复杂网络9讲-加权网络教学内容
复杂网络理论和应用研究-PPT课件

规则图的特征
平均度为3
随机图的特征
节点确定,但边以概率 p 任意连 接。 节点不确定,点边关系也不确定。
随机图——节点19,边43
平均度为2.42,集群系数为0.13。
随机图——节点42,边118
平均度为5.62,集群系数为0.133。
4. 复杂网络的演化模型
复杂网络是大量互联的节点的集合,节点 是信息的载体,比如互联网,万维网,以 及各种通信网、食物网、生物神经网、电 力网、社会经济网、科学家合作网等。 最近的研究文献揭示了复杂网络的许多重 要特性,其中最有影响的是小世界(smallworld)特性和无标度(scale-free)特性。
C
0 .1 0 7 8 0 .1 8 -0 .3 0 .7 9 0 .4 3 0 .3 2 0 .2 2 0 .2 8
C ra n d
0 .0 0 0 2 3 0 .0 0 1 0 .0 0 0 2 7 0 .0 0 0 1 8 0 .0 2 6 0 .0 6 0 .0 5
L
3 .1 3 .7 -3 .7 6 3 .6 5 5 .9 2 .9 2 .4 3 2 .6 5
b
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 ) 度为 k 的节点的概率 p ( k随节点 度 的变化规律。 k
网络(图)的基本概念
最短路径就是从指定始点到指定终点的 所有路径中总权最小的一条路经。 平均路径长度是指所有点对之间的最短 路径的算术平均值。
网络(图)的基本概念
集群系数(Clustering coefficient)反映 网络的群集程度,定义为网络的平均度 与网络规模之比。
复杂网络 PPT课件

二十一世纪(二十世纪末),系统成为主要的研 究对象,整合成为主要方法;
整合的方法在于了解细部以后,研究“如何组合”的
问题,这导致复杂网络结构的研究; 如:普列高津的耗散结构理论、哈肯的协同学、混沌 和复杂系统理论、系统生物学、…
复杂系统与复杂网络
复杂系统与复杂网络的概念
系统:集合(具体元素)+ 系统的结构是什么?
统失控等一系列不同网络间的连锁反应。
(4)网络分层结构的复杂性
行政管理网络是具有层结构的,多数网络都有节点的
分层结构,只是在许多网络中没有意识到是一种造成 复杂性的重要结构。
对复杂网络的理解
复杂网络是二十一世纪科学研究的思想和理念, 它启发我们用什么观点理解这个世界:整个世界 以及组成世界的任何细部都是由网络及其变化形 成的; 复杂网络也是研究复杂系统的一种技术和方法, 它关注系统中个体相互作用的拓扑结构,是理解 复杂系统性质和功能的基本方法。
复杂网络 Complex Network
为什么研究复杂网络?
二十一世纪涌现的新现象
互联网是怎样“链”接的? 从一个页面到另一个页面,
平均需要点击多少次鼠标?
美国航空网
城市公共交通网
为什么两者结构差异如此之大? 这种差异是必然还是偶然的? 城市交通涌堵的原因是什么?
• 非典发现在广州,为什么却 在北京爆发呢? • 传染病是怎样扩散和消失的?
互联网 病毒传播网
计算机病毒是怎样传播的? 为什么“好事不出门,坏事 行千里”呢?……
神经网络
生态网络
社交网络
电力网络
电信网络航空网络Biblioteka Facebook 全球友谊图
关于复杂网络的课程设计

关于复杂网络的课程设计一、课程目标知识目标:1. 学生能够理解复杂网络的定义、特点及其在现实生活中的应用;2. 学生能够掌握复杂网络的基本概念,如度、聚类系数、最短路径等;3. 学生能够了解复杂网络的主要模型及其生成机制;4. 学生能够运用复杂网络的原理分析简单的社会、技术、生物等网络现象。
技能目标:1. 学生能够运用复杂网络分析方法,对给定的网络数据进行处理和分析;2. 学生能够运用相关软件工具绘制复杂网络的图形,并对其进行可视化展示;3. 学生能够运用复杂网络的统计指标,评估网络的结构特征和功能特性。
情感态度价值观目标:1. 学生对复杂网络产生兴趣,认识到其在各个领域的广泛应用和重要意义;2. 学生能够培养批判性思维,对复杂网络相关现象进行理性分析和判断;3. 学生能够树立团队协作意识,通过合作交流,提高解决问题的能力。
课程性质:本课程属于选修课程,旨在拓展学生的知识视野,提高学生的实践能力和创新意识。
学生特点:学生处于高中阶段,具有一定的数学基础和逻辑思维能力,对新鲜事物充满好奇心。
教学要求:结合课本内容,注重理论与实践相结合,关注学生的个体差异,提高学生的动手操作能力和实际问题解决能力。
通过本课程的学习,使学生能够掌握复杂网络的基本概念和方法,为后续相关领域的学习和研究打下基础。
同时,培养学生的团队协作、批判性思维和情感态度价值观,为学生的全面发展奠定基石。
二、教学内容本课程依据课程目标,结合课本第四章“复杂网络”相关内容,进行以下教学安排:1. 复杂网络基本概念:介绍复杂网络的定义、分类及其特点;讲解度、聚类系数、最短路径等基本统计指标。
2. 复杂网络模型:分析 Erdős-Rényi 模型、Barabási-Albert 模型等典型复杂网络模型及其生成机制。
3. 复杂网络的实证分析:以实际社会、技术、生物等网络为例,运用复杂网络分析方法进行实证研究。
4. 复杂网络的算法与应用:讲解复杂网络中的关键算法,如最短路径算法、社区发现算法等,并探讨其在实际应用中的价值。
复杂网络基础理论

无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化
(完整版)复杂网络的基础知识

第二章复杂网络的基础知识2。
1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2—1 网络类型示例(a) 无权无向网络 (b)加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2—2 规则网络示例(a)一维有限规则网络 (b)二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length)、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2。
2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter)为网络中任意两个节点之间距离的最大值.即}{max ,ij ji l D = (2—1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值.即 ∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2) 其中N 为网络节点数,不考虑节点自身的距离.网络的平均路径长度L 又称为特征路径长度(characteristic path length)。
复杂网络概述

大家好
26
三、复杂网络的结构模型
小世界网络
大家好
27
三、复杂网络的结构模型
小世界网络
C(p) : 平均聚集系数 L(p) : 平均最短路径
大家好
28
• 算法来源
PageRank算法
通过人工进行网页 分类并整理出高质 量的网站
计算用户查询关键 词与网页内容的相 关程度来返回搜索 结果
大家好
29
大家好
34
作战体系节点重要性分析
机械化战争时代, 在通信手段和 指挥控制手段受限的情况下, 作 战体系, 形成了一种树状结构。
随着指挥信息系统的功能越来越
强,作战体系任何两个节点之间
均可以根据需要建立联系,逐步
形成网络化结构。
大家好
35
作战体系节点重要性分析
•作战体系结构的网络描述
依据复杂网络理论, 可以定义作战 体系由节点集合 V 和 边 集 合 E 组 成 的 图 G = (V , E) 。其中, V = {v1,v2 ,…,vn}, 代表组成作 战体系的指挥控制节点、预警侦察 节点(包括战场态势信息源节点和 目标信息源节点)、攻防交战节点 等; E ={e1,e2 ,…,em}, 代表节点之间信息传递关系。
) 目
(3 K 4(K
2) 1)
Lnc( N1/2) Nm /122m/k2 Nk
一般情况下, 聚集系数较大, 平均最短路径较长。
最近邻耦合网络
大家好
24
三、复杂网络的结构模型
随机网络
(1)初始化: 给定N个节点以及连边概 率p
(2)随机连边:
①选择一对没有边相连的不同的节点。
②生成一个随机数r
复杂网络概述 ppt课件

星形耦合网络:有一个中心点,其余N-1个点都只与这
个中心点连接,其平均路径长度为
Lstar 2
聚类系数为
C
star
2( N 1) 2 N ( N 1)
N 1 1 N
ppt课件
( N ) ( N )
16
随机图
随机图是与规则网络相反的网络,一个典型模型 是 Erdos 和 Renyi 于 40 多年前开始研究的随机图模 型。 假设有大量的纽扣( N》1 )散落在地上,并以相 同的概率p给每对纽扣系上一根线。这样就会得到 一个有 N 个节点,约 pN(N-1)/2 条边的 ER 随机图的 实例。
ppt课件 3
3
③ 小世界实验
20世纪60年代美国哈佛大学的社会心理学家Stanley Milgram通过
一些社会调查后给出的推断是:地球上任意两个人之间的平均距
离是6。这就是著名的“六度分离”(six degrees of separation)推断。 为了检验“六度分离”的正确性,小世界实验—Bacon数。美国
ppt课件
9
小世界实验---Erdos数
Erdos从来没有一个固定的职位,从来不定居在一 个地方,也没有结婚,带着一半空的手提箱,穿 梭于学术研讨会,浪迹天涯,颇富传奇色彩。有 人称他为流浪学者(wande ring scholar)。
他效忠的是科学的皇后, 而非一特定的地方。各 地都有热心的数学家提供他舒适的食宿,安排他 的一切,他则对招待他的主人,给出一些挑战性 的数学难题,或给予研究上的指导做为回馈。 他可以和许多不同领域的数学家合作。数学家常 将本身长久解决不了的问题和他讨论,于是很快 地一篇论文便诞生了。
复杂网络理论及其应用课件(2011-4-13)

Complex network and its applications高忠科Apr 13, 2011Outline社团结构及其探寻算法4复杂系统与复杂网络1描述复杂网络基本统计量2小世界和无标度网络模型35复杂网络应用举例7关于复杂性关于复杂性我们所关心的问题:大量个体(更典型的是具有适应性的主体)所组成的复杂系统,在没有中心控制、非完全信息、仅仅存在局域相互作用的条件下,通过个体之间的非线性相互作用,可以在宏观层次上涌现出一定的结构和功能。
相互作用与复杂性Internet全局相互作用晶格扩散平均场什么是复杂网络?1复杂网络是对复杂系统的抽象和描述方式,任何包含大量组成单元(或子系统)的复杂系统,当把构成单元抽象成节点、单元之间的相互关系抽象为边时,都可以当作复杂网络来研究。
1复杂网络是研究复杂系统的一种角度和方法,它关注系统中个体相互关联作用的拓扑结构,是理解复杂系统性质和功能的基础。
什么是复杂网络?1Watts DJ and Strogatz SH, Nature393, 440 (1998)Citation: 4911 (Small-world network)Barabási AL and Albert R, Science286, 509 (1999)Citation: 5474(Scale-free network)1复杂网络为研究复杂系统提供了一个全新的视角,对理解真实系统的复杂行为起着重要的作用。
1复杂网络研究的兴起,广泛应用于社会学,物理统计学,经济学,控制学,工程学,生物医学等多个跨学科研究领域。
Emergence of a networked lifeAtomMoleculeCellTissueOrgans OrganismsCommunities为什么研究复杂网络?1复杂系统不能够用分析的方法去研究,必须考虑个体之间的关联和作用;1理解复杂系统的行为应该从理解系统相互作用网络的拓扑结构开始;1网络拓扑结构的信息是构建系统模型、研究系统性质和功能的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的近邻集合)
jNi
单权位重权分:布的U i 差 Sk异ii, 性顶:点Yi连接jN的i[wS平iij ]均2 表权示重与. i相连的边权分布的离散程度。
拥有相同点权与单位权的两个节点相比,差异性越大,离散程度越大。
点强度分布P(s)与度分布的作用类似,主要是考察节点具有点强度s的 概率。
边权分布P(w)代表一条边具有权重w的概率。
密.(例:科学家合作网中,把次数作为权重,得到相似 权) 注意: 在计算两点间的距离和聚类系数时,边权的意 义不同,计算方式也不同.
2.加权网络上的统计量
权相关性 最短路径 集聚系数
权相关性
1.基本概念:
点权:无权网中节点度的自然推广
点权 Si wij ,即与节点i i关联的边权之和。( 其中N i 是节点i
结论2:差异性 Y i与度 k的关系
如果与顶点i关联的边的权重值差别不大,则 Y
i
与
1 k
i
成正比。
Y i j N i[w Siij]2
[w w ikji]2ki
w i2 j 1 w2ki2 ki
如果权值相差较大,那么只有一条边的权重起主要作用,则
Yi 1
2.相关性分析 加权网络需要进行 度相关性分析 点权相关性分析 权与度相关性分析
我们可以根据不同的作用关系做三个网络:合作网络,引文网络,致谢网络. 但即便对于同一个网络比如引文网络,引文次数不同所代表的相互作用 关系不同。(无权网中能表现相互作用的强度吗?)
这时必须考虑赋边权,表示相联系的强度.
另外,我们希望在同一个网络中研究这三个层次的相互作用,还应该考虑 加权的方式.
当系统中包含同一属性的不同层次的关系的时候,必须仔细研究加权方 式.
Petter Holme 分析加权网络的聚类系数,指出它应该满足以下几条要求:
1. Cw [0,1]
2.加权网退化为无权网时,聚类系数应与Watts-Strogatz定义的聚类系数的计 算结果一致。
3.权值为0表示该边不存在。
4.包含节点i的三角形中三条边对 C w (i) 的贡献应与边的权重成正比。
加权的方式:
根据相关的物理量(例如:电阻网络边上的权值代表电 阻值,邮递员问题中的距离)
根据相互作用的某种属性(例如:科学家通过文献相互 作用,把引文的次数作为权重)
边权按照意义划分: 相异权: 权值越大,两点之间的距离越大,关系越疏
远.(例:邮递员问题中的距离) 相似权: 权值越大,两点之间的距离越小,关系越亲
相似权:令
l ij
1 w ij
假设顶点i和k分别通过两条权重分别为
w
ij
间的距离。
和 w jk 的边相连,现求i与k之
对于相异权: lik wij wjk
对于相似权:l ik
1 1 1
w ij
w jk
2.最短路径:两点之间所有连通的路径中距离之和最小的一条或几条路径。
无权网:边数最少的路径
最短路径
Barat 定义:
CB wsi(k1 i 1)j,kw ij 2wjkaijajkaki
分母上为单位权乘以最大可能的三角形的数目,分子上是实际三角形数
目乘以与i相连的边的权重的平均值
Onnela 定义:
C o w(i)ki(k1 i1)j,k(w ijwj k w k)i1 3
w ij
其中 wij 为网络中经最大权重标准化后的数值
幂律分布 p() (0) 其中 , 0 0.0003 1.5
此外还发现给定两端度值的边的权重平均值和两个端点的 度值的关系为 ij ~(kikj) ,其中 0.5。除了全局流量 分布的非均匀性外,计算边权差异性 Y i 还可以观察到在 单个代谢物的层面上边权分布的非均匀性。在此网络上对 出度和入度相同的顶点计算边权差异性,发现它们都服从
向于与度大的节点相连)
如果 Knn(k) 是减函数,那么该网络是负向匹配网络。
knn (k)
k nn ,i
1
1
kn,ni
ki
kj
jNi
ki
aijkj
jV
在加权网络中:
定义节点的加权平均近邻度
kw n n,i
1
Si
aijwijkj
jNj
考虑权与度的相关性
当
kw nn,i
knn,i
时,具有较大权重的边倾向于连接具有较大度值的点
第八讲 加权网络
2010.11.13 李凯凯
主要内容: • 8.1 加权网络的统计性质 • 8.2 加权网络的演化模型 • 8.3 权重对网络结构性质的影响
8.1加权网络的统计性质
1. 加权网络的加权的必要性与方式 2. 加权网络上的统计量
1. 网络加权的必要性与赋权方式
网络加权的必要性:
例:为研究某一新思想的在一个学术领域的产生传播,研究科学家之间通 过文献相互作用的网络。相互作用分为三个层次:合作,引文,致谢 (无权 网中能体现相互作用的三个层次吗?) 。
当
kw nn,i
knn,i
时,具有较大权重的边倾向于连接具有较小度值的点
所以,对于相互作用强度(权重)给定的边,
k
w nn
,i
表明它与具有不同度值的顶
点之间的亲和力。
• 最短路径
1.加权网络中两点之间的距离与权重的关系:
距离是权重的某种函数,这时需要看权重是相似权还是相异权。
相异权:定义两点之间的距离 lij wij
Watts-Strogatz 定义的聚类系数:
aij a jk a ki
C (i) j,k
aij aki
j ,k
加权网的聚类系数:
wijwjkwki
CHw
j,k
maxij
wij
wijwik
j,k
一些加权网络的实证结果
• 1.生物网络
Almaas等人将酵母中的新陈代谢反应看作加权网络进行 研究,把从代谢物i到j的流量看作边权 ,观察到流量具有 高度非均匀性,在理想的培养下条件下,边权的分布符合
度相关性分析:因为对网络加权不改变节点的度的性质,所以度相关性 分析与无权网络中分析相同。
在无权网络中:
定义节点i的近邻平均度 k nn ,i ,得到度为 k 的所有节点的近邻平均度 显然 Knn(k) 是 k 的函数。那么度相关性可以通过函数 Knn(k)
的单调性得到:
如果 Knn(k) 是无单调性,那么该网络没有度相关性。 如果 Knn(k)是增函数,那么该网络是同向匹配网络。(度大的节点倾
加权网:因为距离不满足三角不等式,所以两边距离之和不一定大于第三边.
边数最少的路径最短路径网络的其他全局统计量,如介数,可以在加权最短路径的基础上进行计算
集聚系数
节点i的聚类系数 C i 反映了该节点邻点的联系的程度。 C i 越大,说明 该点的邻接点之间的联系越紧密。
加权网络中的聚类系数有多种定义方式;