关于Dirichlet函数的若干简单性质

关于Dirichlet函数的若干简单性质
关于Dirichlet函数的若干简单性质

关于Dirichlet函数的若干简单性质浅析摘要本文介绍了一种(数学分析中)不是很常见的函数——dirichlet 函数,该函数可以作为学习数学分析中其它有关知识点的辅助工具。

关键词 dirichlet;riemann可积;存在原函数

中图分类号o13 文献标识码a 文章编号 1674-6708(2011)35-0088-03

dirichlet函数虽不复杂,但不能用解析式表示。这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端,所以意义重大。1837年dirichlet给出函数的定义:如果对于给定区间上的每一个x的值,有唯一的一个y值与它对应,那么y是x的一个函数。他接着说,至于整个区间上的y是否按照一种或多种规律依赖于x,或者y依赖于x是否可用数学运算来表示,无关紧要。dirichlet的函数定义成了我们现在仍沿用的传统定义。在数学中还有许多概念和原理都与dirichlet的名字联系在一起,如dirichlet级数,dirichlet原理(即抽屉原理),dirichlet 问题,dirichlet条件,dirichlet判别法等。

定义函数为dirichlet函数。这是一个具有奇特现象的特殊函数,下面就的简单性质做一简要探讨。

1)有界性:的值域为{0,1}有界,且.

2)周期性:

《1.3 函数的基本性质》测试题

《1.3 函数的基本性质》测试题 一、选择题 1.下列函数中,是奇函数的为( ). A. B. C. D. 考查目的:考查函数奇偶性的定义. 答案:A. 解析:的定义域是,∴ ,∴,∴是奇函数. 2.已知函数在内单调递减,则的取值范围是( ). A. B. C. D. 考查目的:主要考查函数的单调性、二次函数、一次函数的图象和性质. 答案:C.

解析:函数在内单调递减,则须在上单调递减和在上单调递减,且,∴ ,∴. 3.已知奇函数在区间上的图像如图,则不等式的解集是( ). A. B. C. D. 考查目的:主要考查奇函数的图象特点,以及利用图象解题. 答案:B. 解析:奇函数的图象关于原点对称,画出函数的图象,由图得,选B. 二、填空题

4.设是定义在上的奇函数,当时,,则 . 考查目的:本题考查函数的奇偶性以及函数值的求法. 答案:-3. 解析:. 5.已知,则函数的单调增区间是. 考查目的:考查函数单调区间的概念及二次函数的单调性. 答案: 解析:抛物线的开口向下,对称轴为直线,故函数 在递增,在递减,所以函数的单调增区间是. 6.函数,当时,恒成立,则实数的取值范围是. 考查目的:考查利用函数的奇偶性和单调性解题. 答案:. 解析:∵函数在上是奇函数且为单调增函数,∴由 得,∴,∵,∴恒成立,∴.

三、解答题 7.函数对于任意的,都有,若时,,求证:是上的单调递减函数. 考查目的:主要考查利用函数的单调性定义证明函数的单调性. 解析:任取,则,由时,,得,根据,有,所以,即,所以是上的单调递减函数. 8.已知函数是定义在R上的偶函数,且当≤0时,. ⑴现已画出函数在轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间; ⑵写出函数的解析式和值域. 考查目的:主要考查奇偶函数图象的画法,分段函数解析式,根据图象写函数的单调区间. 解析:⑴根据偶函数图像关于轴对称补出完整函数图像(如图).

多元凸函数的判定

多元凸函数的判定 1 引言 凸函数是一类基本函数,具有非常好的分析学性质,在极值研究、不等式证明、数学规划、逼近论、变分学、最优控制理论、对策论等领域有着广泛的应用. 人们对一元凸函数性质和判定方法已经有了丰富的研究,但随着凸函数应用范围的不断扩展,多元凸函数越来越多的被研究. 一元函数凸性的判定方法也被推广到多元函数,文献[4]将凸函数与导函数之间的关系推广,给出了用梯度判定多元函数凸性的方法,文献[5]将凸函数与二阶导数之间的关系推广,给出了用黑塞矩阵判定多元函数凸性的方法. 而多元函数的梯度与黑塞矩阵在计算中往往比较繁琐,本文将着力研究多元函数凸性判定方法的改进,使凸函数判定的计算更加简洁,应用更加方便. 2 定义及引理 本节主要介绍本文用到的定义及引理. 定义2.1[2] 设n R D ?,如果D 中的任意两点的连线也在D 内,则称D 为n R 中的凸集. 即对任意21,P P ,数)1,0(∈λ,总有 D P P ∈-+21)1(λλ. 定义 2.2[1] 设n R D ?为非空凸集,f 为定义在D 上的函数,若对任意 )1,0(,,21∈∈λD P P ,总有 )()1()())1((2121P f P f P P f λλλλ-+≤-+, (1) 则称f 为D 上的凸函数. 反之,如果总有 )()1()())1((2121P f P f P P f λλλλ-+≥-+, (2) 则f 为D 上的凹函数. 若上述(1)、(2)中的不等式改为严格不等式,则相应的函数称为严格凸函数和严格凹函数. 定义]2[3.2 )(P f 是定义在n R D ?上的多元函数,若在点),,,(210n x x x P ???存在对所有自变量的偏导数,则称向量))(,),(),((00021P f P f P f n x x x ???为函数)(P f 在点0P 的梯度,记作

凹凸函数的性质

凹凸函数的性质 李联忠1 文丽琼2 1 营山中学 四川营山 637700 2营山骆市中学 四川营山 638150 摘要:若函数f(x)为凹函数,则n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若 函数f(x)为 凸函 数 , 则 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≥ +++ 从而使一些重要不等式的证明更简明。 中图分类号: 文献标识号: 文章编号: 高二数学不等式,教材上只要求学生掌握两个数的均值不等式,教材上的阅读材料中,证明了三个数的均值不等式,从而推广到多个数的情形。学有余力的学生,会去证多个数的情形。仿照书上去证,几乎不可能。下面介绍凹凸函数的性质,并用来证明之,较简便易行。 凹函数定义 若函数f(x)上每一点的切线都在函数图像的下方,则函数f(x)叫做凹函数。如图(一) 凸函数定义 若函数f(x)上每一点的切线都在函数图像的上方,则函数f(x)叫做凸函数。如图(二) 性质定理 若函数f(x)是凹函数,则 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若函数f(x)是凸函数,则 n f f f n f x x x x x x n n ) ()()()(2121 +++≥ +++ 证明:若函数f(x)是凹函数,如下图

点P ( )( ,2 1 2 1 n f n x x x x x x n n ++++++ )在f(x)上 设过P 点的切线方程为:y=ax+b 则 b n a n f x x x x x x n n ++++? =+++ 2 1 21 )( (1) ∵f(x) 是凹函数,切线在函数图像下方 ∴b a f x x +≥11)(;b a f x x +≥22)(;…;b a f x x n n +≥)( ∴ b n a n f f f x x x x x x n n ++++? ≥+++ 2 1 21) ()()( (2) 由(1),(2)得 n f f f n f x x x x x x n n ) ()()()( 212 1 +++≤ +++ 若函数f(x)为凸函数,如下图 点P ( )( ,2 1 2 1 n f n x x x x x x n n ++++++ )在f(x)上 设过P 点的切线方程为:y=ax+b 则 b n a n f x x x x x x n n ++++? =+++ 2 1 21 )( (1) ∵f(x) 是凸函数,切线在函数图像上方 ∴b a f x x +≤11)(;b a f x x +≤22)(;…;b a f x x n n +≤)(

(完整版)函数的基本性质详细知识点及题型分类(含课后作业)

《函数的基本性质》专题复习 (一)函数的单调性与最值 ★知识梳理 一、函数的单调性 1、定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 2、单调性的简单性质: ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。 3、判断函数单调性的方法步骤: 利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1)(x f y =I I )(x f y =

函数的基本性质解析

1 第二讲 函数的性质(一) 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2 当x 1f (x 2) ,那么就说函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法 (1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1

函数的基本性质测试题

函数的基本性质测试题 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)。 1.下面说法正确的选项 ( ) A .函数的单调区间可以是函数的定义域 B .函数的多个单调增区间的并集也是其单调增区间 C .具有奇偶性的函数的定义域定关于原点对称 D .关于原点对称的图象一定是奇函数的图象 2.在区间)0,(-∞上为增函数的是 ( ) A .1=y B .21+-= x x y C .122---=x x y D .21x y += 3.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 ( ) A .2-≥b B .2-≤b C .2->b D . 2- C .)()(21x f x f = D .无法确定 7.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 ( ) A .]8,3[ B . ]2,7[-- C .]5,0[ D .]3,2[- 8.函数b x k y ++=)12(在实数集上是增函数,则 ( ) A .21- >k B .2 1 -b D .0>b 9.定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则( ) A .)2()2()3(f f f << B .)2()3()2(f f f << C .)2()2()3(f f f << D .)3()2()2(f f f << 10.已知)(x f 在实数集上是减函数,若0≤+b a ,则下列正确的是 ( ) A .)]()([)()(b f a f b f a f +-≤+ B . )()()()(b f a f b f a f -+-≤+ C .)]()([)()(b f a f b f a f +-≥+ D .)()()()(b f a f b f a f -+-≥+ 二、填空题:请把答案填在题中横线上(每小题5分,共25分). 11.函数)(x f 在R 上为奇函数,且0,1)(>+= x x x f ,则当0

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

函数的四大基本性质

函数的对应法则 求函数时注意函数的定义域与值域.已知f(x)的定义域[a,b],求f[g(x)]的定义域,是指满足a≤g(x)≤b的x取值范围.而已知f[g(x)]的定义域[a,b]指的是x€[a,b] 已知关于f(x)与f(1/x)或f(-x)的表达式,再构照另外一个等式组成方程。如:2f(x)+f(1/x)=3x 2f(1/x)+f(x)=3f(1/x) 函数的四大基本性质 1.奇偶性:a:判断前提:定义域关于原点对称b:判定方法:f(-X)=±f(x) 奇函数的图像关于原点对称,单调性在R上相同,偶函数关于Y轴对称,单调性相反。如f(x)为都函数,则f(-x)=f(x)=f(∣x∣)即如:f[(3x+1)(2x-6)]≤f(64)即∣(3x+1)(2x-6)∣≤64 2.单调性:a:会用定义法和导数法证明,判定函数的单调性。b;会用图像法和求导法解决单调区间的问题. 1.抽象函数的单调性与最值 已知函数f(x)对于任意x,y∈R,x>0,f(x)<0,总有f(x)+f(y)=f(x+y),则可用X1=X1-X2+X1替换X1.对于F(X/Y)=F(X)+F(Y),可用X1=X2×X1/X2替换X1 3.周期性:a:定义f(x+T)=f(x)的周期 常见的周期结论 设为非零常数,若对f(x)定义域内的任意x,恒有下列条件之一成立:1.f(ixia)=-f(x);2.f(ixia)=f(1/x);3.f(ixia)=-f(1/X);4.f(x+a)=f(x-a),则是2a周期函数,是它的一个周期 4.对称性 a.若f(a+x)=f(a-x),则函数y=f(x)图像关于x=a对称 b.若f(a+x)=-f(a-x)或f(x)=f(2a-x),关于(a,o)对称 2.两个图像的对称关系 Y=f(a+x)与y=f(b+x)关于直线x=(b-a)/2对称 5.指数函数 当a>1时,在R上是递增函数,X≤0,0≤y≤1,当x≥0时,y≥1 当01时,在y的右侧,a越大,图像越往上排,在y的左侧,a越大,图像越往下排,当00)(a>0且a≠1) 当a>1时,在【0,,】是递增函数,当x>1时,y>0,当x<1,y<0,当00,X>1,y<0,logaX*logxA=1 对于比较函数的大小,在定义域上为增函数或减函数可用换底公式 8.幂函数的系数为1 9.零点个数F(X)=0时X所对应的值在【a,b】上有零点是,则f(a)*f(b)<0

函数的基本性质专题训练

函数的基本性质 【巩固练习】 1.下列判断正确的是( ) A .函数22)(2--=x x x x f 是奇函数 B .函数()(1f x x =-数 C .函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3 .函数y = ) A .(]2,∞- B .(]2,0 C . [)+∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题: (1)函数f x ()的定义域(,0)(0,)-∞+∞,在0x <时是增函数,0x >也是增函数,则)(x f 在定义域上是增函数; (2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >; (3) 223y x x =--的递增区间为[)1,+∞; (4) 1y x =+ 和y =表示相同函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 7.函数x x x f -=2)(的单调递减区间是____________________。

函数的基本性质练习题(重要)之欧阳音创编

(高中数学必修1)函数的基本性质 时间:2021.03.11 创作:欧阳音 [B组] 一、选择题 1.下列判断正确的是() A.函数是奇函数 B.函数 是偶函数 C.函数是非奇非偶函数D.函数既是奇函数又是偶函数 2.若函数在上是单调函数,则的取值范围是() A. B. C. D. 3.函数的值域为() A. B. C. D. 4.已知函数在区间上是减函数,

则实数的取值范围是( ) A . B . C . D . 5.下列四个命题:(1)函数 在时是增函数,也是增函数,所以与轴没有交 点,则且 ; ???? 的递增区间 为 ; ???? 和 表示相等函数。 其中正确命题的个数是( ) A . B . C . D . 6.某学生离家去学校,由于怕迟到,所以一开始就跑 步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数 的单调递减区间是 ____________________。 2.已知定义在上的奇函数 ,当 时, , 那么时,. d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

3.若函数在上是奇函数,则 的解析式为________. 4.奇函数在区间上是增函数,在区间 上的最大值为, 最小值为,则__________。5.若函数在上是减函数,则的取值范围为__________。 三、解答题 1.判断下列函数的奇偶性 (1)(2) 2.已知函数的定义域为,且对任意,都有,且当时, 恒成立,证明:(1)函数是上的减函数; (2)函数是奇函数。 3.设函数与的定义域是且 ,是偶函数,是奇函数,且 ,求和的解析式 ??.设为实数,函数,

对数性凸函数和几何凸函数的一些性质解读

对数性凸函数和几何凸函数的一些性质 张晶晶 (楚雄师范学院数学系2004级1班,) 指导老师郎开禄 摘要: 在本文中,获得了对数性凸函数的五个性质和几何凸函数的六个性质。 关键词: 凸函数; 对数性凸函数; 几何凸函数;基本性质 The research on some properties of logarithmatical convex function and geometric convex function Abstract: In this paper, the author gives five properties of logarithmatical convex function and six properties of geometric convex function by studying the fundamental properties. Key Words: Convex Function; Logarithmatical Convex Function; Geometric Covex Function;Fundamental Property 导师评语: 在文[1] ( [1]. 刘芳园,田宏根. 对数性凸函数的一些性质[J].《新疆师范大学学报》, 2006, 25(3): 22-25.)及文[2]( [2] .王传坚.对数性凸函数的性质及应用[D].楚雄师范学院03级优秀毕业 论文)等中,引入对数性凸函数的概念,获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数的 基本性质的一些应用.文[3]( [3] .吴善和.几何凸函数与琴生型不等式[J].《数学的实践与认识》,2004,34(2),155-163)讨论了几何凸函数与琴生型不等式的关系. 受文[1]- [3]的启发,在文[1]- [3]的的基础上, 张晶晶同学的毕业论文<<对数性凸函数和几何凸函数的一些性质>>进一步研究对数性凸函数和几何凸函数的性质,获得了对数性凸函数的五个性质 (论文中的定理7至定理11),获得了几何凸函数的六个性质 (论文中的定理13至定理17及推论). 张晶晶同学的毕业论文<<对数性凸函数和几何凸函数的一些性质>>选题具有理论与实际意义,通过深入研究, 在文[1]- [3]的基础上,该论文获得了对数性凸函数的五个性质,获得了几何凸函数的六个性质.该论文完成有相当的技巧性和难度,其结果在理论与实际上都有重要意义.论文语言流畅,打印行文规范,是一篇创新型的毕业论文.该同学在作论文过程中,悟性好,爱钻研,能吃苦,独立性强. 对数性凸函数和几何凸函数的一些性质 前言 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用,特别是在不等式的证明中发挥着无可代替的作用,受文[1]、[2]、[3]的影响,本文得到了对数性凸函数和几何凸函数的几个性质。 1.对数性凸函数的基本性质

函数的基本性质练习题(重要)

(高中数学必修1)函数的基本性质 [B 组] 一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数()(1f x x =- C .函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3 .函数y = ) A .( ]2,∞- B .(]2,0 C .[ )+∞,2 D .[)+∞,0 4.已知函数()()2 212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数; (2)若函数2 ()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 2 23y x x =--的 递增区间为[)1,+∞;(4) 1y x =+ 和y = 表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题

1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . 3.若函数2 ()1 x a f x x bx += ++在[]1,1-上是奇函数,则()f x 的解析式为________. 4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8, 最小值为1-,则2(6)(3)f f -+-=__________。 5.若函数2 ()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________。 三、解答题 1.判断下列函数的奇偶性 (1)()f x = (2)[][]()0,6,22,6f x x =∈-- 2.已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立,证明:(1)函数()y f x =是R 上的减函数; (2)函数()y f x =是奇函数。 3.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且1 ()()1 f x g x x +=-,求()f x 和()g x 的解析式. 4.设a 为实数,函数1||)(2 +-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值。

凸函数的性质

凸函数的性质 【摘自[前苏]克拉斯诺西尔斯基等著《凸函数与奥尔里奇空间》(中译本)】 通常称函数)(x f 在区间),(b a 内是“下(上)凸函数”,若对于),(b a 内任意两点1x 和 2x )(21x x ≠与任意)1,0(∈t ,都满足“琴生(Jesen)不等式” 1212() [(1)]()(1)()f tx t x tf x t f x >+-<+- (※) 或 () 11221122()()()f t x t x t f x t f x >+<+ (※※) [其中1t 和2t 为正数且121=+t t ] 它的特别情形(取2 1 = t )是 ()()()121222f x f x x x f >++?? < ??? ()21x x ≠ (※※※) 在§2-7中曾把它作为下(上)凸函数的定义.。我们将证明,对于连续函数来说,不等式(※※※)与琴生不等式(※)是等价的。正因为这样,我们在教科书中就用简单的不等式(※※※)定义了下(上)凸函数(因为我们研究的函数都是连续函数)。下凸函数简称为凸函数,上凸函数简称为凹函数。请读者注意.....,这些称呼同国内某些教科书中的称呼是不一致的.....................。但是,我们的上述称呼与新近出版的许多教科书或发表的论文中的称呼是一致的。 因为函数的“上凸”与“下凸”是对偶的,所以,下面只讨论下凸函数的性质。相信读者一定能够把下面得出的结论,类比到上凸函数上。 (一)琴生不等式的几何意义 我们先解释一下琴生不等式的几何意义。如图一, 设231x x x <<,则21 21 3112323x x x x x x x x x x x --+--=(根据解析几何中的定比分点公式(*))。 根据琴生不等式(※※), )(3x f )()(2121311232x f x x x x x f x x x x --+--< [注意1 213212321,x x x x t x x x x t --=--=] 图一

函数的基本性质练习题及答案

高中数学必修一1.3函数的基本性质练习题及答案 一:单项选择题: (共10题,每小题5分,共50分) 1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A.1 B.2 C.3 D.4 2. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A.)2()1()23(f f f <-<- B.) 2 ()23()1(f f f <-<- C.)23()1()2(-<-0时,方程0 只有一个实根 ③y 的图象关于(0 , c)对称 ④方程0至多两个实根 其中正确的命题是( ) A .①、④ B .①、③ C .①、②、③ D .①、②、④

函数的基本性质测试卷

函数的基本性质测试 一、选择题: 1.下列函数式偶函数,且在()0-∞,上单调递减的是( ) A. 1 y x = B. 21y x =- C. 12y x =- D. y x = 2.已知2()4f x x =-,()|2|g x x =-,则下列结论正确的是( ) A .()()()h x f x g x =+是偶函数 B .()()()h x f x g x =是奇函数 C .()() ()2f x g x h x x =-是偶函数 D .() ()2()f x h x g x =-是奇函数 3.函数()()211f x mx m x =+-+在区间]1,(-∞上为减函数,则m 的取值范围( ) A .??? ??31,0 B .??????31,0 C .10,3?? ???? D. ??? ??31,0 4.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()f -1=( ) A .3- B .-1 C .1 D .3 5.已知函数1)2)(2+++=mx x m x f (为偶函数,则)(x f 在区间()∞+,1上是( ) A .先增后减 B .先减后增 C .减函数 D .增函数 6.若函数()31f x ax bx =+-, ()13f =-,则()1f -=( ) A. 1 B. -1 C. 0 D. 3 7.求函数64)(2-+-=x x x f ,[]5,0∈x 的值域( ) A .[]2,6-- B .[]2,11-- C .[]6,11-- D .[]1,11-- 8.已知奇函数当时,,则当时,的表达式是( ) A. B. C. D. 9. 函数y=f(x)与函数y=g(x)的图象如右图,则函数y=f(x)·g(x)的图象可能是( )

凸函数判定方法的研究

凸函数判定方法的研究 鸡冠山九年一贯制学校 张岩 2013年12月15日

目录 摘要 (ii) 关键词 (ii) Abstract (ii) Key words (ii) 前言 (iii) 一、凸函数的基本理论 (1) 1、预备知识 (1) 2、凸函数的概念及性质 (2) 二、凸函数的判定方法 (4) (一)一元函数凸性的判定方法 (4) 1、利用作图判断函数凸性 (4) 2、其它判定方法 (5) (二)多元函数凸性的判定方法 (8) 1、多元凸函数的有关概念 (8) 2、多元函数凸性的判定方法 (9) 三、凸函数几个其他判定方法 (12) 四、总结 (14) 参考文献 (14) 致谢 (15)

凸函数判定方法的研究 摘要:凸函数是一类非常重要的函数,借助它的凸性可以科学准确地描述函数图像,而且可以用于不等式的证明。同时,凸函数也是优化问题中重要的研究对象,研究的内容非常丰富,研究的结果已在许多领域得到广泛的应用,因此凸函数及其性质以及凸性判定的充要条件的研究就显得尤为重要。本文首先给出了凸函数的一些基本概念和结论,然后针对一元和多元函数,对凸函数的判定做了研究和讨论,本文最后也给出几种新的判定凸函数的方法。 关键词:凸函数;梯度;Hesse 矩阵;泰勒定理 Abstract: Convex function is a kind of very important functions, with the help of its convexity we can accurately describe the graph of functions and it can also be used to prove the inequalities. As the significant object in optimization problems, the contents about convex functions we study are very abundant, the results obtained so far has been applied to many fields. Therefore, the topic we concern about is deserved to be discussed. In this paper, we firstly present some basic definitions and properties of convex functions, then aiming at the univariate function and multi-variable functions we give several criterions for determining the convexity of functions. Finally, some new principles are also given. Key words:Convex function; Gradient; Hesse matrix; Taylor Theorem

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

高一数学《函数的基本性质》单元测试题

高一数学《函数的基本性质》单元测试题 班次 学号 姓名 一、选择题: 1.下列函数中,在区间),0(+∞上是增函数的是 ( ) A.42 +-=x y B.x y -=3 C.x y 1 = D.x y = 2.若函数)()(3R x x x f ∈=,则函数)(x f y -=在其定义域上是 ( ) A.单调递减的偶函数 B.单调递减的奇函数 C.单调递增的偶函数 D.单调递增的奇函数 3.函数x x x f + =2)(的奇偶性为 ( ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.既不是奇函数有不是偶函数 4.若)(x f y =在[)+∞∈,0x 上的表达式为)1()(x x x f -=,且)(x f 为奇函数,则 (]0,∞-∈x 时)(x f 等于 ( ) A.)1(x x -- B. )1(x x + C. )1(x x +- D. )1(-x x 5.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 ( ) A.1- B.0 C.1 D.2 6.已知函数()()0f x x a x a a =+--≠,()()() 2200x x x h x x x x ?-+>?=?+≤??, 则()(),f x h x 的奇偶性依次为 ( ) A .偶函数,奇函数 B .奇函数,偶函数 C .偶函数,偶函数 D .奇函数,奇函数 7.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于 ( ) A .2- B .4- C .6- D .10- 8.下列判断正确的是 ( ) A .函数22)(2--=x x x x f 是奇函数 B .函数()(1f x x =- C .函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数 9.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是 ( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是