铁磁共振 PPT课件

合集下载

实验十八铁磁共振讲义

实验十八铁磁共振讲义

实验十八 铁磁共振(FMR)在现代,铁磁共振也和顺磁共振、核磁共振……等一样是研究物质宏观性能和微观结构的有效手段.铁磁共振在磁学乃至固体物理学中都占有重要地位,它是微波铁氧体物理学的基础。

而微波铁氧体在雷达技术和微波通讯方面都已获得重要应用。

早在1935年著名苏联物理学家兰道(л·д·лaHдay )等就提出铁磁性物质具有铁磁共振特性。

十几年后超高频技术发展起来,才观察到铁磁共振现象。

多晶铁氧体最早的铁磁共振实验发表于1948年,以后的工作则多采用单晶样品,这是因为多晶样品的共振吸收线较宽,又非洛仑兹分布,也不对称;并在许多样品中出现细结构.单晶样品的共振数据易于分析,不仅普遍被用来测量g 因子、共振线宽及弛豫时间,而且还可以测量磁晶各向异性参量. 【实验目的】1。

熟悉微波信号源的组成和使用方法,学习微波装置调整技术。

2。

了解铁磁共振的基本原理,学习用谐振腔法观测铁磁共振的测量原理和实验条件. 3.测量微波铁氧体的铁磁共振线宽;测量微波铁氧体的g 因子。

【实验仪器】DH800A 型微波铁磁共振实验系统和示波器等。

【实验原理】 1。

铁磁共振铁磁物质的磁性来源于原子磁矩,一般原子磁矩主要由未满壳层电子轨道磁矩和电子自旋磁矩决定。

在铁磁性物质中,电子轨道磁矩受晶场作用,其方向不停地在变化,不能产生联合磁矩,对外不表现磁性,故其原子磁矩来源于未满壳层中未配对电子的自旋磁矩。

但是,铁磁性物质中电子自旋由于交换作用形成磁有序,任何一块铁磁体内部都形成许多磁矩取向一致的微小自发磁化区(约个原子)称为“磁畴”,平时“磁畴"的排列方向是混乱的,所以在未磁化前对外不显磁性,在足够强的外磁场作用下,即可达到饱和磁化,引用磁化强度矢量M ,它表征铁磁物质中全体电子自旋磁矩的集体行为,简称为系统磁矩M .处于稳恒磁场B 和微波磁场H 中的铁磁物质,它的微波磁感应强度H 可表示为0b=ij H μμ (1)ij μ称为张量磁导率,0μ为真空中的磁导率.,10000⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=μμμjKjKij (2)μ、K 称为张量磁导率的元素.=-j μμμ'''=K -jK K ''' (3)μ、K 的实部和虚部随B 的变化曲线如图1(a 、b )图1 a 实部变化曲线 b 虚部变化曲线μ'、K '在0B γωγ=处的数值和符号都剧烈变化称为色散.μ''、K ''在0ωγ处达到极大值称为共振吸收,此现象即为铁磁共振.这里0ω为微波磁场的旋转频率,γ为铁磁物质的旋磁比.g h B⋅=πμγ2 (4)上式中:2419.2741102B eeJ T m μ--==⨯⋅,称为玻尔磁子,346.626210h J s -=⨯⋅,是普朗克常数.μ''定义为铁磁物质能的损耗,微波铁磁材料在频率为0f 的微波磁场中,当改变铁磁材料样品上的稳恒磁场B 时,在满足00B B ωγ==时,此时磁损耗最大,常用共振吸收线宽ΔB 来描术铁磁物质的磁损耗大小。

铁磁学PPT课件-动态磁化过程

铁磁学PPT课件-动态磁化过程

1 时,进动速度与没有阻尼时相差无几。但由于阻尼小,
磁化矢量要经过很长时间才能转到-z方向
最快的反转速度
min
2 0
2 H
( 1)
12.3 交变场下的自旋共振
与易磁化方向垂直的方向上施加一交变场 ,畴壁不发生位移, 磁畴中的磁化矢量将发生转动
磁化矢量所受的有效场
H
eff
(
2K1
)k i e jt
( A)
2 dt
在半径r处由涡流产生的反向磁场为
H r0 r
j(r)dr
0 4
dM dt
(r02
r2)
(奥斯特)
越到内部合成磁场越小
效应随频率稿而增强
趋肤厚度:交变场减小到表面值的 1/e处的深度
涡流反常
由于微涡流效应的存在而产生
假定棒状样品只包含一个园柱形式180°畴壁 在畴壁园筒之内。感生电动势为零
V
(r)
0r02
dM dt
电源密度 j(r) V (r) 0 r02 dM
2r 2 r dt
单位体积的平均涡流损耗为
1
W r02
r0 R
V (r)
j(r)dr
802 r02
M
2 S
R
2
(
dR dt
)2
ln
r0 R
dM
dt 以均匀磁化的值代入
W
2 0
r02
( dM )2 ln
r0
2 dt R
1 2
磁畴结构的存在大大展宽了共振区的范围
12.4 畴壁运动方程
畴壁有效质量
以速度v运动的畴壁其能量比静止畴壁的要高 定义畴壁的有效质量为
m 2 / v2

核磁共振MRI基本原理及读片--ppt课件

核磁共振MRI基本原理及读片--ppt课件

X
X
体各类组织均有特定T1
(4)停止后一定时间
(p5p)t课件恢复到平衡状态
、T2值,这些值之间的
16
差异形成信号对比
ppt课件
纵向弛豫或称 自旋-晶格弛 豫 (T1弛豫)
横向弛豫或 称自旋自旋 弛豫 (T2弛豫)
17
● 人体——进入磁场——磁化——施加射频脉冲、H核磁矩发生90。偏转, 产
生能量——射频脉冲停止、弛豫过程开始,释放所产生的能量(形成MR信 号)——信号接收系统——计算机系统 ● 在弛豫过程中,即释放能量(形成MR信号),涉及到2个时间常数:纵向 弛豫时间常数—T1;横向弛豫时间常数—T2 ● 加权(weighted )的概念:MR成像过程中,T1、T2弛豫二者同时存在, 只是在某一时间内所占的比重不同。如果选择突出纵向(T1)弛豫特征的 扫描参数(脉冲重复时间和回波时间,以毫秒计)用来采集图像,即可得 到以 T1弛豫为主的图像,当然其中仍有少量T2弛豫成分,因是以T1 弛豫 为主,故称为T1加权像(weighted Imaging WI)。如果选择突出横向 (T2)弛豫特征的扫描参数采集图像……… 加权或称权重,有侧重、为主的意思 ● 因为人体各种组织如肌肉、脂肪、体液等,各自都具有不同的T1和T2弛豫 时间值,所以形成的信号强度各异,ppt课因件此可得到黑白不同灰度的图像 18
造影剂入血行——病变组织间隙—— 与病变组织大分 子结合——T1驰豫接近脂肪或Larmor频率———T1缩短 ——强化(白),(称间接增强)
影响因素:病变区的血流;灌注;血脑屏障。与血液 内的药浓度不绝对成正比,ppt课达件一定浓度后不起作用。26
ppt课件
27
ppt课件
28
特殊检查:

MRI基本原理精品PPT课件精选全文完整版

MRI基本原理精品PPT课件精选全文完整版
进动是核磁(小磁场)与主磁 场相互作用的结果 进动的频率明显低于质子的自 旋频率,但比后者更为重要。
54
= .B
:进动频率
Larmor 频率
:磁旋比
42.5兆赫 / T
B:主磁场场强
55
高能与低能状态质子的进动
由于在主磁场中质子进动,每个氢质子均 产生纵向和横向磁化分矢量,那么人体进 入主磁场后到底处于何种核磁状态?
91
5、磁共振“加权成像”
T1WI
PD
T2WI
92
何为加权???
• 所谓的加权就是“重点突出”
的意思
– T1加权成像(T1WI)----突出组织T1弛豫 (纵向弛豫)差别
– T2加权成像(T2WI)----突出组织T2弛豫 (横向弛豫)差别
– 质子密度加权成像(PD)-突出组织氢质 子含量差别
93
低能量
宏观效应
中等能量
高能量
69
90度脉冲继发后产生的宏观和微观效应
低能的超出部分的氢质子有一半获得能量进入高能状态, 高能和低能质子数相等,纵向磁化矢量相互抵消而等于零
使质子处于同相位,质子的微观横向磁化矢量相加,产生 宏观横向磁化矢量
70
氢质子多 氢质子少
90度脉冲激发使质子发生共振,产生最大的旋转 横向磁化矢量,这种旋转的横向磁化矢量切割接 收线圈,MR仪可以检测到。
N
S
MR不能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
62
如何才能产生横向宏观磁化矢量?
63
3、什么叫共振,怎样产生磁共振?
• 共振:能量从一个震动着的物体传递到另一
个物体,而后者以前者相同的频率震动。
64
共振

磁共振检查技术MRI检查方法课件.ppt

磁共振检查技术MRI检查方法课件.ppt

《医学影像检查技术》第八章 磁共振检查技术
IR序列 短TI反转恢复脉冲序列 STIR
临床应用:脂肪抑制。 扫描参数:短TI,150~175ms;短TE, 10~30ms;长TR,2000ms以上。 TI的选择使脂肪的信号近于0
《医学影像检查技术》第八章 磁共振检查技术
IR序列 液体衰减反转恢复序列 FLAIR
Y
X
X
X
30 脉冲
90 脉冲
180 脉冲
《医学影像检查技术》第八章 磁共振检查技术
反转时间 TI
IR序列中的参数 180脉冲关闭后某时刻,各组织磁化矢量不断 恢复 施加90脉冲,产生不同的横向磁矩
《医学影像检查技术》第八章 磁共振检查技术
反转时间 TI (IR序列中)
Y
Y
Y
X
甲组织 恢复最慢
X
乙组织 恢复一般
X
丙组织 恢复快
《医学影像检查技术》第八章 磁共振检查技术
激励次数
激励次数NEX 又叫采集次数NA NEX越大,扫描时间就越长,同时图像信 噪比提高
《医学影像检查技术》第八章 磁共振检查技术
回波链长ETL
是指快速自旋回波序列每个TR时间内用 不同的相位编码来采样的回波数,即在1 个TR时间内180脉冲的个数,也称为快 速系数。 即回波链越长,所需扫描时间越短。
《医学影像检查技术》第八章 磁共振检查技术
梯度回波序列(GE)
①具有SE及FSE序列的特点; ②较SE及FSE有更高的磁敏感性; ③采集速度快; ④可用于高分辨成像; ⑤易产生伪影。
《医学影像检查技术》第八章 磁共振检查技术
回波平面技术(EPI)
① EPI只是一种数据采集模式,可与任何脉冲 序列结合产生不同对比的图像; ②是目前成像速度最快的磁共振检查技术; ③由于该技术可大大缩短扫描时间,有效减少 各种运动伪影的产生; ④ EPI技术的梯度频率一般限制在1KHZ,降低 了噪声; ⑤ EPI技术对主磁场均匀性要求较高。

铁磁共振

铁磁共振

用传输式谐振腔观测铁磁共振铁磁共振在磁学和固体物理学中都占有重要地位。

它是微波铁氧体物理学的基础,而微波铁氧体在现代雷达和微波通信方面都有重要应用。

铁磁共振和核磁共振、电子自旋共振一样,成为研究物质宏观性能和微观结构的有效手段。

早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性。

经过若干年在超高频技术发展起来后,才观察到铁磁共振现象。

多晶铁氧体最早的铁磁共振实验发表于1948年。

以后的工作则多采用单晶样品。

实验目的1.了解微波谐振腔的工作原理,学习微波装置调整技术。

2.通过观测铁磁共振,进一步认识磁共振的一般特性和实验方法。

实验原理1.微波谐振腔在微波技术中谐振腔是一个非常重要的部分。

所谓微波谐振腔就是一个封闭的金属导体空腔,一般为矩形或圆柱形。

腔壁反射电磁波辐射,使电磁波局限在空腔内部。

谐振腔的入射端开一小孔,使电磁波进入谐振腔。

电磁波在腔内连续反射。

若波形和频率与谐振腔匹配,可形成驻波,也即发生谐振现象。

如谐振腔无损耗,则腔内振荡便可持续下去。

(1)矩形波导管矩形截面的空心导体管构成矩形波导,它是传播微波最常用的传输线。

矩形谐振腔实际上是一段封闭的矩形波导,即在波导入射端和出射端加装了反射电磁波的金属片。

理论分析表明:在波导管中不存在电场纵向分量和磁场纵向分量同时为零的电磁波。

在波导管中传播的电磁波可以分为两大类:(1)横电波又称为磁波。

简写为TE波或H波;磁场可以有纵向和横向分量,但电场只有横向分量。

矩形波导管传播的基本波形是TE10波。

(2)横磁波又称为电波,简写为TM波或E波;电场可以有纵向和横向分量,但磁场只有横向分量。

至于电场和磁场的纵向分量都不为零的电磁波,则可以看成横电波和横磁波迭加而成。

在实际应用中,总是把波导管设计成只能传播单一波形。

我们使用的矩形波导管只能传播TE10波。

(2)TE 10波在波导管截面为a ×b (a>b)的矩形波导管的一端输入角频率为ω的电磁波,使它沿着z 轴传播。

铁磁性课件.ppt

31
反铁磁性
• 物质原子间静电交换作用使原子磁矩有序排列,当 交换积分A<0时,原子磁矩反平行排列的状态称为 反铁磁态,处于反铁磁态的物体称为反铁磁体。
某些反铁磁体的磁性常数
物质
TN(K)
χ(θ)/χ(TN)
MnO
122
2/3
MnS
165
0.82
MnSe
150
MnTe
323
0.68
MnF2
72
FeO
5
• 铁磁性研究的核心问题就是为什么铁磁体 的原子磁矩比顺磁体容易整列?
物质内部原子磁矩的排列 a:顺磁性 b:铁磁性 c:反铁磁性 d:亚铁磁性
6
铁磁性的物理本质
7
Weiss假设
• Weiss提出第一个假设:磁体中存在与外场无关的自 发磁化强度,在数值上等于技术饱和磁化强度Ms, 而且这种自发磁化强度的大小与物体所处环境的温 度有关。对于每一种铁磁体都有一个完全确定的温 度,在该温度以上,物质就完全失去了其铁磁性。
• 人们把注意力转向静电力。但是,建立在Newton力 学和Maxwell电磁力学上的经典电子论也不能揭示 铁磁体自发磁化的本质。
• Heisenberg和Frank按照量子理论证明,物质内相邻 原子的电子间有一种来源于静电的相互作用力。由 于这种交换作用对系统能量的影响,迫使各原子的 磁矩平行或反平行排列。
• 磁相互作用力的能量与热运动的能量相比太小了, 根据计算,在磁相互作用力下,物体只需加热到 1K就可以破坏原子磁矩的自发平行取向,因而物 体的居里温度应在1K左右。
13
• 实际铁磁体的居里温度在数百K甚至上千K。
• 引起铁磁体内原子磁矩排列整齐,并使有序状态 保持到如此高的温度的力量显然比磁相互作用力 要大千百倍。

铁磁共振 PPT课件

通过右图的表格作图可 以得出共振线宽,g因子:
B 312 278 34 mT
I(A) 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
I(μ A) 53.5 53.2 53.4 53.9 54.0 54.1 54.1 54.2 54.3 54.5 54.6 54.7 54.7 54.7 54.4 54.5 54.2 54.1 54.0 54.0 53.8 53.5 53.2 52.8 52.3 52.0 51.4 50.8 50.4 50.1
为旋磁比,为约化普朗可常数, B 为 其中:
稳恒外磁场。
——经典解释续
如果此时再在稳恒外磁场的垂直方向加上一个交 变电磁场,该电磁场的能量为 h (2) 其中: 为交变电磁场的频率。 当该能量等于粒子分裂后两能级间的能量差时, 即: (3) h B (4) 2 B 低能级上的粒子就要吸收交变电磁场的能量产生跃迁, 即所谓的磁共振。
它能测量微波铁氧体的共振线宽、张量磁化率、
饱和磁化强度、居里点等重要参数。 该项技术在微波铁氧体器件的制造、设计等方 面有着重要的应用价值。
二、实验目的

了解铁磁共振的基本原理,观察铁磁共振
现象;


测量微波铁氧体的铁磁共振线宽;
测量微波铁氧体的g因数
注:铁磁共振研究铁原子中电子的磁共振现象
三、实验原理——概念介绍
,同时读微 I励 ( A )
I励
,根据转换表将励磁电流值 I 检 (A ) 曲线。据曲线求 I 检 -B (对应 Br
最 I检 ( A)
2 B

铁磁共振_

铁 磁 共 振实验原理:铁磁共振一般是在微波频率下进行(波长为3cm 左右)。

将铁磁物质置于微波磁场中,它的微波磁感应轻度B m 可表示为B 0μ=m μ⋅ij H m (1) μ0为真空中的磁导率,μij 称为张量磁导率。

μij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000μμjk jk(2) μ、k 称为张量磁导率的元素'''μμμj -= (3) '''jk k k -= (4)当外加稳恒磁场B 时,μ、k 的实部和虚部随B 的变化曲线如图 2.3.2-1。

μ’、k’在γω/0=r B 处数值和符号都剧烈变化,称为色散。

μ’’、k’’在γω/0=r B 处达到极大值,称为共振吸收,此现象即为铁磁共振。

这里ω0为微波磁场的角频率,γ为铁磁物质的旋磁比。

μ’’决定铁磁物质磁能的损耗,当γω/00==B B 时,磁损耗最大,常用共振吸收线宽B ∆来描述铁磁物质的磁损耗大小。

B ∆的定义如图2.3.2-2,它是μ’’/2处对应的磁场间隔,即半高宽度,它是磁性材料性能的一个重要参数。

研究它,对于研究铁磁共振的机理和磁性材料的性能有重要意义。

铁磁共振的宏观唯象理论的解释是,认为铁磁性物质总磁矩M 在稳恒磁场B 的作用下,绕B 进行,进动角频率B γω=,由于内部存在阻尼作用,M 的进动角会逐渐减小,逐渐趋于平衡方向,即B 的方向而被磁化。

当进动频率等于外加微波磁场H m 的角频率ω0时,M 吸收微波磁场能量,用以克服阻尼并维持进动,此时即发生铁磁共振。

铁磁物质在γω/0=r B 处呈现共振吸收,只适合于球状样品和磁晶各向异性较小的样品。

对于非球状样品,铁磁物质在稳恒磁场和微波磁场的作用下磁化,相应的会在内部产生所谓退磁场,从而使共振点发生位移,只有球状样品,退磁场对共振点没有影响。

另外,铁磁物质在磁场中被磁化的难易程度随方向而异,这种现象称为磁晶各向异性,它等效于一个内部磁场,也会使共振点发生位移,对于单晶样品,实验时,要先作晶轴定向,使易磁化方向转向稳恒磁场方向。

铁磁共振

ω0 = γ Br = g
2πµ B Br h … (2)
所代表的阻尼转矩是一个微观能量转化的过程,阻尼 的大小反应共振系统能量转化为热运动能量的快慢程 度,目前对TD的具体表示式还没有位移正确的写法
2.由于磁导率µ与磁化率χ之间有如下关系:
Χ取复数形式
µ = 1 + 4πχ
(见“磁共振技术基础知识”中“稳定解的讨论”的内容) 所以µ也为复数,称为复数磁导率
1.铁磁性物质的磁化强度矢量 M 在外磁场 B 中运动状态的经典力学运动方程为:
dM = −γ ( M × B) + TD dt …(1)
式中 B = B0 + B1 ,负号表示 M 绕 B0 作右旋进动; T D
为物质内部对 M 产生的阻尼转矩, γ为旋磁比. 对1式求解,可得到MR条件:
µ B 为玻尔磁子, ω 为微波磁场的圆频率,B 称为共振磁场。T 0 r D
µ = µ '+ j µ ''
… (3)
实部µ‘为铁磁性物质在恒定磁场B0中的磁导率,它决定磁性 材料中贮存的磁能(=µ’B02);虚部µ‘’则反应脚边磁场能在 磁性材料中的损耗。
铁氧体在恒磁场B0和微波磁场B1同时作用下, 当微波频率固定不变时,µ’随H0的变化关系类似 图1a所示的色散曲线(又叫频散曲线),µ’’随 B0变化的关系曲线类似图1b,称为吸收曲线。 Μ’、µ’’随B0变化的实验曲线如图所示。与µ’’ max 相对应的磁场为共振磁场Br,样品谐振腔的频率 (或微波频率)称为共振频率利用2式可计算出 旋磁比γ(或g因子)。
3.共振线宽:定义为µ”降到µ”max的一半 1 ( 2 µ '' = µ '' )时,相对应的两个磁场值之差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档