汽车安全正面碰撞法规介绍
归纳各国碰撞标准对比.ppt

各国碰撞法规和标准的试验方法和要求
➢ 正面碰撞法规 ➢ 侧面碰撞法规 ➢ 后面碰撞法规
精选
正面碰撞标准
FMVSS 208
1、美国正面碰撞标准 FMVSS208
1.1 适用范围
美国正面碰撞FMVSS 208 适用于总质 量不大于4536kg 的乘用车、卡车、多用
途乘用车。
HIII 50%男性正面碰撞假人
精选
FMVSS 208
精选
1.2 技术要求
序号
检验项目
1
头部伤害指数 HIC(Head Injury Criterion)
2
胸 部 3ms 合 成 加 速 度
3
胸部变形量(mm)
大腿受力 4
(N)
左腿 右腿
5
车辆部件
6
假人
7
燃油泄漏量
8
碰撞速度
速度 (km/h)
9
碰撞时样车偏移量 (mm)
精选
FMVSS 208
标准要求 ≤1000 ≤60g ≤76
≤10000
车辆部件不能侵入乘员舱 实验过程中,假人身体的每个部分应包 含在乘员舱的外表面以内
在碰撞中:〈28g 碰撞后前 5 分钟〈142g 碰撞后 6-30 分钟〈28g/分钟
≥48.3 ±150
FMVSS 208 2006.9.1后生产的车,总质量≤ 3855kg,整备 质量≤ 2495kg,要进行以下试验:
精选
侧面碰撞标准 1、美国侧面碰撞标准FMVSS214
1 .1适用范围 FMVSS214侧面碰撞适用于所有 乘用车和质量小于4536kg的多用 途乘用车,卡车和客车。
精选
精选
FMVSS 214 技术要求
关于汽车正面碰撞的国内外安全法规综述(最新版)

( 安全管理 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改关于汽车正面碰撞的国内外安全法规综述(最新版)Safety management is an important part of production management. Safety and production are inthe implementation process关于汽车正面碰撞的国内外安全法规综述(最新版)在日益发达的今天,作为一种交通工具,汽车在给人们生活带来便利的同时,也带来了各种安全隐患。
车速越来越快,给人们的安全和财产带来的伤害也越来越大。
因此,汽车的安全性是汽车厂商、消费者及政府部门高度重视的问题。
按照碰撞事故形态,汽车碰撞主要包括正面碰撞,侧面碰撞,追尾碰撞以及碰撞翻滚等。
其中,根据美国的一项统计资料显示,大约60%的碰撞事故发生于车辆前方,因此,进行汽车正面碰撞的探索研究尤其重要,制定汽车的正面碰撞法规、标准也是各个国家相关部门首要解决的问题。
目前,国际上流行的实车碰撞试验法规主要有美国的FMVSS和欧盟的ECE两大体系,其他国家的技术法规大多是参照以上两个法规体系制定的。
中国在碰撞法规的研究中主要借鉴了欧盟ECE法规体系,自从20世纪90年代中国颁布了《汽车正面碰撞乘员保护的设计规则》到2007年7月1日正式实施《汽车侧面碰撞的乘员保护》,中国在汽车安全法规的研究上正在积极地与国际接轨。
本文基于汽车正面碰撞研究,主要介绍欧美和中国的汽车碰撞法规。
1美国美国是世界上最早开始实施车辆正面碰撞法规的国家,其于上世纪60年代授权美国运输部(DOT)对乘用车、多用途乘用车、载货车、挂车、大客车、学校客车、摩托车以及这些车辆的装备和部件制定并实施联邦机动车安全标准(FederalMotorVehicleSafetyStandards,简称FMVSS),并率先于1986年颁布了FMVSS208《乘员碰撞保护》法规。
各国碰撞标准对比

≥48.3 ±150
FMVSS 208
2006.9.1后生产的车,总质量≤ 3855kg,整备 质量≤ 2495kg,要进行以下试验:
50%男性正碰假人 • 系安全带,48km/h对刚性壁进行碰撞
(2007.9.1开始逐步实施56km/h刚性壁进行碰撞, 2010.9.1之后所有车都要进行该项试验)
中国、美国、欧洲及海湾国家 碰撞法规的介绍
世界各发达国家都对汽车碰撞安全性作出强制 性要求,并且建立了各自的法规。在汽车碰撞法 规方面主要有两大体系:欧洲和美国法规,其他 如日本、加拿大、澳大利亚等国家的法规基本上 是参考美国和欧洲的法规制定的。汽车碰撞法规 主要包括:前碰、侧碰、后碰法规。
各国碰撞法规和标准的试验方法和要求
•
不系安全带,40km/h对刚性壁进行碰撞
5%女性正碰假人 • • • 系安全带,48km/h对刚性壁进行碰撞 系安全带,40km/h,40%偏置碰撞试验 不系安全带,40km/h对刚性壁进行碰撞
12个月、3岁、6岁儿童假人和5%女性假 人气囊抑制试验和低风险气囊起爆试验
FMVSS 208
2、欧洲正面碰撞标准ECE R94
5、 碰撞试验期间以及之后,车辆电瓶必须保持在原来固定 位置(利用其安全防护装置)。
4、后碰撞法规对比
欧洲 试验车质量 碰撞速度 壁障重量 碰撞器 整备质量 35~38 km/h 1100±20 kg 刚性平面 宽度不小于 2500mm、高度不 小于800mm,碰 撞器表面最低处 离地面175mm 美国 整备质量 48 km/h 80km/h 1814±23 kg 1368 kg 刚性平面 可变形壁障 中国 整备质量 48 ~ 52km/h 1100±20 kg 刚性平面
正面碰撞法规介绍

Hybrid Ⅱ和Ⅲ第50百分位男性假人的主要参数
类 型
Ⅲ
Ⅱ
类 型
Ⅲ
Ⅱ
名 称
尺 寸(cm)
名 称
质量(kg)
头园周长
59.7
57.2
头
4.54
5.08
头宽
15.5
15.5
颈
1.54
头长
20.3
19.6
上躯干
17.19
18.82
直立坐高
88.4
90.7
下躯干
23.04
16.28
试验前检查和确认项目 蓄电池:检查车辆蓄电池是否连接、是否达到额定电压以及安装是否牢固。车辆蓄电池可以被替换。 点火开关:点火开关应处于“ON”的位置。 气囊指示灯:应处于正常打开状态,仪表板上的安全气囊状态指示灯显示正常。 假人涂色:对假人头部、鼻子、下颚、膝部、小腿等部位进行涂色,所有部位涂到的面积要足够大,以能够看到假人与车身位置接触为宜。 车载记录仪:试验前应保证车载记录仪的电池电量处于正常工作状态,测量触发开关处于正常工作状态。 车门及门锁状态:试验前应保证所有车门处于完全关闭状态,门锁没有锁止。
4、车辆变形量的测量 在试验过程中选取车辆后端结构作为测量参考点,车辆变形的测量都以此参考点为0 点。 测量部位: A、离合器踏板、制动踏板、加速踏板和驻车制动踏板中心:调节到中间位置 B、转向管柱中心点: 置于中间位置。 将点火开关关闭,切断蓄电池电源,拆除安全气囊,测量转向管柱末端中心点 C、在乘员侧B 柱做标记点并测量和记录: Ⅰ 在门槛向上100mm 处; Ⅱ 在两侧窗框下沿最低点往下的100mm 处。 所有的点应该尽可能靠近车门上的橡胶密封条。 D、在驾驶员侧A 柱和B 柱做标记点并测量和记录: Ⅰ 在门槛向上100mm 处; Ⅱ 在两侧窗框下沿最低点往下的100mm 处。 所有的点应该尽可能靠近车门上的橡胶密封条。
欧盟碰撞法规介绍

欧盟碰撞法规介绍----ECE R95
•评价指标二:
1、在试验过程中车门不得开启。
2、 碰撞试验后,不使用工具应能: 2.1 打开足够数量的车门,使乘员能正常进出。
2.2 将假人从约束系统中解脱出来;
2.3 将假人从车辆中移出。 3、所有内部构件在脱落时均不得产生锋利的凸出物或锯齿边,以防止增加伤 害乘员的可能性。 4、在不增加乘员受伤危险的情况下,允许出现因永久变形产生的脱落。 5、在碰撞试验后,如果燃油供给系统出现液体连续泄漏,其泄漏速度不得超 过30g/min。
7
一阶模态
•一阶模态:一般每种震动情况,都是由很多不同的、
简单的震动模态型式构成,根据这些简单的震动模态 的频率从低到高排列,我们分别依次称呼为:一阶模 态、二阶模态……在汽车领域,我们一般主要关注前 六阶模态。因为这六阶模态占汽车震动的构成成分 (能量)的绝大比例;尤其是第一阶模态,因为其能 量最大、频率最低,对汽车伤害也最严重,所以最受 关注。
8
•评价指标一:
--假人伤害指标要求
头部性能指数HPC ≦ 1000
碰撞中从初始接触到最后接触过程中的假人头部重心的合成加速度计算值
胸部性能指数ThPC≦75mm
胸部变形量(mm)
大腿性能指数FPC ≦ 10KN)
轴向传递到大腿的压力(KN)
2
欧盟碰撞法规介绍----ECE R94
评价指标二: --车辆结构及约束系统要求 试验时,没有车门打开,前门无车锁锁止; 试验后,不用工具每排至少有一个车门可打开,可移动座椅靠 背或座椅; 安全带开启力小于60N;
欧盟碰撞法规介绍----ECE R94
•名称:机动车正面碰撞事故中乘员保护的统一规定 •方法:
正面碰撞法规介绍

(质量9.7kg,站立高747mm,坐高488mm, 6个载荷传感器,臵于枕骨、第7颈椎骨、肩和
二、试验流程
一、车辆准备:
1、车辆运达时车辆状况的检查和确认
试验车辆到达试验室后,先测量运达时的车辆质量和前后轴的轴荷,并予 以记录。检查和确认车辆外观、配臵和车辆的基本参数
2、车辆整备质量的测量
a. 排空燃油箱中的燃油,运转发动机并到发动机自然熄火为止。 b. 向燃油箱中注入水,水的质量为燃油箱额定容量时的燃油质量90%(汽油密度
进行燃油泄漏检验的法规。
d. 这些法规的推出以及强制执行,促进了汽车生产厂商投入大量的人力 物力进行汽车安全性技术的研究和开发,推动了汽车安全性技术的不 断发展,从而在很大程度上减少了交通事故的发生以及交通事故中人 员(乘员和行人)的死亡率。
安全标准分布表:
汽车安全标准 主动安全
制 动 . 转 向 . 轮 胎 照 明 . 指 示 . 信 号 装 臵 车 辆 防 盗 保 护 乘 员 碰 撞 安 全 保 护
二、试验流程
NCAP,CNCAP,JNCAP,ANCAP等)及消费者保险协会(IIHS)等,
正面可变形40%偏执碰撞
试验流程
一、试验设备
1、试验场地:
0
160 110 110
90
110
200 地面 75 车辆应覆盖壁障表面的40%, 误差为±20 mm。
一、试验设备
二、试验流程
5、乘员舱的调整
后排座椅调整 后排座椅:应使其位于行程的中间位臵或者最接近于中间位臵的向后位臵锁止。 座椅头枕:应调整至最低位臵。 座椅朝向:应调整至前向。
转向盘调整
水平方向:应调节到可调范围的中间位臵。 垂直方向:应调节到可调范围的中间位臵。 转向盘应处于自由状态,且处于制造厂规定的车辆直线行驶时的位臵。
25%偏置碰撞法规

25%偏置碰撞法规摘要:1.引言2.25%偏置碰撞法规的定义和背景3.25%偏置碰撞法规的作用和意义4.我国实施25%偏置碰撞法规的现状5.25%偏置碰撞法规对汽车制造商和消费者的影响6.结论正文:1.引言随着汽车行业的迅速发展,交通安全问题越来越受到重视。
在我国,为了提高汽车安全性能,自2018年1月1日起,开始实施25%偏置碰撞法规。
本文将对25%偏置碰撞法规进行详细介绍,包括其定义、背景、作用和意义,以及在我国的实施现状和对汽车制造商和消费者的影响。
2.25%偏置碰撞法规的定义和背景25%偏置碰撞法规,是指在汽车碰撞试验中,车辆以25%的正面偏置碰撞速度撞击固定障碍物,以评估车辆在实际交通事故中的安全性能。
这一法规起源于美国,并在世界范围内得到广泛应用。
在我国,为了提高汽车安全性能,减少交通事故伤亡,决定引入25%偏置碰撞法规。
3.25%偏置碰撞法规的作用和意义25%偏置碰撞法规的实施,有助于提高汽车在实际交通事故中的安全性能。
与传统的正面碰撞试验相比,25%偏置碰撞更能模拟现实中车辆的碰撞情况,如十字路口事故等。
因此,这一法规的实施将有助于降低交通事故伤亡率,保障人民群众的生命安全。
4.我国实施25%偏置碰撞法规的现状自2018年1月1日起,我国开始实施25%偏置碰撞法规。
目前,我国汽车生产企业已经按照这一法规要求,对部分车型进行了改进,以满足安全性能要求。
然而,仍有部分企业在产品研发和生产过程中,面临着技术挑战和成本压力。
5.25%偏置碰撞法规对汽车制造商和消费者的影响对于汽车制造商而言,25%偏置碰撞法规的实施意味着更高的研发成本和生产成本。
为了满足法规要求,汽车制造商需要在车辆设计、材料选择、生产工艺等方面进行改进。
这将导致部分低端车型价格上涨,影响企业的市场竞争力。
然而,从长远来看,25%偏置碰撞法规对汽车制造商和消费者都是有益的。
对于消费者而言,这一法规有助于提高汽车的安全性能,降低交通事故风险。
正面碰撞法规介绍

a. 随着汽车技术的不断发展,汽车安全性问题越来越受到人们的重视。
b. 早在二十世纪六十年代,美国就建立了影响至今的联邦机动车安全标 准FMVSS, 随后汽车安全领域的法规不断的进行完善,在欧洲也相继推
出了欧洲经济委员会ECE,欧洲经济共同体EEC安全法规。日本也推出
了日本道路运输车辆保安标准TRIAS 。 c. 它可以分为主动安全法规和被动安全法规,同时,还包括碰撞试验后
(质量9.7kg,站立高747mm,坐高488mm, 6个载荷传感器,置于枕骨、第7颈椎骨、肩和
二、试验流程
一、车辆准备:
1、车辆运达时车辆状况的检查和确认
试验车辆到达试验室后,先测量运达时的车辆质量和前后轴的轴荷,并予 以记录。检查和确认车辆外观、配置和车辆的基本参数
2、车辆整备质量的测量
a. 排空燃油箱中的燃油,运转发动机并到发动机自然熄火为止。 b. 向燃油箱中注入水,水的质量为燃油箱额定容量时的燃油质量90%(汽油密度
事故 被动安全技术
减轻碰撞伤害
为碰撞做好准备
正常状态
危险出现
可能碰撞
无法避免
碰撞 被动安全
主动安全
主动安全性:指在交通事故发生之前采取安全性措施,尽可能的避免交通事故的发生。 被动安全性:指在事故发生的时候,利用对车辆结构的设计以及被动安全性装置,尽可能的减少驾驶 员和车上乘员以及车外行人受到伤害的程度。
目录
序言
一、正面碰撞法规的发展 二、正面碰撞所包含的类型 三、正面碰撞试验流程(40%偏置) 四、各国正面碰撞测试标准比较
五、C-NCAP正面碰撞试验流程
六、针对正面碰撞法规的研发思路
这次主要讲解这两条
序言
现代汽车技术发展的主要方向为安全、环保和节能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、试验流程
3 、车辆准备及测试设备的安装
a. 排空制动液、洗涤液及空调系统中的液体等液体,排出液体的质量应予以补偿 b. 拆除行李舱地毯及随车工具,以及备胎(确定备胎不影响车辆碰撞特性)。 c. 安装车载记录仪,在车辆左右侧B 柱下部门槛的位置安装单向加速度传感器。 d. 测量车辆质量和前后轴的轴荷,与整备质量和前后轴的轴荷比较,各轴轴荷的
试验车辆到达试验室后,先测量运达时的车辆质量和前后轴的轴荷,并予 以记录。检查和确认车辆外观、配置和车辆的基本参数
2、车辆整备质量的测量
a. 排空燃油箱中的燃油,运转发动机并到发动机自然熄火为止。 b. 向燃油箱中注入水,水的质量为燃油箱额定容量时的燃油质量90%(汽油密度
以0.74 g/ml 计,柴油密度以0. 84 g/ml 计)。 c. 检查并调整各轮胎气压至车辆半载时制造厂所规定的气压值; d. 检查调整车辆的其他液体达到最高液位; e. 确认备用轮胎和随车工具已就位,清除车辆中任何与车辆无关的物品。 f. 测量和记录四个车轮的过车轮中心的横切面与车轮护轮板上缘的交点的高度。 g. 测量和记录车辆质量和前后轴的轴荷,车辆质量即为整车整备质量。
主动安全
被动安全
碰撞保护
制 照车
乘约行
碰
动 明辆
员束人
撞
.
.防
碰系保
后
转 向 . 轮 胎
指盗 示保 .护 信 号 装
撞统护
安.
.
全内儿
保外童
护饰保
.护
燃 油 防 火 . 等
置
等
正侧 追 翻
面面 尾 滚
碰
碰 撞
碰 撞
保 护
撞
碰撞速度、碰撞形态
......
一、被动安全正面碰撞法规的发展
a. 据美国高速公路管理局的统计数字,在汽车碰撞事故中,发生正面碰 撞的约占49%,侧面碰撞占25%,追尾碰撞占22%,
59.2
51.8
49.5
49.8
类型 名称
头 颈 上躯干 下躯干 上臂 下臂和手 大腿 小腿和脚 总质量
Ⅲ
Ⅱ
质量(kg)
4.54
5.08
1.54
17.19
18.82
23.04
16.28
3.99
4.35
4.544.35来自11.9716.69
11.34
8.8
78.15
74.37
一、试验设备 —— 假人介绍
胫骨相对变形
膝盖剪切变形
小腿 胫骨压缩/弯曲负荷
Tibia Index
一、试验设备 —— 假人发展简史
➢ 60年代美国制造试验飞行器弹射座椅的人的代用品(ARL)公司开发了 假人—— VIP;
➢ 1971年由ARL公司和Sierra工程公司开发假人——Hybrid Ⅰ; ➢ 1972年美国汽车产业界同美国第一技术安全公司(FTSS)合作,在
5、乘员舱的调整
前排座椅调整 行程:中间位置或者最接近于中间位置的向后位置锁止。 高度:应调整至设计位置或最低位置。 座垫:倾斜角可调,应调整至制造厂设计位置或中间位置。 座椅靠背:应调节到设计角度或倾斜25°角的位置。 座椅腰部支撑:应调整至设计位置或完全缩回的位置。 头枕:应调整至最高位置。 头枕倾斜角:应调整至设计位置或中间位置。 座椅扶手:应处于放下的位置,若与假人放置位置干涉,则允许扶手处于抬起位置。
二、试验流程
8、假人的安装
1. 试验前假人直接放置于座椅上不能超过2 小时。若超过2 小时,应在座椅表面放 置木板后再放置假人,以避免座椅的过多压缩变形,但是不能超过12 小时。
2. 放置假人在座椅上,假人的躯干和手臂紧靠座椅靠背,手放在大腿外侧。 3. 给假人系好安全带。 4. 对躯干下部施加一向后的轻微力,同时对躯干上部施加一向前的轻微力,使上
一、试验设备 —— 假人介绍
Hybrid Ⅱ和Ⅲ第50百分位男性假人的主要参数
类型 名称 头园周长 头宽 头长 直立坐高 肩到肘关节长 肘背到腕枢轴长 肘到指尖长 臂到膝盖长 膝关节高
Ⅲ
Ⅱ
尺 寸(cm)
59.7
57.2
15.5
15.5
20.3
19.6
88.4
90.7
33.8
35.1
29.7
46.0
二、试验流程
6、假人的准备和标定
假人的测试环境要求:
温度20℃~22℃,湿度10%~70%环境,放置于至少5 小时。
假人关节的调整:
应尽可能在试验当天进行,但不能超出试验前24 小时。所有具有稳定摩 擦的假人关节,试验前均应进行调整。假人关节应调整至在1g~2 g 的作用下 ,假人肢体可以持续运动。
Ⅰ 在门槛向上100mm 处; Ⅱ 在两侧窗框下沿最低点往下的100mm 处。 所有的点应该尽可能靠近车门上的橡胶密封条。 D、在驾驶员侧A 柱和B 柱做标记点并测量和记录: Ⅰ 在门槛向上100mm 处; Ⅱ 在两侧窗框下沿最低点往下的100mm 处。 所有的点应该尽可能靠近车门上的橡胶密封条。
二、试验流程
b. 因此从交通事故角度出发,汽车安全研发的课题重点在于正面碰撞, 对此世界各国都结合本国的国情制定了相应的强制性法规(FMVSS208 ,ECE R94,GB11551,等);
c. 在了解国家颁布的些汽车安全强制性法规外,各国相继成立针对汽车 安全性能的安全评估体系组织(UNCAP,Euro NCAP,CNCAP,JNCAP,ANCAP等)及消费者保险协会(IIHS)等,
二、试验流程
4、车辆变形量的测量
在试验过程中选取车辆后端结构作为测量参考点,车辆变形的测量都以此 参考点为0 点。
测量部位:
A、离合器踏板、制动踏板、加速踏板和驻车制动踏板中心:调节到中间位置 B、转向管柱中心点:
置于中间位置。 将点火开关关闭,切断蓄电池电源,拆除安全气囊,测 量转向管柱末端中心点 C、在乘员侧B 柱做标记点并测量和记录:
c. 它可以分为主动安全法规和被动安全法规,同时,还包括碰撞试验后 进行燃油泄漏检验的法规。
d. 这些法规的推出以及强制执行,促进了汽车生产厂商投入大量的人力 物力进行汽车安全性技术的研究和开发,推动了汽车安全性技术的不 断发展,从而在很大程度上减少了交通事故的发生以及交通事故中人 员(乘员和行人)的死亡率。
汽车安全正面碰撞法规介绍
—— 综合技术部
目录
➢ 序言 一、正面碰撞法规的发展 二、正面碰撞所包含的类型 三、正面碰撞试验流程(40%偏置) 四、各国正面碰撞测试标准比较 五、C-NCAP正面碰撞试验流程 六、针对正面碰撞法规的研发思路
这次主要讲解这两条
序言
现代汽车技术发展的主要方向为安全、环保和节能。
变化不大于5%,每轴变化不超过20kg,车辆的质量变化不超过25kg。可以增加 或减少不影响车辆碰撞特性的部件,可以调整燃油箱中水的质量达到上述要求, 记录最终的车辆质量和前后轴的轴荷。 e. 测量和记录四个车轮的过车轮中心的横切面与车轮护轮板上缘的交点的高度。
在完成2.6.2 试验程序后,测量和记录车辆质量和前后轴的轴荷,此时的 车辆质量称为试验车质量(包括假人和所有测试仪器)。
安全标准分布表:
汽车安全标准
主动安全
被动安全
碰撞保护
制 照车
乘约行
碰
动 明辆
员束人
撞
.
.防
碰系保
后
转 向 . 轮 胎
指盗 示保 .护 信 号 装
撞统护
安.
.
全内儿
保外童
护饰保
.护
燃 油 防 火 . 等
置
等
正侧追翻 面面尾滚 碰碰碰保 撞撞撞护
碰撞速度、碰撞形态
......
安全标准分布表:
汽车安全标准
正面碰撞中使用的假人有:1、Hybrid III 型第50 百分位男性假人(见图1) 2、Hybrid III 型第5 百分位女性假人(见图2)
部位
测定项目
伤害指标
头部 重心G
HIC
颈部 六方向负荷
压缩/拉伸负荷 弯矩
胸椎加速度 胸部
胸骨变形
三向合成G 胸骨变形
图1
图2
大腿骨轴向负荷
大腿骨压缩负荷
大腿
Hybrid Ⅰ基础上开发、制造出——Hybrid Ⅱ型假人, 1973年,NHTSA指令该假人拥有汽车碰撞试验,以满足FMVSS208的 要求; ➢ 1976年,美国第一技术安全公司同SAE和用户集团共同开发了GM公司 设计的——Hybrid Ⅲ(混合Ⅲ 型假人); Hybrid Ⅲ与Hybrid Ⅱ相比具有更高的生物仿真度和仪器测量能力,目 前各前碰法规试验中,已指定用Hybrid Ⅲ型假人;
正面可变形40%偏执碰撞 试验流程
一、试验设备
1、试验场地:
2、蜂窝铝(可变形吸能壁障)
1000 160
160 110 110 110 200
地面
450 90
75
车辆应覆盖壁障表面的40%, 误差为±20 mm。
一、试验设备
3、三维“H”点装置(见图1.) 4、三坐标测量仪(见图2.) 5、称重仪(见图3.) 6、传感器(加速度、力)(见图4.5.)
图3
图1
图2
图5
图4
一、试验设备
7、数据采集仪(见图6.) 8、测速仪(见图7.) 9、摄像仪器(见图8.9)
图6
图8
图9
图7
一、试验设备
10、假人
—— 为了检验碰撞时汽车结构的吸能性,人生存空间和约束系统对人体的保护 能力,在有关新车评价所进行的试验中,都规定了人体的头部、胸部和大腿等关心 部位的碰撞响应型号限制,美国和欧洲先后开发了模拟人的试验装置。