高性能混凝土耐久性

合集下载

超高性能混凝土的耐久性研究

超高性能混凝土的耐久性研究

超高性能混凝土的耐久性研究一、引言超高性能混凝土(Ultra-high-performance concrete, UHPC)是一种新型的高性能混凝土,其强度、耐久性、抗裂性等方面都有着非常优异的表现。

其在桥梁、隧道、高层建筑等工程领域的应用越来越广泛。

然而,由于其材料成分的复杂性以及生产工艺的特殊性,其耐久性等方面仍需要深入的研究。

二、超高性能混凝土的耐久性1. UHPC的耐久性优势UHPC的优异性能主要体现在以下几个方面:(1)高强度:UHPC的强度一般在150~250 MPa之间,远高于传统混凝土的强度。

(2)高密实性:UHPC的细观结构非常致密,孔隙度低,因此其抗渗性和耐久性都非常优秀。

(3)高耐久性:UHPC中常采用高性能水泥、硅烷等添加剂,可以有效地抵抗酸碱侵蚀、氯离子渗透等。

2. UHPC的耐久性挑战尽管UHPC的耐久性在很多方面都具有优势,但是其也存在一些挑战,主要表现在以下几个方面:(1)早期龟裂:在混凝土硬化的早期,由于未形成足够的强度,UHPC容易出现龟裂,导致其耐久性降低。

(2)高温影响:UHPC中添加的一些特殊成分,如微纤维、高性能水泥等,在高温下会发生热分解,导致其性能下降。

(3)长期蠕变:UHPC中的一些添加剂会增加其蠕变性,从而降低其耐久性。

三、提高UHPC的耐久性的措施1. 混凝土配合比的优化通过优化混凝土的配合比,可以提高UHPC的耐久性。

例如,可以在控制UHPC强度的前提下,增加其细观结构的致密性,从而降低其氯离子渗透率和碳化深度。

2. 添加剂的优化UHPC中的添加剂对其性能和耐久性有着至关重要的影响。

因此,通过对添加剂的种类和用量等进行优化,可以有效地提高UHPC的耐久性。

例如,可以加入氧化钙、硅烷等特殊添加剂,提高UHPC的抗渗性和抗裂性。

3. 生产工艺的优化UHPC的生产工艺对其性能和耐久性也有着非常重要的影响。

通过优化生产工艺,可以提高UHPC的致密性和耐久性。

高性能混凝土讲稿—高性能混凝土的发展与应用

高性能混凝土讲稿—高性能混凝土的发展与应用

高性能混凝土讲稿—高性能混凝土的发展与应用高性能混凝土是一种结构性材料,它具有很高的强度、耐久性和耐久性等特点。

近年来,随着我国经济的快速发展和城市化进程的加速,高性能混凝土逐渐成为建筑行业重要的材料之一。

本文将从高性能混凝土的概念、特点、发展历程和应用领域等方面进行探讨。

一、高性能混凝土的概念和特点高性能混凝土是一种新型的混凝土材料,通常指强度等级在C50以上、特别是强度等级在C70以上的混凝土。

它具有优异的抗压强度、耐久性、渗透性、抗冻融性、防火性、耐酸碱性、抗腐蚀性等特点。

具体包括以下几个方面:1.强度高:高性能混凝土的抗压强度比通常的混凝土高出数倍,同时有很好的耐压性。

2.耐久性好:高性能混凝土具有很好的耐久性,不容易受到气候、环境等因素的损害。

3.渗透性低:高性能混凝土渗透性低,它可以避免水的渗透和钢筋腐蚀。

4.防火性好:高性能混凝土的耐火性能好,不易受到高温、火灾等因素的影响。

5.耐酸碱性好:高性能混凝土抗酸碱性和腐蚀性好,它可以适应不同的环境。

二、高性能混凝土的发展历程高性能混凝土的发展历程可以追溯到20世纪60年代初期。

当时,随着钢筋混凝土结构应用的不断扩大,要求混凝土的强度和耐久性都得到提高,为此,高强混凝土材料的研究逐步得到推广。

40年代末期,美国耐用材料协会ACC和美国铁路协会ARA两个机构先后提供了高强混凝土和高性能混凝土的定义和标准,并开始推广应用。

欧洲国家在20世纪70年代后期加入了这一研究。

高性能混凝土经过多年的发展,已经成为世界性的一个热点研究领域。

近年来,国内研究人员和企业也开展了大量的高性能混凝土试验和应用研究,逐步在高速公路、大桥、港口、地铁、商业建筑等领域得到了广泛应用。

三、高性能混凝土的应用领域1.公路和桥梁工程:高性能混凝土在公路和桥梁工程中具有广泛的应用。

它可以用于高速公路、隧道和桥梁等结构,具有良好的承载能力和耐久性能。

2.建筑工程:高性能混凝土在建筑工程中逐渐得到了广泛的应用。

混凝土耐久性与高性能混凝土

混凝土耐久性与高性能混凝土

混凝土耐久性与高性能混凝土混凝土的耐久性与高性能混凝土一直是建筑工程中极为重要的话题。

混凝土作为一种常用的建筑材料,其质量直接关系到建筑物的安全性和使用寿命。

本文将从混凝土的耐久性和高性能混凝土两个方面展开论述,分析其特点和应用。

一、混凝土的耐久性混凝土的耐久性是指混凝土在特定的环境条件下,在一定时间内保持其结构完整性和使用性能的能力。

混凝土的耐久性受到多种因素的影响,包括材料的选择、配合比设计、施工工艺、环境条件等。

为了提高混凝土的耐久性,需要注意以下几点:1. 合理选材:选择优质的胶凝材料和骨料是保证混凝土耐久性的重要因素。

优质的水泥和骨料可以有效提高混凝土的抗压强度和耐久性。

2. 配合比设计:合理的配合比设计可以确保混凝土的力学性能和耐久性。

过水水灰比会导致混凝土强度不足,降低其耐久性。

3. 施工质量:严格控制混凝土的浇筑、养护和保护层质量,避免混凝土表面产生龟裂、砂浆剥落等现象,从而提高混凝土的耐久性。

二、高性能混凝土高性能混凝土是一种通过应用新型材料、技术和工艺制备而成的混凝土,具有较高的强度、耐久性、抗渗性等性能。

高性能混凝土在工程领域有着广泛的应用,特点如下:1. 高强度:高性能混凝土的抗压强度一般在60MPa以上,部分高性能混凝土的抗压强度可达到100MPa以上,能够满足复杂工程结构的要求。

2. 优良的耐久性:高性能混凝土具有较好的耐久性,能够在恶劣的环境条件下长期使用而不产生明显的破坏。

3. 优异的抗渗性:高性能混凝土的密实性和致密性较高,具有较好的抗渗性能,能够有效减少混凝土结构受到水侵蚀的可能性。

在实际应用中,高性能混凝土常用于桥梁、隧道、高层建筑、水利工程等工程领域,能够有效提高工程结构的安全性和耐久性。

综上所述,混凝土的耐久性和高性能混凝土对于建筑工程的质量和安全性具有重要意义。

通过合理选材、配合比设计和施工工艺,可以有效提高混凝土的耐久性;而应用高性能混凝土,可以提高工程结构的强度和耐久性,满足工程设计的要求。

高性能混凝土的耐久性研究

高性能混凝土的耐久性研究

高性能混凝土的耐久性研究在现代建筑领域中,高性能混凝土因其出色的性能而备受关注。

然而,要确保建筑物在长期使用中保持稳定和安全,高性能混凝土的耐久性就成为了一个至关重要的研究课题。

高性能混凝土是一种具有高强度、高工作性和高耐久性的新型混凝土。

它通常采用优质的原材料,并通过精心的配合比设计和严格的生产控制来制备。

与传统混凝土相比,高性能混凝土在强度和耐久性方面都有显著的提升。

耐久性对于混凝土结构来说意义重大。

在建筑物的使用寿命中,混凝土可能会受到各种因素的侵蚀和破坏,如化学腐蚀、冻融循环、钢筋锈蚀等。

这些因素会逐渐削弱混凝土的性能,导致结构的安全性和可靠性降低。

因此,提高高性能混凝土的耐久性,对于延长建筑物的使用寿命、降低维护成本以及保障人民生命财产安全都具有重要意义。

化学腐蚀是影响高性能混凝土耐久性的一个重要因素。

例如,在一些工业环境中,混凝土可能会暴露在酸、碱等化学物质的侵蚀下。

这些化学物质会与混凝土中的成分发生反应,破坏其内部结构,从而降低混凝土的强度和耐久性。

为了提高混凝土的抗化学腐蚀性能,可以在配合比设计中选择合适的水泥品种和掺和料,如粉煤灰、矿渣等。

这些掺和料能够与水泥水化产物发生反应,生成更加稳定的化合物,从而提高混凝土的抗化学腐蚀能力。

冻融循环也是一个不可忽视的因素。

在寒冷地区,混凝土结构经常会经历冻融循环的作用。

在水冻结时,体积会膨胀,产生的膨胀力会使混凝土内部产生微裂缝。

随着冻融循环次数的增加,这些微裂缝会逐渐扩展,最终导致混凝土的破坏。

为了提高高性能混凝土的抗冻性能,可以通过控制水胶比、引入引气剂等方式来实现。

引气剂能够在混凝土中引入微小的气泡,这些气泡可以在水冻结时起到缓冲作用,减轻膨胀力对混凝土的破坏。

钢筋锈蚀是影响混凝土耐久性的另一个关键问题。

当混凝土中的钢筋发生锈蚀时,其体积会膨胀,从而导致混凝土保护层开裂、剥落。

这不仅会影响结构的外观,还会严重削弱结构的承载能力。

为了防止钢筋锈蚀,可以采用高性能的防护涂层来保护钢筋,或者在混凝土中添加阻锈剂。

混凝土的耐久性改善措施

混凝土的耐久性改善措施

混凝土的耐久性改善措施混凝土是一种广泛应用于建筑和基础设施领域的材料,其耐久性一直是关注的焦点。

在现实应用中,混凝土会受到多种因素的破坏,如化学侵蚀、物理载荷、温度变化等。

为了提高混凝土的耐久性和延长其使用寿命,需要采取相应的改善措施。

本文将探讨一些可行的混凝土耐久性改善措施,旨在提供实用的建议。

1. 使用高性能混凝土高性能混凝土是指在传统混凝土的基础上,通过控制材料配比、添加化学掺合剂和改良工艺等手段提高强度和耐久性的混凝土。

高性能混凝土的抗压强度、抗渗性和耐久性等性能优于传统混凝土,适用于对耐久性要求较高的工程。

2. 加强混凝土结构的维护保养混凝土结构的维护保养对于延长其使用寿命至关重要。

定期检查混凝土结构的表面是否存在裂缝、腐蚀等问题,并及时采取修复措施,如填补裂缝、防腐涂层等,以防止进一步的破坏。

此外,还可以采取防水处理和表面加固等手段,提高混凝土结构的耐久性。

3. 使用防水剂混凝土的渗水性是导致其损坏的主要原因之一。

通过使用防水剂来提高混凝土的防水性能,可以有效地减少水分的渗透和侵蚀。

防水剂可以分为内部防水剂和外部防水剂两种,内部防水剂通过改变混凝土内部的结构和性质来提高其防水性能,外部防水剂则通过涂覆在混凝土表面形成一层防水膜来达到防水的效果。

4. 添加化学掺合剂化学掺合剂是改善混凝土性能的有效方法之一。

它们可以通过控制水胶比、改善混凝土的微观结构和增强其耐久性能。

常见的化学掺合剂包括氯化钙、硅灰、矿渣粉等。

添加适量的化学掺合剂可以提高混凝土的抗渗性、抗冻融性和耐化学侵蚀性。

5. 耐久性试验与监测耐久性试验与监测是评估混凝土性能和监控其耐久性变化的重要手段。

通过对混凝土的抗渗性、抗冻融性、抗化学侵蚀性等进行试验,可以及时了解其性能状况,为采取相应的改善措施提供依据。

同时,定期进行混凝土结构的耐久性监测,可以实时监测结构的健康状态,及时发现并修复潜在问题。

总结:混凝土的耐久性改善措施包括使用高性能混凝土、加强维护保养、使用防水剂、添加化学掺合剂以及进行耐久性试验与监测等。

高性能耐久性混凝土

高性能耐久性混凝土

高性能耐久性混凝土摘要:高性能耐久性混凝土就是指在采用普通原材料组成设计,通过掺加外加剂或者外掺料获得高要求施工性能的混凝土,并同时满足设计使用年限的耐久性能混凝土。

1 高性能耐久性混凝土配合比设计1.1 高性能耐久性混凝土定义铁路客运专线对高性能耐久性混凝土的定义为:具有高耐久性(抗氯离子渗透、抗渗性、抗冻融性、耐磨性、护筋性等)、高体积稳定性(抗裂、低收缩徐变)、高工作性(匀质性、和易性、流动性)、高强度(早强、增强)及低水泥用量、低水胶比。

高速铁路客运专线要求混凝土路基沉降小,轨道平稳、混凝土变形小、抗裂性高,整体性好。

高性能混凝土可以满足客运专线中这些特定的性能使用要求。

由于混凝土耐久性的提高,减少桥梁的修补费用,延长桥梁的使用寿命,在铁路桥梁上应用高性能混凝土具有较高的经济效益。

1.2 高性能耐久性混凝土特点它的特点是:拌和物呈塑性或流动状态,可工作性好、易于浇筑成型密实、不离析。

在浇筑体的凝结硬化过程和硬化后,它的体积稳定性好、水化热小、徐变小、混凝土孔隙率小、抗渗抗冻性好等特点。

1.3 影响高性能耐久性混凝土的主要因素影响高性能混凝土的耐久性因素很多,归纳起来主要有以下几类:1)水胶比水胶比大、用水量大引起毛细孔增多,从而导致有害物质侵蚀混凝土内部。

使钢筋锈蚀,导致混凝土开裂剥落。

如在氯盐和化学侵蚀环境下的侵蚀。

二氧化碳气体引起的碳化。

都会使混凝土的耐久性能降低。

2)使用了不合格原材料使用了含碱量和C3A含量高的普通水泥及具有潜在碱活性的骨料所引起的碱集料反应破坏混凝土内部结构,导致混凝土膨胀开裂。

另外使用细度过大的粉煤灰会导致粉煤灰的需水量过大,影响混凝土拌合物的和易性,混凝土的强度大大打折扣,质量将无法保证。

3)施工不规范施工控制不严格,未严格安照施工工艺施工,养护措施不到位,新浇筑的混凝土得不到及时有效的养护,会引起混凝土早期收缩开裂,从而影响混凝土耐久性。

4)环境条件在设计时未充分考虑环境条件对混凝土结构的影响。

高性能混凝土及耐久性施工

高性能混凝土及耐久性施工

对高性能混凝土及耐久性施工第一节概述高性能混凝土是20世纪90年代初提出的,尽管当前对其定义尚未能看法一致,但高性能混凝土必须具有高耐久性这一点是一致的,高性能混凝土是一种新型的高技术混凝土,是在大幅度提高普通混凝土性能的基础上,以耐久性为主要设计指标,针对不同用途和要求,采用现代技术制作的,低水胶比的混凝土。

高性能混凝土制作的主要技术途径是采用优质的化学外加剂和矿物外加剂,前者可改善工作性,生产低水胶比的混凝土,控制混凝土坍落度损失,提高混凝土的致密性和抗渗性,后者可参与水化,起到胶凝材料的作用,改善界面的微观结构,堵塞混凝土内部孔隙,提高混凝土的耐久性,高性能混凝土在节能、节料工程中有作很好的经济效益。

劳动保护及环境保护等方面都具有重大的意义,是国内外土木建筑界研究的热点。

国内外许多单位都在进行高性能混凝土的研究,但由于高性能混凝土是一种新型高技术混凝土,研究还有一些未完善之处,高性能混凝土的生产实践需要高新技术,更需要科学的理论。

以达到使用高性能混凝土的目的,又避免大质量缺陷,而收到良好的综合效益。

但是,现行铁路工程各专业设计规范对混凝土结构主要考虑结构的承载能力,而较少考虑环境作用引起的材料性能劣化对结构耐久性带来的影响,混凝土的耐久性不足,不仅会增加使用过程中的修理费用,影响工程的正常使用。

而混凝土结构设计能够适应铁路工程建设的需要,并有利于可持续发展的战略,对铁路混凝土结构耐久性设计的具体内容和方法,才能真正做到安全、适用、经济、合理。

第二节高性能混凝土施工对搅拌机操作人员的培训是相当关键的,必须让搅拌机操作人员对搅拌过程全面了解彻底,包括设备的使用、投料顺序、搅拌时间以及平时对搅拌机计量系统的检查等,都是至关重要的,同时这里还包括冬季施工等,只有在保证这些条件的前提下,高性能混凝土的耐久性才能得到保证.2。

1混凝土施工前,应根据设计和施工工艺要求提前开展混凝土配合比选择试验,并针对混凝土结构的特点和施工环境,使用环境条件特点,制定施工全过程的质量控制与质量保证措施.重要混凝土结构应进行混凝土试浇筑,验证并完善混凝土的施工工艺。

高性能混凝土耐久性总结

高性能混凝土耐久性总结

高性能混凝土耐久性高性能混凝土(High performance concrete,简称HPC)是指具备较高力学性能和耐久性能的混凝土。

近年来,由于HPC在工程实践中的显著效益,其研究和应用逐渐成为国际性的研究热点和建筑工程发展方向。

本文就HPC的耐久性做一个。

什么是混凝土的耐久性?混凝土的耐久性指混凝土在外界水泥浆环境和物理力学、气象及其他外力作用下长期保持自身的完整性、稳定性和功能性的能力。

混凝土在使用中要经受多种因素的影响,如湿度、温度、酸雨、盐渍侵蚀、紫外线辐射、物理力学因素等。

因此,高性能混凝土的耐久性是评估其长期应用价值的重要指标之一。

HPC的耐久性特点HPC具有以下耐久性特点:抗渗透性好HPC的水泥石胶粘性和孔隙结构特征有利于减少孔隙结构中的缺陷和痕迹,从而提高其抗渗透性。

抗硫酸盐渗透能力强硫酸盐渗透是混凝土耐久性的主要威胁之一,HPC中的混合料和其水化物阻碍硫酸盐离子的扩散和渗透。

抗氯离子侵蚀能力强氯离子侵蚀是混凝土耐久性的主要威胁之一,HPC中的矿物掺合料和细粉料、微珠混凝土、高性能砂浆和防护涂层等阻隔氯离子进入混凝土内部,从而使得混凝土的氯离子扩散系数明显降低。

抗冻融性能强HPC水泥基体的热膨胀系数具有较强的相容性,能够使得混凝土内部的温度更为均匀,从而减少混凝土融化和冻结时的应力和应变,提高其抗冻融性能。

抗碱骨架侵蚀性能强HPC中的混合料、填料和纤维等均具有较好的耐碱性,可以抵抗碳化和硅酸盐反应所导致的减弱和破坏。

以上特点使得HPC在工程中的耐久性得到更好的应用和保证。

HPC的应用范围HPC的耐久性使得它广泛应用于以下领域:桥梁工程桥梁工程往往要在露天环境中进行,容易受到气候、环境等因素的影响,因此,HPC在桥梁工程中的应用越来越广泛。

HPC可以作为桥梁框架、支架和基础等结构体系的主体材料。

隧道工程隧道工程长期处于高压、潮湿和低氧环境中,因此,HPC的耐久性便十分重要。

HPC材料可用于隧道局部和整体的加固和修复。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试论高性能混凝土的耐久性
摘要:高性能混凝土是一种新型的高技术混凝土,是在大幅度提高普通混凝土性能基础上,以耐久性为主要设计指标,针对不同用途和要求,采用现代技术制作的低水胶比的混凝土。

关键词:高性能混凝土;耐久性;影响因素
高性能混凝土是在高强混凝土基础上发展来的,即为高强混凝土的进一步完善,是目前混凝土发展的一个重要领域。

近些年来,由于在高强混凝土的配制中,不仅加入了超塑化剂,也掺入了活性磨细矿物掺合料,与高性能混凝土的组分材料相似,因此,至今国内外有些学者仍然将高性能混凝土与高强混凝土在概念上有所混淆,不同的国家,不同的学者根据高性能混凝土性能特征上各有所不同曾提出过不同的解释和定义。

1 高性能混凝土耐久性的意义
混凝土的耐久性是当前国际上与之相关学科最为重要的前沿研究领域之一。

混凝土的耐久性,通俗来讲,是建(构)筑物的使用年限。

近几十年来由于混凝土耐久性不足,在建筑物或构筑物的计基准期内,容易出现质量问题,导致结构可靠度降低。

为维持结构必要的安全性和适用性,需要大笔维修费用。

如果不能继续使用,则往往予以拆除,成为不可再利用的大宗垃圾,占用大片土地,造成巨大的经济损失,这是各国普遍存在的现象。

工程实例教训所花费的经济、环境代价是昂贵和惨痛的。

2高性能混凝土耐久性的影响因素
高性能混凝土耐久性指混凝土在使用过程中抗大气、环境作用的能力。

其内容主要包括:混凝土抗化学侵蚀,碱—骨料反应,冻融循环性能,抗氯离子浸透性或钢筋锈蚀等,目前高性能混凝土一般采用“双掺”技术制备,即在混凝土中加入矿物料及高效外加剂,混凝土的工作性、强度等得到了很大改善,但混凝土还是出现了裂缝,在环境因素的侵蚀作用下其耐久性下降,甚至出现混凝土建筑物崩塌事故。

2.1 抗渗性。

混凝土使用期间,会与环境中的水、气体以及其中所含侵蚀介质的侵入并产生物理和化学反应而逐渐破坏。

抗渗性是指混凝土抵抗这些介质向混凝土内部渗透作用的能力。

渗透主要通过水泥内部毛细管或某些微裂缝所形成透水通路。

混凝土的抗渗性能的高低直接反应混凝土耐久性能。

2.2 碱-集料反应。

碱-集料反应是混凝土中的碱与集料中的活性组分之间发生的破坏性膨胀反应,从而影响混凝土的安全性。

该反应会导致整体开裂破坏,预防其造成破坏的方法可以使采用控制混凝土中当放碱含量,也可以加入大量的矿物外加剂来代替水泥。

2.3 硫酸盐侵蚀破坏。

水泥基材料硫酸盐侵蚀破坏的实质是有环境水中的硫酸盐离子进入水泥石内部与一些固相组分发生化学
反应,生成一些难溶的盐类矿物而引起混凝土膨胀、开裂、剥落和解体,也会使水泥中ch和c-s-h等组分溶出或分解,导致水泥基材料强度和粘结性能损失。

2.4 混凝土碳化。

混凝土是多孔性材料,大气中的二氧化碳能
够渗入混凝土内与氢氧化钙产生化学反应,是混凝土碱性减低形成碳化层,导致混凝土结构的膨胀、松散和开裂等。

2.5 钢筋锈蚀破坏。

主要原因:一是混凝土碳化,当碳化达到钢筋表面时,使钢筋表面与混凝土粘结生成的氧化铁薄膜破坏,从而锈蚀。

二是混凝士中氯离子的侵蚀作用,当氯离子渗入到钢筋表面吸附于局部钝化膜处时,钢筋表面的氧化铁薄膜被破坏,造成钢筋锈蚀。

掺入大量矿物外加剂后,水泥混凝土具有高碱性,可有效保护钢筋不被锈蚀。

2.6 冻融作用。

冻融破坏主要原因是混凝土内部渗水的空隙或毛细管受冻后,水结冰后体积膨胀,对孔壁或毛细管壁产生一定的内压力作用而导致结构破坏,混凝土经受多次冻融循环作用后,强度逐渐减低,最终导致破坏。

3提高混凝土耐久性的技术途径
3.1掺入高效减水剂。

在保证混凝土拌合物所需流动性的同时,尽可能降低用水量,减小水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。

水泥在加水搅拌后,会产生一种絮凝状结构。

在这些絮凝状结构中,包裹着许多拌合水,从而降低了新拌混凝土的工作性。

施工中为了保持混凝土拌合物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。

当加入减水剂后,减水剂的定向排列,使水泥质点表面均带有相同电荷。

在电性相斥的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜使水泥絮凝状
的絮凝体内的游离水释放出来,因而达到减水的目的。

3.2掺入高效活性矿物掺料。

在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。

活性矿物料(矽灰、矿渣、粉煤灰等)中含有大量活性sio及活性alo,它们能和水泥水化过程中产生的游离石灰及高碱性水化矽酸钙产生二次反应,生成强度更高,稳定性更优的低碱性水化矽酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的。

有些超细矿物掺料,其平均粒径小于水泥粒子的平均粒径,能填充于水泥粒子之间的空隙中,使水泥石结构更为致密,并阻断可能形成的渗透路。

3.3消除混凝土自身的结构破坏因素。

除了环境因素引起的混凝土结构破坏以外,混凝土本身的一些物理化学因素,也可能引起混凝土结构的严重破坏,致使混凝土失效。

因此,要提高混凝土的耐久性,就必须减小或消除这些结构破坏因素。

限制或消除从原材料引入的碱,so,c等可以引起结构破坏和钢筋腐蚀物质的含量,加强施工控制环节,避免收缩及温度裂缝产生,提高混凝土的耐久性。

4高性能混凝土耐久性问题及优化措施
4.1早期抗裂性差。

早期开裂是高性能混凝土的早期收缩大、早期弹性模量增长快、抗拉强度并无显著提高、比徐变变小等因素共同导致的。

混凝土的收缩是指混凝土中所含水分的变化、化学反应及温度变化等因素引起的体积缩小。

其按作用机理可分为自收缩、塑性收缩、硬化混凝土的干燥收缩、温度变化引起的收缩变形及碳化收缩变形五种。

4.2 改善措施。

防止混凝土早期开裂主要是抑制混凝土的收缩。

措施:①可采用优质原材料,优化配合比,加强对混凝土的养护;
②加入短纤维增强阻裂;③采用减缩防裂剂等。

4.3 高性能混凝土推广应用存在的问题。

第一,高强高性能混凝土缺乏通用的设计规程和有关材料、施工及验收标准;第二,制备高性能混凝土所用原材料价格较贵;第三,高性能混凝土材料组成与普通混凝土有所不同,所以在施工工艺上有特殊的要求;第四,高性能混凝土收缩大、脆性高、耐火性差等有待改善和提高性能。

5 结束语
人类进人21世纪,面临着“人口膨胀、资源能源短缺以及环境恶化”三大问题。

混凝土材料是资源和能源消耗大户,也是重要的环境污染源。

混凝土材料和技术直接影响着人类可持续发展。

因此:(1)必须重视和提高混凝土耐久性,减少工程隐患和工程的重复建设周期,尽可能的使同一工程应用更长的时间,以节约混凝土用量,节约有限的人力、物力和财力。

(2)高性能混凝土是提高混凝土耐久性的有效手段,需要对其研究和应用更加深入,降低成本,扩大它的应用范围。

(3)加大对低品位骨料的有效利用,再生骨料和人造轻骨料的研究开发,减轻环境负荷。

(4)进一步研究和发展混凝土劣化机理和维护方法,降低混凝土结构后期维护和加固成本。

(5)对混凝土各组分材料如水泥、高效减水剂和超细粉等进行
深入研究,采用有效的优化组合和选择,提高混凝土的强度、抗渗性、耐久性等性能。

相关文档
最新文档