高考数学必考4大题型解题方法总结
2024年高考数学无敌答题技巧总结

2024年高考数学无敌答题技巧总结一、常规题型技巧1.选择题:(1)寻找关键信息:仔细阅读题目,理解题意,找出关键信息,如条件、要求等。
(2)排除法:根据选项逐一排除错误的选项,缩小范围,提高正确选项的概率。
(3)逻辑推理:借助题目中的条件或要求进行逻辑推理,寻找解题的线索。
2.填空题:(1)审题准确:仔细阅读题目,理清题目要求,确定填空的种类(数、代数式、字母等)。
(2)转换思路:将复杂问题转换为简单问题,利用等式、条件等求解填空。
(3)检验答案:填入数值后,进行计算,验证答案是否正确。
3.解答题:(1)系统化思考:将问题分解为多个简单的小问题,逐步解决,构建完整的解题框架。
(2)注重图像:合理运用图表、图像、示意图等工具,对于几何问题,可以先绘制图形帮助理解。
(3)条理清晰:清晰地表达解题过程,用文字说明解题思路、逻辑关系和计算过程。
二、解应用题的技巧1.审题:仔细阅读题目,理解问题背景和要求,确定所给信息和需要求解的内容。
2.建立模型:将问题抽象为数学模型,利用数学知识将问题转化为等价的数学表达式或方程组。
3.计算准确:对所建立的模型进行计算,注意运算的准确性、规范性和简洁性。
4.结果验证:对答案进行合理性检验,通过合理的估算、逻辑推理等方法,判断解是否符合实际情况。
5.拓展思考:对应用题进行扩展思考,探索更多的解题思路和方法。
三、应对难题的技巧1.缩小范围:通过对题目进行分类,找出难题的共性,逐个攻克,缩小解题范围。
2.变换角度:换一种角度思考问题,利用数学性质和公式,尝试不同的解题思路。
3.多维思考:综合运用多个数学知识点,进行多层面的思考和分析,拓宽解题思路。
4.寻求帮助:及时向老师或同学请教,讨论解题思路和方法,互相帮助和提升。
四、备考技巧1.制定合理的学习计划:根据自身的情况,合理安排学习时间和任务,分解目标,逐步实现。
2.多做真题和模拟题:通过大量的题目练习,熟悉考点,提高解题速度和准确率。
高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高考数学各类题型的相关答题套路及技巧

高考数学各类题型的相关答题套路及技巧高考数学是所有高中科目中最具挑战性的一科,不仅需要学生掌握各种数学知识,还需要学生有扎实的数学基础和良好的解题能力。
本文将对高考数学中常见的各类题型的答题套路和技巧进行介绍,以方便考生备战高考。
一、选择题选择题是高考数学考试中占比较大的一部分,考查学生对各种数学知识的理解和掌握程度。
一般来说,选择题分为"计算类题"和"判断类题"。
对于计算类题,可以采用以下答题套路:1.目测排除法:对于一些比较简单的计算题,可以先看选项,根据常识或估算,将可以排除的选项先划掉,减少计算量。
2.数据代入法:将题目中的数据代入选项中进行计算,从而快速判断正确答案。
3.逆向计算法:对于一些题目,可以采用逆向思维,从答案反推出未知数的值,来缩小答案的范围,再进行比较。
而对于判断类题,可以采用以下答题套路:1.快速定位法:通过对题目的分析和理解,找出问题的最本质的特征,即独特、显著的要素,来定位正确答案。
2.对照选项法:通过将题目的各个选项与题目中的条件进行对照,来确定选项的正确与否。
二、填空题填空题是考察学生数学运算技能和灵活运用数学知识处理问题的能力的一种重要考试形式。
一般来说,填空题分为两种类型:1.考察基础概念的填空题:这类题通常涉及数学中的基本概念和知识点,需要学生对各种公式、定义和定理进行熟练掌握,通过反复练习来减少错误率。
2.考察应用问题的填空题:这类题目通常需要学生巧妙地运用所学知识进行综合分析,并灵活运用相应的公式和方法解决问题。
对于填空题,我们也可以采用以下答题套路:1.奇偶性判断法:对于一些涉及到整数的填空题,可以通过观察题目中涉及的数字的奇偶性来进行推断,可以大大缩减计算量。
2.倒推法:对于一些需要解方程的填空题,可以采用倒推法,从结果反推出未知数的值,在确定其它空缺的数据。
3.整取法:对于一些需要对数据进行约分、化简的题目,可以采用整取法,使题目中多个式子在分子或分母相同时,更方便进行计算。
2024年高考数学复习各题型解答方法总结

2024年高考数学复习各题型解答方法总结一、选择题解答方法:选择题是高考数学中常见的题型,解答时需要注意以下几点:1. 仔细阅读题目:选择题通常给出了多个选项,要在其中选择正确的答案,所以需要仔细阅读题目,理解题意。
2. 排除法:如果对某个选项确定是错误的,可以直接排除掉,这样可以缩小范围,提高解题效率。
通过排除法,可以找出正确答案。
3. 筛选法:某些选择题的选项中有多个是正确答案,这时可以通过筛选法找出所有正确答案。
首先找出其中一个正确答案,然后再观察其他选项,看是否满足条件,以确定所有正确答案。
4. 推理法:有些选择题需要通过推理来确定答案,需要将题目中给出的条件进行分析,并运用相关知识进行推理,找出正确答案。
二、填空题解答方法:填空题是高考数学中另一种常见的题型,解答时需要注意以下几点:1. 明确题目要求:填空题通常要求填入一个数值,有时也可以是一个表达式。
在填写答案前,要先弄清楚题目要求填什么。
2. 利用已知条件:填空题中常会给出一些已知条件,可以根据这些条件来确定答案。
通过将已知条件代入等式或运用相关关系,可以得到待填空的数值,或者用待填空的变量表达式表示答案。
3. 反推法:有些填空题通过反推法也可以确定答案。
通过比较题目中给出的条件和填空选项的关系,可以反推出待填空的数值或表达式。
4. 多种途径:填空题可以有多种解法,可以多角度思考和尝试。
如果一种方法无法确定答案,可以尝试其他方法,找出最适合的解答途径。
三、解答题解答方法:解答题是高考数学中相对较难的题型,解答时需要注意以下几点:1. 理清思路:解答题一般需要通过一系列的步骤来解决问题,首先要理清思路,明确步骤和方法,避免盲目性解题。
2. 规范书写:解答题需要写清楚解题过程和推理思路,并在重要的步骤和结论处用画线等方式标注出来,以便阅卷人员清晰地看到解题思路。
3. 合理估算:有些解答题中给出的数据量较大,可以通过合理估算或化简计算来简化解答过程,提高解题效率。
高考数学必考题型及答题技巧

高考数学必考题型及答题技巧
高考数学考试中必考的题型主要有四类:
一、选择题:选择题主要旨在考查学生对概念的理解,对简单的思考能力和算法的应用能力。
考生可以根据对题目的直观判断,先粗略浏览后做出选择,再进行必要的计算核验。
二、填空题:填空题主要考查学生对数学概念的分析,抽象思维能力及抒写能力。
考生在作答过程中,要充分发挥自己的想象、理解力,仔细阅读题目,把握答题全部思路,列出方程组并求解。
三、解答题:解答题是数学考试题型中吃重的部分,考查的是数学的基本解题思路和综合运用概念、定义和公式等进行解题的能力。
只要考生能正确理解题意,把握解题要点,充分利用所学的平行线性和定理,充分发挥思维的能力,就能得出合理的解答。
四、操作题:操作题是高考数学中成绩较好的组成部分,是考查学生解题时手算能力和推理能力的一个重要题型。
考生需要认真细致,结合例题和考题有针对性地分析,把握答题全过程,并有恰当的计算步骤、略去文字介绍及不必要步骤,正确无误地把答案计算出来。
答题技巧:
一、明确求解目标:考生在进入考场之前,应将题目整体对准并把握题意,仔细阅读确定考查的知识点,掌握准确解法,列出详细的步骤或必要的公式,并将解题过程完整地记录下来,按照顺序仔细算出答案。
二、利用图形分析:考生可以利用几何图形的周长、面积、棱形等,联系各个形体的变化,来简便地求解几何形体的相关量的关系及把握方程的概念,从而减少复杂的数学计算,使解题速度更快、工作量更少,得出正确的结果。
三、充分利用现有资料:考生在做高考数学的时候,可以充分发挥自身的思维、分析、绘图、猜测等能力,仔细分析题目,利用资料,找出解题思路,进行有效的数学计算,考试出百分满分的成绩。
高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧高考数学必考题及解题技巧篇一1、解三角形常用知识:正余弦定理、面积公式、边角互换、均值不等式,注意角范围的叙述(三角形内角和定理);三角函数与解三角形,向量相结合:化一公式、诱导公式、二倍角公式、基本关系式,均值不等式、周期的求法。
2、数列求通项an的方法:公式法、累加法、累乘法、构造法、倒数法、同除法、an与S,和Sn-1的等量关系。
求Sn的常用方法:公式法、错位相减法、裂项相消法、分组求和法等。
3、立体几何证明平行:做辅助线(中位线,平行四边形,相似三角形等)可证面面平行,线面平行性质等。
证明垂直:勾股定理;等腰,等边三角形性质;菱形,正方形性质;基本图形的垂直;线面垂直得线线垂直;面面垂直性质,直径所对的圆周角等。
求距离:解三角形,等体积法等。
求空间角:做辅助线,建系,标出相应点的坐标,求出平面的法向量,写出相应的夹角公式,线面角公式等。
高考数学答题技巧篇二1、高考数学答题带着量角器进考场带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。
2、高考数学答题取特殊值法圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就可以了。
3、高考数学答题空间几何空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。
如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得。
4、高考数学答题图像法超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。
如果条件过多,用图像法秒杀。
不等式也是特值法图像法。
先易后难我们在答数学试卷的时候,一定要先选择自己会的有把握的,要按照这个顺序,确保自己会都正确,我们在做其他的题。
高考数学常考题型和答题技巧
高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
2024年高考数学复习各题型解答方法总结
2024年高考数学复习各题型解答方法总结2024年高考数学复习题型解答方法总结1.选择题解答方法总结- 阅读题干:仔细阅读题目,理解题干中所给的信息,判断题目的难易程度和所属知识点。
- 做好分类:根据题目的类型和知识点,将题目分类,然后对每个类别的题目进行解答。
- 排除错误选项:针对每个选项,分析其是否符合题目要求,找出错误选项。
- 使用排除法:通过排除错误选项,逐步缩小答案范围,最终选择正确答案。
2.填空题解答方法总结- 分析题目要求:仔细阅读题目要求,确定需要填写的数值或表达式的形式。
- 使用已知条件:根据题目中给出的已知条件,运用相应的知识和方法进行推理和计算。
- 注意单位和精度:根据题目的要求,注意填写正确的单位和保留正确的小数位数。
- 验证答案:计算完成后,反复检查计算过程和结果,确保填写的答案符合题意。
3.简答题解答方法总结- 分析问题:仔细阅读题目,理解问题的要求,明确需要回答的问题。
- 思考解题思路:根据题目要求和所学知识,思考解决问题的方法和思路。
- 运用知识:运用所学的知识和方法,对问题进行分析和解答。
- 提供合理论证:对所给出的答案,给出合理的论证和解释,说明答案的正确性和合理性。
4.解答题解答方法总结- 阅读题目:仔细阅读问题,理解问题要求和给出的限制条件。
- 设定变量和建立方程:根据问题的特点,设定适当的变量,并建立与变量相关的方程或不等式。
- 运用方法解决问题:根据问题要求和已经建立的方程,运用相应的方法和技巧进行计算和推导。
- 验证解答的合理性:计算完成后,反复检查问题的解答,验证解答的合理性和正确性。
5.证明题解答方法总结- 分析问题:仔细阅读问题,理解问题的要求和条件,明确需要证明的结论。
- 设想证明思路:运用逻辑思维和已学知识,设想一种可能的证明思路,明确证明的方向。
- 推理论证:根据所设想的证明思路,逐步推理和证明关键的结论,运用相应的定理和推导步骤。
- 结构清晰:在证明过程中,注意逻辑结构的清晰和推理的连贯性,确保证明的正确性和严谨性。
高考数学题型分析与解题技巧
高考数学题型分析与解题技巧高考数学作为高考中的重要科目,对于考生的总成绩有着举足轻重的影响。
了解高考数学的题型,并掌握相应的解题技巧,是取得高分的关键。
以下将对高考数学常见的题型进行分析,并分享一些实用的解题技巧。
一、选择题选择题在高考数学中所占比例较大,通常考查基础知识和基本概念。
1、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论。
2、排除法从选项入手,逐一排除不符合条件的选项,从而得出正确答案。
这种方法在解决一些具有明显错误选项的题目时非常有效。
3、特殊值法通过选取特殊值,代入题目中进行验证,从而快速得出答案。
比如在函数问题中,可以选取特殊的点来判断函数的性质。
4、数形结合法将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化。
二、填空题填空题注重考查考生的计算能力和对概念的准确理解。
1、直接计算对于一些简单的填空题,直接进行计算即可得出答案。
2、概念理解有些填空题考查的是对数学概念的深入理解,需要考生准确把握概念的内涵和外延。
3、分类讨论当题目中存在多种情况时,要进行分类讨论,确保答案的完整性。
三、解答题解答题是高考数学中的重头戏,分值较高,考查的知识点也较为综合。
1、三角函数与解三角形这类题目通常会涉及到三角函数的公式运用、化简求值以及解三角形等问题。
解题技巧在于熟练掌握三角函数的基本公式,如正弦定理、余弦定理等,并能灵活运用。
2、数列数列问题常见的有求通项公式、前 n 项和等。
要掌握等差数列和等比数列的通项公式和求和公式,同时注意错位相减法、裂项相消法等求和方法的运用。
3、立体几何证明线面平行、垂直关系,计算几何体的体积、表面积等是常见的考点。
解题时要善于运用空间向量法或者传统的几何方法,建立空间直角坐标系可以简化很多问题。
4、概率与统计概率问题要明确各种概率模型,如古典概型、几何概型等。
高考数学各题型答题技巧及解题思路
高考数学各题型答题技巧及解题思路高考数学是考生在高中学习中接触最多的一门学科。
而高考数学中有各种各样的题型,如函数、导数、数列、几何等等。
各个题型的答题技巧和解题思路也需要考生掌握。
本文将就此进行详细介绍。
一.函数题型答题技巧及解题思路1. 函数的分类在高考数学中,函数有三种类型,分别为元函数、复合函数和反函数。
其中元函数是指单个自变量x的函数,如y=f(x),复合函数是指由两个或两个以上函数复合而成的函数,如y=f(g(x)),反函数则是元函数的互逆,如y=f(x)的反函数为x=g(y)。
2. 函数的性质函数有很多性质,如奇偶性、单调性、周期性等等。
其中奇偶性是指函数有没有对称轴,单调性是指函数的递增递减性质,周期性是指函数图像在一定区间内重复出现。
3. 函数的绘图绘制函数图像是函数学习中的重点内容。
在绘图时,需要掌握对称轴、截距以及拐点等。
1. 导数概念导数是指函数在某一点处的变化率。
导数的计算方式为极限值的求解方法。
导数的概念是微积分学的基础,是高考数学中的重要内容。
2. 导数的计算方法导数的计算方法有很多,如用导数定义式、用导数的四则运算法则、用导数的基本函数形式等。
3. 导函数的应用导函数在数学上有广泛的应用,包括求解函数的最值、函数的单调性、函数的图像形态等。
三.数列题型答题技巧及解题思路1. 数列的概念数列是指按照一定的规律排列的一组数的集合。
数列可以分为等差数列、等比数列等。
2. 数列的通项公式数列的通项公式是指可以用来计算任意项的公式。
对于等差数列和等比数列而言,通项公式是非常重要的。
3. 数列的求和公式数列的求和公式是指可以计算数列前n项和的公式。
对于等差数列和等比数列而言,求和公式也是非常重要的。
1. 几何图形的名词在几何学中,几何图形都有自己的命名。
例如,几何图形有点、直线、平面等。
2. 平面几何的性质平面几何图形的性质可以分为有关角、线段、周长、面积等方面的性质。
几何题中需要掌握到位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学必考4大题型解题方法总结
(经典版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!
高考数学必考4大题型解题方法总结
高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,下面就是本店铺给大家带来的高考数学必考4大题型解题方法总结,希望大家喜欢!
立体几何篇
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2、判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3、两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解决可多得分
01、合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。
然后带齐用具,提前半小时到考场。
02、通览全卷,摸透题情。
刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。
这样能提醒自己先易后难,
也可防止漏做题。
03、解答题规范有序。
一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。
对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。
比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。
有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分
类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、
培养学生主动探索的精神和科学理性的思维方法.
排列组合篇
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率。
导数应用篇
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:
1、导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2、关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3、导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
01、导数概念的理解。
02、利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
03、要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高考数学必考4大题型解题方法总结终于写完毕了,希望能够帮助到大家,谢谢!。