点D到平面ACM的距离为定值C.当M点与E点重合时,平面ACM与平面CC1D1D夹角的正弦值为53D.当M点为线段A1E中点时,平面ACM截正方体ABCD-A1B1C1D1所得截面面积为73332 31(2024·福建厦门·统考一模)如图,在四棱锥E-ABCD中,AD⎳BC,2AD=BC=2,AB=2,AB⊥AD,EA⊥平面ABCD,过点B作平面α⊥BD.(1)证明:平面α⎳平面EAC;(2)已知点F为棱EC的中点,若EA=2,求直线AD与平面FBD所成角的正弦值.32(2024·吉林延边·统考一模)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,DE =BF =1,DE ∥BF ,DE ⊥平面ABCD ,动点P 在线段EF 上,则下列说法正确的是()A.AC ⊥DPB.存在点P ,使得DP ∥平面ACFC.三棱锥A -CDE 的外接球被平面ACF 所截取的截面面积是9π2D.当动点P 与点F 重合时,直线DP 与平面ACF 所成角的余弦值为3101033(2024·福建厦门·统考一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 题型03 内切球、外接球问题34(2024·黑龙江齐齐哈尔·统考一模)已知四面体ABCD 的各个面均为全等的等腰三角形,且CA =CB =2AB =4.设E 为空间内任一点,且A ,B ,C ,D ,E 五点在同一个球面上,则()A.AB ⊥CDB.四面体ABCD 的体积为214C.当AE =23时,点E 的轨迹长度为4πD.当三棱锥E -ABC 的体积为146时,点E 的轨迹长度为32π35(2024·吉林白山·统考一模)在四面体A -BCD 中,BC =22,BD =23,且满足BC ⊥BD ,AC ⊥BC ,AD ⊥BD .若该三棱锥的体积为863,则该锥体的外接球的体积为.36(2024·吉林延边·统考一模)已知一个圆锥的侧面展开图是一个圆心角为25π5,半径为5的扇形.若该圆锥的顶点及底面圆周都在球O 的表面上,则球O 的体积为.37(2024·河南郑州·郑州市宇华实验学校校考一模)已知正三棱柱ABC-A1B1C1的底面边长为2,以A1为球心、3为半径的球面与底面ABC的交线长为3π6,则三棱柱ABC-A1B1C1的表面在球内部分的总面积为.38(2024·江西吉安·吉安一中校考一模)已知球O的直径PQ=4,A,B,C是球O球面上的三点,△ABC是等边三角形,且∠APQ=∠BPQ=∠CPQ=30°,则三棱锥P-ABC的体积为( ).A.334B.934C.332D.273439(2024·湖南长沙·雅礼中学校考一模)如图所示,有一个棱长为4的正四面体P-ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是()A.直线AE与PB所成的角为π2B.△ABE的周长最小值为4+34C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为63D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为26-25 40(2024·江西吉安·吉安一中校考一模)如图,在正三棱锥P-ABC中,有一半径为1的半球,其底面圆O与正三棱锥的底面贴合,正三棱锥的三个侧面都和半球相切.设点D为BC的中点,∠ADP=α.(1)用α分别表示线段BC和PD长度;(2)当α∈0,π2时,求三棱锥的侧面积S的最小值.41(2024·江西吉安·吉安一中校考一模)地球仪是地理教学中的常用教具.如图1所示,地球仪的赤道面(与转轴垂直)与黄道面(与水平面平行)存在一个夹角,即黄赤交角,大小约为23.5°.为锻炼动手能力,某同学制作了一个半径为4cm 的地球仪(不含支架),并将其放入竖直放置的正三棱柱ABC -A 1B 1C 1中(姿态保持不变),使地球仪与该三棱柱的三个侧面相切,如图2所示.此时平面AB 1C 恰与地球仪的赤道面平行,则三棱柱ABC -A 1B 1C 1的外接球体积为.(参考数据:tan23.5°≈0.43)题型04 空间向量42(2024·福建厦门·统考一模)已知平面α的一个法向量为n=(1,0,1),且点A (1,2,3)在α内,则点B (1,1,1)到α的距离为.43(2024·广西南宁·南宁三中校联考一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB +yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为6344(2024·湖南长沙·雅礼中学校考一模)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠DAB =90°,cos <AA 1 ,AB >=22,cos <AA 1 ,AD >=12,点M 为BD 中点.(1)证明:B 1M ⎳平面A 1C 1D ;(2)求二面角B -AA 1-D 的正弦值.。
十年真题(2010-2019)高考数学真题分类汇编专题09立体几何文(含解析)

专题09立体几何历年考题细目表质17解答题2013垂直关系的判定与性质2013年北京文科17解答题2012垂直关系的判定与性质2012年北京文科16解答题2011空间角与空间距离2011年北京文科17解答题2010垂直关系的判定与性质2010年北京文科17历年高考真题汇编1.【2018年北京文科06】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC,CD,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.【2017年北京文科06】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积10.故选:D.3.【2015年北京文科07】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD,PD.PC═该几何体最长棱的棱长为:故选:C.4.【2013年北京文科08】如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴(﹣3,﹣3,3),设P(x,y,z),∵(﹣1,﹣1,1),∴(2,2,1).∴|PA|=|PC|=|PB1|,|PD|=|PA1|=|PC1|,|PB|,|PD1|.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.5.【2012年北京文科07】某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+12【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底10,S后,S右10,S左6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.6.【2011年北京文科05】某四棱锥的三视图如图所示,该四棱锥的表面积是()A.16B.16+16C.32D.16+32【解答】解:由已知中的三视力可得该几何体是一个四棱锥,棱锥的底面边长为4,故底面面积为16,棱锥的高为2,故侧面的高为:2,则每个侧面的面积为:4,故棱锥的表面积为:16+16,故选:B.7.【2010年北京文科05】一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A.B.C.D.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.8.【2010年北京文科08】如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【解答】解:三棱锥P﹣EFQ的体积与点P到平面EFQ的距离和三角形EFQ的面积有关,由图形可知,平面EFQ与平面CDA1B1是同一平面,故点P到平面EFQ的距离是P到平面CDA1B1的距离,且该距离就是P到线段A1D 的距离,此距离只与x有关,因为EF=1,点Q到EF的距离为线段B1C的长度,为定值,综上可知所求三棱锥的体积只与x有关,与y无关.故选:C.9.【2019年北京文科12】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l,那么该几何体的体积为.【解答】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V.故答案为:40.10.【2019年北京文科13】已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.【解答】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.11.【2016年北京文科11】某四棱柱的三视图如图所示,则该四棱柱的体积为.【解答】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S(1+2)×1,棱柱的高为1,故棱柱的体积V,故答案为:12.【2014年北京文科11】某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE ⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC,在Rt△BCD中,BD,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.13.【2013年北京文科10】某四棱锥的三视图如图所示,该四棱锥的体积为.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.14.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∠ABC=60°,∴AB⊥AE,PA⊥AE,∵PA∩AB=A,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上是存在中点F,使得CF∥平面PAE.理由如下:取AB中点G,连结GF,CG,∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点,∴CG∥AE,FG∥PA,∵CG∩FG=G,AE∩PA=A,∴平面CFG∥平面PAE,∵CF⊂平面CFG,∴CF∥平面PAE.15.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD 为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH BC,由DE∥BC,DE BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.16.【2017年北京文科18】如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC S△ABC2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC1×1.17.【2016年北京文科18】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.【解答】(1)证明:∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC,∵DC⊥AC,PC∩AC=C,∴DC⊥平面PAC;(2)证明:∵AB∥DC,DC⊥AC,∴AB⊥AC,∵PC⊥平面ABCD,AB⊂平面ABCD,∴PC⊥AB,∵PC∩AC=C,∴AB⊥平面PAC,∵AB⊂平面PAB,∴平面PAB⊥平面PAC;(3)解:在棱PB上存在中点F,使得PA∥平面CEF.∵点E为AB的中点,∴EF∥PA,∵PA⊄平面CEF,EF⊂平面CEF,∴PA∥平面CEF.18.【2015年北京文科18】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.【解答】(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC,∴AB=2,OC=1,∴S△VAB,∵OC⊥平面VAB,∴V C﹣VAB•S△VAB,∴V V﹣ABC=V C﹣VAB.19.【2014年北京文科17】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC 的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC⊂平面B1BCC1,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB,∴V E﹣ABC S△ABC•AA1(1)×2.20.【2013年北京文科17】如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F 分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD ∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC 的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.21.【2012年北京文科16】如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解答】解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC,又DE⊄平面A1CB,∴DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,又DE⊥CD,∴DE⊥平面A1DC,而A1F⊂平面A1DC,∴DE⊥A1F,又A1F⊥CD,∴A1F⊥平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(Ⅱ)知DE⊥平面A1DC,∴DE⊥A1C,又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,∴A1C⊥平面DEP,从而A1C⊥平面DEQ,故线段A1B上存在点Q,使A1C⊥平面DEQ.22.【2011年北京文科17】如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN EG,∴Q为满足条件的点.23.【2010年北京文科17】如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE.【解答】证明:(Ⅰ)设AC于BD交于点G.因为EF∥AG,且EF=1,AG AC=1,所以四边形AGEF为平行四边形,所以AF∥EG,因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(Ⅱ)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点三视图和直观图,空间几何体的表面积与体积,直线、平面平行、垂直的判定与性质,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.在正方体中, 1AD与BD所成的角为( )A.45?B.90C.60D.120【答案】C【解析】如图,连结BC1、BD和DC1,在正方体ABCD-A1B1C1D1中,由AB=D1C1,AB∥D1C1,可知AD1∥BC1,所以∠DBC1就是异面直线AD1与BD所成角,在正方体ABCD—A1B1C1D1中,BC1、BD和DC1是其三个面上的对角线,它们相等.所以△DBC1是正三角形,∠DBC1=60°故异面直线AD1与BD所成角的大小为60°.故选:C.2.在正方体中,用空间中与该正方体所有棱成角都相等的平面 去截正方体,在截面边数最多时的所有多边形中,多边形截面的面积为S,周长为l,则( )A.S为定值,l不为定值B.S不为定值,l为定值C.S与l均为定值D.S与l均不为定值【答案】C【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:与面1A BD平行的面且截面是六边形时满足条件,不失一般性设正方体边长为1,即六边形EFGHMN,其中分别为其所在棱的中点,由正方体的性质可得2EF=,2∴六边形的周长l为定值32.∴六边形的面积为,由正方体的对称性可得其余位置时也为正六边形,周长与面积不变,故S与l均为定值,故选C.3.在四面体P ABC-中,ABCPA=,4∆为等边三角形,边长为3,3PC=,PB=,5则四面体P ABC-的体积为()A.3B.23C.11D.10【答案】C【解析】如图,延长CA至D,使得3AD=,连接,DB PD,因为,故ADB∆为等腰三角形,又,故,所以即,故CB DB⊥,因为,所以,所以CB PB⊥,因,DB⊂平面PBD,PB⊂平面PBD,所以CB⊥平面PBD,所以,因A为DC的中点,所以,因为,故PDC∆为直角三角形,所以,又,而4∆为直角三角形,PB=,故即PBD所以,所以,故选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题17 立体几何综合【2020年】1.(2020·新课标Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.2.(2020·新课标Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.3.(2020·新课标Ⅲ)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.4.(2020·北京卷)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.5.(2020·江苏卷)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.6.(2020·江苏卷)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 7.(2020·山东卷)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 8.(2020·天津卷)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(2020·浙江卷)如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.【2019年】12.【2019年高考全国Ⅱ卷】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.13.【2019年高考全国Ⅲ卷】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.14.【2019年高考北京卷】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且13 PFPC.(1)求证:CD ⊥平面PAD ;(2)求二面角F –AE –P 的余弦值;(3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.15.【2019年高考天津卷】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E BD F --的余弦值为13,求线段CF 的长.16.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .17.【2019年高考浙江卷】(本小题满分15分)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【2018年】12. (2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.13. (2018年天津卷)如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.1 4. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.15. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.16. (2018年江苏卷)在平行六面体中,.求证:(1);(2).17. (2018年全国I卷理数)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.18. (2018年全国Ⅲ卷理数)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.19. (2018年全国Ⅱ卷理数)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【2017年】11.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.12.【2017课标1,理18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =A B =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.13.【2017课标II ,理19】如图,四棱锥P -ABCD 中,侧面P AD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点。
(1)证明:直线//CE 平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o45 ,求二面角M AB D --的余弦值。
105。
14.【2017课标3,理19】如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.15.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.16.【2017北京,理16】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD =6,AB=4. (I )求证:M 为PB 的中点; (II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.17.【2017天津,理17】如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱P A ,P C ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.18.【2017浙江,19】(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,AD BC //,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.19.【2017江苏,6】 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .20.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .PAB CDEO O 1 O 2⋅⋅ ⋅21.【2017江苏,22】 如图, 在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3, 120BAD ∠=︒.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.74【2016年】 14.【2016高考新课标1卷】(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.(第15题)ADBC EF15.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.16.【2016高考山东理数】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (II )已知EF =FB =12AC =23,AB =BC .求二面角F BC A --的余弦值.17.【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .18.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (I )求证:EG ∥平面ADF ; (II )求二面角O -EF -C 的正弦值; (III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.3372119.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.20.【2016高考新课标3理数】如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.21.【2016高考浙江理数】(本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.22.【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD ,E 为边AD 的中点,异面直线PA 与CD 所成的角为90°.(Ⅰ)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值. E DCB P A13.23. 【2016高考上海理数】将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。