ansys梁结构受力分析

ansys梁结构受力分析
ansys梁结构受力分析

梁结构受力分析

肖杰20065528 /prep7

k,1,-90,0,60

k,2,90,0,60

k,3,90,0,-60

k,4,-90,0,-60

kgen,2,all,,,,120

k,9,0,180,0

k,100,0,200,0

k,101,90

k,102,-90

l,1,5

l,2,6

l,3,7 l,4,8

l,5,6

l,6,7 l,7,8 l,8,5 l,9,5 l,9,6 l,9,7

l,9,8

lsel,,loc,y,0,119

cm,lvert,line

lsel,,loc,y,120

cm,lhoriz,line

lsel,,loc,y,121,180

cm,lslope,line

lsel,all

et,1,188

mp,ex,1,2e6

mp,nuxy,1,0.3

mp,dens,1,7800

sectype,1,beam,i,beam

secdata,6.535,6.535,8.06,.465,.465,.285 sectype,2,beam,i,column

secdata,12,12,12.12,.605,.605,.39 sectype,3,beam,hrec,peak

secdata,6,6,.25,.25,.25,.25

save,frame,db

cmsel,,lslope

latt,1,,1,,100,,3

cmsel,,lvert

lsel,r,loc,x,-90

latt,1,,1,,102,,2

cmsel,,lvert lsel,r,loc,x,90 latt,1,,1,,101,,2 cmsel,,lhoriz lsel,u,loc,z,-60 lsel,u,loc,x,90 latt,1,,1,,1,,1 cmsel,,lhoriz lsel,u,loc,z,60 lsel,u,loc,x,-90 latt,1,,1,,3,,1 lsel,all lesize,all,20 lmesh,all

nsel,,loc,y,0 d,all,all ksel,all

fk,9,fy,-10000 alls

/solu

solve

节点位移结果

PRINT DOF NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ ROTX ROTY ROTZ

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 -0.19995E-01-0.79894E-02 0.88638E-02 0.34413E-04-0.20059E-04-0.45551E-05

3 -0.15104E-02-0.13316E-02 0.68952E-03 0.43311E-04-0.33432E-05 0.13874E-03

4 -0.52377E-02-0.26631E-02 0.20950E-02 0.71592E-04-0.66863E-0

5 0.22168E-03

5 -0.10066E-01-0.39947E-02 0.39157E-02 0.84843E-04-0.10030E-04 0.24882E-03

6 -0.14879E-01-0.53263E-02 0.58512E-02 0.83063E-04-0.13373E-04 0.22017E-03

7 -0.18560E-01-0.66578E-02 0.76008E-02 0.66253E-04-0.16716E-04 0.13571E-03

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.19995E-01-0.79894E-02 0.88638E-02 0.34413E-04 0.20059E-04 0.45551E-05

16 0.15104E-02-0.13316E-02 0.68952E-03 0.43311E-04 0.33432E-05-0.13874E-03

17 0.52377E-02-0.26631E-02 0.20950E-02 0.71592E-04 0.66863E-05-0.22168E-03

18 0.10066E-01-0.39947E-02 0.39157E-02 0.84843E-04 0.10030E-04-0.24882E-03

19 0.14879E-01-0.53263E-02 0.58512E-02 0.83063E-04 0.13373E-04-0.22017E-03

20 0.18560E-01-0.66578E-02 0.76008E-02 0.66253E-04 0.16716E-04-0.13571E-03

27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

28 0.19995E-01-0.79894E-02-0.88638E-02-0.34413E-04-0.20059E-04 0.45551E-05

29 0.15104E-02-0.13316E-02-0.68952E-03-0.43311E-04-0.33432E-05-0.13874E-03

30 0.52377E-02-0.26631E-02-0.20950E-02-0.71592E-04-0.66863E-05-0.22168E-03

31 0.10066E-01-0.39947E-02-0.39157E-02-0.84843E-04-0.10030E-04-0.24882E-03

32 0.14879E-01-0.53263E-02-0.58512E-02-0.83063E-04-0.13373E-04-0.22017E-03

33 0.18560E-01-0.66578E-02-0.76008E-02-0.66253E-04-0.16716E-04-0.13571E-03

40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

41 -0.19995E-01-0.79894E-02-0.88638E-02-0.34413E-04 0.20059E-04-0.45551E-05

42 -0.15104E-02-0.13316E-02-0.68952E-03-0.43311E-04 0.33432E-05 0.13874E-03

43 -0.52377E-02-0.26631E-02-0.20950E-02-0.71592E-04 0.66863E-05 0.22168E-03

44 -0.10066E-01-0.39947E-02-0.39157E-02-0.84843E-04 0.10030E-04 0.24882E-03

45 -0.14879E-01-0.53263E-02-0.58512E-02-0.83063E-04 0.13373E-04 0.22017E-03

46 -0.18560E-01-0.66578E-02-0.76008E-02-0.66253E-04 0.16716E-04 0.13571E-03

53 -0.15552E-01-0.80704E-02 0.92204E-02 0.34413E-04-0.15601E-04-0.35429E-05

54 -0.11108E-01-0.81311E-02 0.94879E-02 0.34413E-04-0.11144E-04-0.25306E-05

55 -0.66649E-02-0.81716E-02 0.96662E-02 0.34413E-04-0.66863E-05-0.15184E-05

56 -0.22216E-02-0.81918E-02 0.97553E-02 0.34413E-04-0.22288E-05-0.50612E-06

57 0.22216E-02-0.81918E-02 0.97553E-02 0.34413E-04 0.22288E-05 0.50612E-06

58 0.66649E-02-0.81716E-02 0.96662E-02 0.34413E-04 0.66863E-05 0.15184E-05

59 0.11108E-01-0.81311E-02 0.94879E-02 0.34413E-04 0.11144E-04 0.25306E-05

60 0.15552E-01-0.80704E-02 0.92204E-02 0.34413E-04 0.15601E-04 0.35429E-05 70 0.19660E-01-0.74158E-02 0.59092E-02 0.22942E-04 0.13373E-04 0.45551E-05

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ ROTX ROTY ROTZ

71 0.19460E-01-0.70717E-02 0.29546E-02 0.11471E-04 0.66863E-05 0.45551E-05

72 0.19393E-01-0.69570E-02-0.37300E-13 0.11072E-15-0.15547E-15 0.45551E-05

73 0.19460E-01-0.70717E-02-0.29546E-02-0.11471E-04-0.66863E-05 0.45551E-05

74 0.19660E-01-0.74158E-02-0.59092E-02-0.22942E-04-0.13373E-04 0.45551E-05

81 0.15552E-01-0.80704E-02-0.92204E-02-0.34413E-04-0.15601E-04 0.35429E-05

82 0.11108E-01-0.81311E-02-0.94879E-02-0.34413E-04-0.11144E-04 0.25306E-05

83 0.66649E-02-0.81716E-02-0.96662E-02-0.34413E-04-0.66863E-05 0.15184E-05

84 0.22216E-02-0.81918E-02-0.97553E-02-0.34413E-04-0.22288E-05 0.50612E-06

85 -0.22216E-02-0.81918E-02-0.97553E-02-0.34413E-04 0.22288E-05-0.50612E-06

86 -0.66649E-02-0.81716E-02-0.96662E-02-0.34413E-04 0.66863E-05-0.15184E-05

87 -0.11108E-01-0.81311E-02-0.94879E-02-0.34413E-04 0.11144E-04-0.25306E-05

88 -0.15552E-01-0.80704E-02-0.92204E-02-0.34413E-04 0.15601E-04-0.35429E-05

98 -0.19660E-01-0.74158E-02-0.59092E-02-0.22942E-04 0.13373E-04-0.45551E-05

99 -0.19460E-01-0.70717E-02-0.29546E-02-0.11471E-04 0.66863E-05-0.45551E-05 100 -0.19393E-01-0.69570E-02-0.67281E-13 0.22812E-15-0.30575E-15-0.45551E-05 101 -0.19460E-01-0.70717E-02 0.29546E-02 0.11471E-04-0.66863E-05-0.45551E-05 102 -0.19660E-01-0.74158E-02 0.59092E-02 0.22942E-04-0.13373E-04-0.45551E-05 109 -0.11673E-14-0.15885 -0.56769E-13 0.75477E-15-0.90399E-15-0.33004E-16 110 0.23080E-02-0.14802 -0.17035E-02-0.45707E-03-0.11560E-04-0.70232E-03 111 -0.48808E-03-0.12640 -0.27929E-03-0.76014E-03-0.20222E-04-0.11707E-02 112 -0.63588E-02-0.98321E-01 0.29900E-02-0.90922E-03-0.25986E-04-0.14053E-02 113 -0.13274E-01-0.68115E-01 0.68216E-02-0.90430E-03-0.28852E-04-0.14059E-02 114 -0.19205E-01-0.40106E-01 0.99329E-02-0.74539E-03-0.28819E-04-0.11727E-02 115 -0.22122E-01-0.18622E-01 0.11041E-01-0.43249E-03-0.25888E-04-0.70557E-03 123 -0.23080E-02-0.14802 -0.17035E-02-0.45707E-03 0.11560E-04 0.70232E-03 124 0.48808E-03-0.12640 -0.27929E-03-0.76014E-03 0.20222E-04 0.11707E-02 125 0.63588E-02-0.98321E-01 0.29900E-02-0.90922E-03 0.25986E-04 0.14053E-02 126 0.13274E-01-0.68115E-01 0.68216E-02-0.90430E-03 0.28852E-04 0.14059E-02 127 0.19205E-01-0.40106E-01 0.99329E-02-0.74539E-03 0.28819E-04 0.11727E-02 128 0.22122E-01-0.18622E-01 0.11041E-01-0.43249E-03 0.25888E-04 0.70557E-03 136 -0.23080E-02-0.14802 0.17035E-02 0.45707E-03-0.11560E-04 0.70232E-03 137 0.48808E-03-0.12640 0.27929E-03 0.76014E-03-0.20222E-04 0.11707E-02 138 0.63588E-02-0.98321E-01-0.29900E-02 0.90922E-03-0.25986E-04 0.14053E-02

139 0.13274E-01-0.68115E-01-0.68216E-02 0.90430E-03-0.28852E-04 0.14059E-02 140 0.19205E-01-0.40106E-01-0.99329E-02 0.74539E-03-0.28819E-04 0.11727E-02 141 0.22122E-01-0.18622E-01-0.11041E-01 0.43249E-03-0.25888E-04 0.70557E-03 149 0.23080E-02-0.14802 0.17035E-02 0.45707E-03 0.11560E-04-0.70232E-03

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ ROTX ROTY ROTZ 150 -0.48808E-03-0.12640 0.27929E-03 0.76014E-03 0.20222E-04-0.11707E-02 151 -0.63588E-02-0.98321E-01-0.29900E-02 0.90922E-03 0.25986E-04-0.14053E-02 152 -0.13274E-01-0.68115E-01-0.68216E-02 0.90430E-03 0.28852E-04-0.14059E-02 153 -0.19205E-01-0.40106E-01-0.99329E-02 0.74539E-03 0.28819E-04-0.11727E-02 154 -0.22122E-01-0.18622E-01-0.11041E-01 0.43249E-03 0.25888E-04-0.70557E-03

MAXIMUM ABSOLUTE VALUES

NODE 115 109 154 138 139 126

VALUE -0.22122E-01-0.15885 -0.11041E-01 0.90922E-03-0.28852E-04 0.14059E-02

工程鉴定中结构受力分析

工程鉴定中的结构受力分析 谈到结构受力时,或在结构设计时,常常注重结构受力的M、N、Q,其他一些力:如地基冻胀力、温度应力、桩基的负摩阻力、土体的自重应力、结构构件变形及水的浮力等作用,或者被忽视、或者分析不准确,从而造成房屋结构出现裂缝、构件破坏以及房屋倾斜等。 1,地基冻胀力 1.1工程实例1 黑龙江某农场一层砖木结构房屋,毛石条形基础,使用 过程中,冬季发现部分房屋外重墙体向外倾斜,对房屋外 墙倾斜原因进行鉴定。以下照片摘自《地基与基础》:

从照片中基础的受力图可知,冬季地基土体受冻,条形基础外侧的冻切力T1>T2,冻胀时基底压力分布基础外边缘大,里边缘小,按此受力图进行分析,房屋外纵墙应向房屋里侧倾斜,可实际情况恰恰相反,房屋横墙较少、比较空旷的房屋,外纵墙均向外倾斜,房屋横墙较多、整体刚度比较好的房屋,外纵墙基本不倾斜,当时是百思不得其解,经过反复研究此基础受力图,我们对基础的冻深曲线进行反复研究,我们推测,地基冻深曲线基本呈斜向,地基的冻胀力与冻深曲线基本呈垂直关系,造成基础向外倾斜。 对于横墙较多、刚度较好的房屋,由于横墙的约束作用,限制 了房屋外纵墙的倾斜,使房屋整体上抬。 1.2 工程实例2 某电厂变电所墙体裂缝加固 黑龙江省某发电厂变电所,一层砖混结构,使用过程中发现山墙有倒八字形裂缝,裂缝与地面基本呈45度夹角, 经某单位鉴定后,认为基础产生了不均匀沉降,于是,对基 础进行了加固处理,加固后,山墙又出现了裂缝,而且山墙 外倾,建设单位拟对其再次进行加固处理,我们经投标中标 后,经过认真分析,发现有以下问题: a)对于一层房屋,基础发生不均匀沉降的可能性不大,经过加固处理后再次发生不均匀沉降的可能性更 小,似乎有些不合常理; b)山墙外倾不符合基础不均匀沉降的受力特征; c)基础埋置深度满足规范要求,似乎没有地基冻胀的

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

Ansys受力分析例程

三维托架实体受力分析例程(题目) ANSYS软件是融结构、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS公司开发,它能与多数CAD软件接口,实现数据的共享和交换,如PRO/E、UG、I-DEAS、CADDS及AutoCAD等,是现代产品设计中的高级CAD工具之一。 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。 托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析。先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>V olumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选0.1,然后点Meshing,Pick all进行网格划分,所得结果如图1。划分网格后,就可以对模型施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry B.C>On Areas命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图2。

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

ansys切削加工受力分析

1绪论 金属切削是机械制造行业中的一类重要的加工手段。美国和日本每年花费在切削加工方面的费用分别高达1000 亿美元和10000亿日元。中国目前拥有各类金属切削机床超过300 万台, 各类高速钢刀具年产量达3.9 亿件, 每年用于制造刀具的硬质合金超过5000吨。可见切削加工仍然是目前国际上加工制造精密金属零件的主要办法。19世纪中期, 人们开始对金属切削过程的研究, 到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理, 对其研究一直是国内外研究的重点和难点。过去通常采用实验法, 它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。本文利用材料变形的弹塑性理论, 建立工件材料的模型,借助大型商业有限元软件ANSYS, 通过输入材料性能参数、建立有限元模型、施加约束及载荷、计算, 对正交金属切削的受力情况进行了分析。以前角10°、后角8°的YT 类硬质合金刀具切削45号钢为实例进行计算。切削厚度为2 mm时形成带状切屑。提取不同阶段应力场分布云图, 分析了切削区应力的变化过程。这种方法比传统实验法快捷、有效, 为金属切削过程的研究开辟了一条新的道路。 2设计要求 根据有限元分析理论,根据ANSYS的求解步骤,建立切削加工的三维模型。对该模型进行网格划分并施加约束边界条件,最后进行求解得出应力分布云图,并以此云图分析得出结论。 3金属切削简介[3] 金属切削过程,从实质讲,就是产生切屑和形成已加工表面的过程。产生切屑和形成已加王表面是金属切削时密切相关的两个方面。 3.1切削方式 切削时,当工件材料一定,所产生切屑的形态和形成已加工表面的特性,在很大程度上决定于切削方式。切削方式是由刀具切削刃和工件间的运动所决定,可分为:直角切削、斜角切削和普通切削三种方式。 3.2切屑的基本形态 金属切削时,由于工件材料、刀具几何形状和切削用量不同,会出现各种不同形态的切屑。但从变形观点出发,可归纳为四种基本形态。 1.带状切屑切屑呈连续状、与前刀面接触的底层光滑、背面呈毛葺状。

课程设计ANSYS有限元分析(最完整)

有限元法分析与建模课程设计报告 学院:机电学院 专业:机械制造及其自动化指导教师:**** 学生:* *** 学号:2012011**** 2015-12-31

摘要 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。 关键词:ANSYS10.0;光盘;应力;应变。

目录 第一章引言 (3) 1.1 引言 (3) 第二章问题描述 (4) 2.1有限元法及其基本思想 (4) 2.2 问题描述 (4) 第三章力学模型的建立和求解 (5) 3.1设定分析作业名和标题 (5) 3.2定义单元类型 (6) 3.3定义实常数 (9) 3.4定义材料属性 (12) 3.5建立盘面模型 (14) 3.6对盘面划分网格 (22) 3.7施加位移边界 (27) 3.8施加转速惯性载荷并求解 (30) 第四章结果分析 (32) 4.1 旋转结果坐标系 (32) 4.2查看变形 (33) 4.3查看应力 (35) 总结 (38) 参考文献 (39)

第一章引言 1.1 引言 光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。 在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。需要注意的是,利用ANSYS施加边界条件时,要将内孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。

梁结构的受力分析

南昌航空大学实验报告 课程名称:CAD/CAE 软件应用 实验名称:梁结构的受力分析 指导老师评定: 签名: (一)实验目的: 掌握对梁结构进行有限元分析的方法。 (二)实验要求: 1.要求对梁结构进行有限元分析,了解梁单元的使用方法。 2.要求把有限元结果与理论计算结果进行对比。 (三)实验内容: ① /prep7 et,1,beam3 MP,EX,1,200E9 R,1,3E-4,2.5E-9,0.01 N,1,0,0 N,2,1,0 N,3,2,0 N,4,3,0 N,5,4,0 E,1,2 E,2,3 E,3,4 E,4,5 FINISH /SOLU D,1,ALL,0 F,3,FY,-2 SFBEAM,3,1,PRES,0.05 SFBEAM,4,1,PRES,0.05 SOLVE FINISH /POST1 SET,1,1 PLDISP FINISH /TITLE,肖曾12061210 ② /prep7 et,1,188 mp,ex,1,2e6 mp,nuxy,1,0.3 mp,dens,1,7800 sectype,1,beam,i,beam secdata,6.535,6.535,8,06,0.465,0.465,0.285 sectype,2,beam,i,column secdata,12,12,12.12,0.605,0.605,0.39 sectype,3,beam,hrec,peak secdata,6,6,0.25,0.25,0.25,0.25 k,1,-90,0,60 k,2,90,0,60 k,3,90,0,-60 k,4,-90,0,-60 kgen,2,all,,,,120 k,9,0,180,0 k,101,90 k,102,-90 k,103,-90,200,60 k,104,90,200,60 k,105,90,200,-60 k,106,-90,200,-60 L,1,5 L,2,6 L,3,7 L,4,8 L,5,6 L,6,7 L,7,8 L,8,5 L,9,5 L,9,6 L,9,7 L,9,8 lsel,,loc,y,0,119 cm,lvert,line lsel,,loc,y,120 cm,lhoriz,line lsel,,loc,y,121,180 cm,lslope,line lsel,all cmsel,,lslope lsel,s,loc,x,-90,0 lsel,a,loc,z,0,60 latt,1,,1,,103,,3 cmsel,,lslope lsel,s,loc,x,0,90 lsel,a,loc,z,0,60 latt,1,,1,,104,,3 cmsel,,lslope lsel,s,loc,x,0,900 lsel,a,loc,z,-60,0 latt,1,,1,,105,,3 cmsel,,lslope lsel,s,loc,x,-90,0 lsel,a,loc,z,-60,0 latt,1,,1,,106,,3 cmsel,,lvert lsel,r,loc,x,-90 latt,1,,1,,102,,2 cmsel,,lvert lsel,r,loc,x,90 latt,1,,1,,101,,2 cmsel,,lhoriz lsel,u,loc,z,-60 lsel,u,loc,x,90

ansys有限元受力分析

起重机桁架结构的受力分析 摘要:本文利用ansys14.5平台研究货物起重机的受力情况,通过对起重机架的建模和求解,进一步熟悉了ansys的分析过程,并求出了起重机架的变形,位移和应力等方面的力学量,为起重机架结构和材料的改进提供了依据。 1 引言 如下图所示的货物起重机,由两个桁架结构组成,它们通过交叉支撑结合在一起。每个桁架结构的两个主要构件是箱型钢架。每个桁架结构通过内部支撑来加固,内部支承焊接在方框钢架上。连接两个桁架的交叉支承销接在桁架结构上。所有构件材料都是中强度钢,EX=200E9Pa,EY=300E9Pa,μ=0.25,G=80E9。它在端部承受10KN沿Y轴负方向的载荷时,用有限元软件求出最大受力点及应力和位移情况。

内部支承及交叉支承梁截面桁架结构主要构件梁截面 2 计算模型 2.1 设置工作环境 启动Mechanical APDL Product Launcher 14.5,弹出Mechanical APDL Pr oduct Launcher 14.5窗口。设置参数、工作目录、工作名称,单击Run进入AN SYS 14.5 GUI界面。在主菜单元中选择Preferences命令,选择分析类型为Stru ctural,单击OK按钮,完成分析环境设置,如图2.1所示。 图2.1

2.2 定义单元与材料属性 在GUI界面中选择Main Menu>Preprocessor>Element Type> Add/Edit/ Delete命令,弹出图2.2所示的Element Type对话框,选择单元类型为LINK1 80,单击OK按钮。 图2.2 在GUI界面中选择Main Menu>Preprocessor>Material Props>Material M odels命令,弹出图2.3所示的Define Material Model Behavior对话框,选择材料模型为结构、线性、弹性、各向异性,然后输入EX=2E11,EY=3E11,P RXY=0.25,GXY=8E10,输入密度7800,单击OK按钮完成。 图2.3 下面定义截面特性,在GUI中选择Main Menu→Preprocessor→Real Con stants→Add/Edit/Delete命令,弹出Real Constants对话框,单击Add按钮选择LINK180,输入实常号1,截面积0.0014,单击Apply按钮,设置常数编号2,截面积0.0011,单击OK按钮完成,此时Real Constants对话框中列出了已定义的两个不同的实常数,完成单元及材料属性的定义,如图2.4和图2.5所示。

ansys三维梁结构分析

课程分析 COURSE ANALYSIS 题目:三维梁结构分析 系别:机械工程系 专业:机械设计制造及自动化 学制:四年 姓名: 学号: 导师: 20 14 年6 月8 日

分析1:三维梁结构分析 姓名: 班级: 学号: 一、概述 此次分析的模型为三维梁结构,梁结构如图所示,最上端(红色)为m R 4.0=圆截面,其余横截面积为m m 5.05.0?矩形。此模型的弹性模量为GPa E 150=,泊松比为25.0,材料密度为32600m Kg =ρ。 模型的约束情况为底部四个支撑点完全约束,其所受载荷作用在顶端两点,力的方向在YZ 平面,与Y 成?30角,且模型自重不可忽略。据此条件求梁的最大应力及最大变形。(可采用188Beam 单元模拟) 二、模型及约束情况 下面介绍模型的创建及约束的施加。 1、模型创建

通过观察模型的结构特征,可以现创建两个m 4? 5 ?的长方体 m5 m 叠加,再将第二个长方体沿m 5?面内的对角线分割,并删除上半部 m5 分,然后对这两个体求和,再分别将体单元和面单元删除。这样就只剩下线单元。最后再将剩下的线补充加上。如下图所示。 2、材料定义 模型创建完成后,再定义材料的单元类型、弹性模量、泊松比及密度。通过tion sec分别定义m =圆截面及m R4.0 5.0?矩形截面。定 m5.0 义完之后,分别将这两个截面应用到相应的梁上。 3、网格划分 通过meshtool工具设置网格划分尺寸及网格划分命令。打开形状因子,结果如下图所示。

4、约束及载荷施加 按照要求在模型底部四个支撑点施加完全约束,在顶部两个点施加N F N F y z 3031,1750-=-=的载荷,在Z 方向施加重力加速度28.9s m kg g ?=。结果如下图所示。 5、模型求解 完成上述定义之后,即可进行模型求解。

基于ANSYS的框架结构分析1

基于ANSYS 的框架结构分析 摘要:本文简述了框架结构的优缺点,提及了结构分析的重要性,通过使用ANSYS 软件,建立了一个两跨十二层的框架结构模型,并对其进行了结构静态分析,模态分析,特征值屈曲分析以及地震反应时程分析。 关键词:框架结构;ANSYS;静态分析;模态分析;特征值屈曲分析; 地震时程分析 1.引言 框架结构作为一种常用的结构体系,对其结构进行合理分析至关重要。行业内对框架结构的分析方法众多,且电算逐渐趋于主流。ANSYS 软件是一种大型通用的有限元分析软件,界面直观,已广泛应用于结构力学(包括线性与非线性)、结构动力学、传热学、流体力学等。它可以对房屋建筑、桥梁、隧道以及地下建筑物等工程结构在各种外荷载条件下的受力、变形、稳定性及各种动力特性做出全面分析,因而在结构分析中应用广泛。 2.框架结构优缺点 框架结构是指由梁和柱以刚接或者铰接相连接而成,构成承重体系的结构,即由梁和柱组成框架共同抵抗使用过程中出现的水平荷载和竖向荷载。结构的房屋墙体不承重,仅起到围护和分隔作用,广泛用于住宅、学校、办公室,也有根据需要对混凝土梁或板施加预应力,以适用于较大的跨度;框架钢结构常用于大跨度的公共建筑、多层工业厂房和一些特殊用途的建筑物中,如剧场、商场、体育馆、火车站、展览厅、造船厂、飞机库、停车场、轻工业车间等。 框架建筑的主要优点:空间分隔灵活,自重轻,节省材料;具有可以较灵活地配合建筑平面布置的优点,利于安排需要较大空间的建筑结构;框架结构的梁、柱构件易于标准化、定型化,便于采用装配整体式结构,以缩短施工工期;采用现浇混凝土框架时,结构的整体性、刚度较好,设计处理好也能达到较好的抗震效果,而且可以把梁或柱浇注成各种需要的截面形状。 框架结构体系的缺点为:框架节点应力集中显著;框架结构的侧向刚度小,属柔性结构框架,在强烈地震作用下,结构所产生水平位移较大,易造成严重的非结构性破坏数量多,吊装次数多,接头工作量大,工序多,浪费人力,施工受季节、环境影响较大;不适宜建造高层建筑,框架是由梁柱构成的杆系结构,其承载力和刚度都较低,特别是水平方向的(即使可以考虑现浇楼面与梁共同工作以提高楼面水平刚度,但也是有限的),它的受力特点类似于竖向悬臂剪切梁,其总体水平位移上大下小,但相对于各楼层而言,层间变形上小下大,设计时如何提高框架的抗侧刚度及控制好结构侧移为重要因素,对于钢筋混凝土框架,当高

111ANSYS进行有限元静力学分析

经典理论 一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete,

框架受力特点

框架―剪力墙结构的变形及受力特点 在框架结构中加设适量的剪力墙,二者通过楼盖协同工作,以满足建筑物的抗侧要求,从而组成框架―剪力墙结构体系。在框架中局部增加剪力墙可以在对建筑物的使用功能影响不大的情况下,使结构的抗侧刚度和承载力都有明显提高,所以这种结构体系兼有框架和剪力墙结构的优点,是一种适用性很广的结构形式。 1. 变形特点 在水平荷载作用下,框架结构的侧向变形曲线以剪切型为主,而剪力墙的变形则以弯曲型为主。由于两者是受力性能不同的两种结构,因而两者之间需要通过楼板的协同工作。由于楼板平面内刚度很大(计算中假定为无限刚性),因此在同一楼板处必有相同的位移,这就形成了框架―剪力墙结构特有的变形曲线,呈反S形的弯剪型变形曲线。 框架下部位移增长迅速,上部增长较慢,剪力墙则与之相反。在框架―剪力墙结构下部,侧移较小的剪力墙对框架提供帮助,墙把框架向左边拉,框架―剪力墙的侧移比框架单独侧移小,比剪力墙单独侧移大;而上部,框架又可以对剪力墙提供支持,即框架把墙向左边推,其侧移比框架单独侧移大,比剪力墙单独侧移小。最终框架―剪力墙结构的侧移大大减小,且使框架和剪力墙中内力分布更趋合理。· 2. 受力特点 剪力墙的侧移刚度远大于框架,因此剪力墙分配到的剪力也将远大于框架。由于上述变形的协调作用,框架和剪力墙的荷载和剪力分布沿高度在不断调整。框架结构在水平力作用下,框架与剪力墙之间楼层剪力的分配比例和框架各楼层剪力分布情况随着楼层所处高度而变化,与结构刚度特征值λ直接相关。框剪结构中的框架底部剪力

为零,剪力控制部位在房屋高度的中部甚至在上部,而纯框架最大剪力在底部。因此,当实际布置有剪力墙(如:楼梯间墙、电梯井道墙、设备管道井墙等)的框架结构,必须按框架结构协同工作计算内力,不应简单按纯框架分析,否则不能保证框架部分上部楼层构件的安全 框架墙,剪力墙的区别 剪力墙(shear wall)又称抗风墙或抗震墙、结构墙。房屋或构筑物中主要承受风荷载或地震作用引起的水平荷载的墙体。防止结构剪切破坏。 剪力墙分平面剪力墙和筒体剪力墙。平面剪力墙用于钢筋混凝土框架结构、升板结构、无梁楼盖体系中。为增加结构的刚度、强度及抗倒塌能力,在某些部位可现浇或预制装配钢筋混凝土剪力墙。现浇剪力墙与周边梁、柱同时浇筑,整体性好。筒体剪力墙用于高层建筑、高耸结构和悬吊结构中,由电梯间、楼梯间、设备及辅助用房的间隔墙围成[1],筒壁均为现浇钢筋混凝土墙体,其刚度和强度较平面剪力墙高可承受较大的水平荷载。 墙根据受力特点可以分为承重墙和剪力墙,前者以承受竖向荷载为主,如砌体墙;后者以承受水平荷载为主。在抗震设防区,水平荷载主要由水平地震作用产生,因此剪力墙有时也称为抗震墙。 剪力墙按结构材料可以分为钢筋混凝土剪力墙、钢板剪力墙、型钢混凝土剪力墙和配筋砌块剪力墙。其中以钢筋混凝土剪力墙最为常用。 框架结构其实是梁柱受力体系,墙不参与受力,所以所有框架结构的墙都是填充隔墙,不受力,现在比较多的做法比如说混凝土空心砌块,或者加气混凝土砌块,这些填充隔墙的容重很小;如果是剪

Ansys受力分析

三维托架实体受力分析 ANSYS软件是融结构、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS公司开发,它能与多数CAD软件接口,实现数据的共享和交换,如PRO/E、UG、I-DEAS、CADDS及AutoCAD等,是现代产品设计中的高级CAD工具之一。 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析。先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>Volumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选,然后点Meshing,Pick all进行网格划分,所得结果如图1。划分网格后,就可以对模型

施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry >On Areas 命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图2。 图1、托架网格图 图2输出的是原型托架和施加载荷后托架变形图的对比,虚线部分即为托架的原型,从图2可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们在应用托架的时候应当注意的。

ANSYS有限元分析实例

有限元分析 一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。左边固定,右边受载荷p=20N/mm作用,求其变形情况 P 一个典型的ANSYS分析过程可分为以下6个步骤: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析 1定义参数 1.1指定工程名和分析标题 (1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。 (2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定 (3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。 (4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。 1.2定义单位

在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI” 1.3定义单元类型 (1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。 (2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。 (3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。 (4)返回[Element Types]对话框,如下所示 (5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。

框架结构受力情况

框架的杆件主要靠混凝土受压,钢筋受拉平衡外力,但混凝土和钢筋的力学性能相差很大,混凝土从受压到压碎,变形量很小,属脆性破坏;钢筋受拉从屈服到拉断,变形过程很长,延性良好. “强柱弱梁,强剪弱弯”就是柱子不先于梁破坏,因为梁破坏属于构件破坏,是局部性的,柱子破坏将危及整个结构的安全---可能会整体倒塌,后果严重!所以我们要保证柱子更“相对”安全,故要“强柱弱梁”;“弯曲破坏”是延性破坏,是有预兆的--如开裂或下挠等,而“剪切破坏”是一种脆性的破坏,没有预兆的,舜时发生,没有防范,所以我们要避免发生剪切破坏!这就是我们设计时要结构达到“强柱弱梁,强剪弱弯”这个目标。人为的控制不利的、更危险的破坏发生! 如果想满足这样的设计要求,也就是按国家规范和强制性标准,101图籍什么的`,按要求箍筋加密,按要求满足搭接长度,锚固长度,保证混凝土强度等等. 总之,设计规范\施工规范可以全部涵盖. 1.一级框架结构和一级框架 1) 强柱弱梁 所谓“强柱弱梁”指的是:节点处梁端实际受弯承载力和柱端实际受弯承载力之间满足下列不等式 强柱弱梁:使梁端的塑性铰先出、多出,尽量减少或推迟柱端塑性铰的出现。适当增加柱的配筋可以达到上述目的。 强剪弱弯:在进行抗震设计中,剪力是通过弯距计算得出的。该原则的目的是防止梁、柱子在弯曲屈服之前出现剪切破坏。适当增加抵抗剪切力的钢筋可以达到上述目的。 强节点弱构件:增大节点核心区的组合剪力设计值进行计算。 我觉得没必要像楼上说的减少钢筋吧,有中拆东墙补西墙的感觉…… 强柱弱梁 即柱子不先于梁破坏,因为梁破坏属于构件破坏,是局部性的,柱子破坏将危及整个结构的安全,可能会整体倒塌,因此柱相比梁重要,所以我们要保证柱子更“相对”安全。 强剪弱弯 是指构件的抗剪能力应好于抗弯能力“弯曲破坏”是延性破坏,是有预兆的,如开裂或下挠等,而“剪切破坏”是一种脆性破坏,没有预兆的,瞬时发生,没有防范,所以我们要避免发生剪切破坏!保证弯曲破坏之前不发生剪切破坏。 强节点弱构件 是指节点的承载理应高于连接构件,因节点失效意味着与之相连的梁与柱都失效。 转:

实木框架式家具结构的力学性能设计要素分析

实木框架式家具结构的力学性能设计要素分析 家具设计包括家具的造型设计、功能设计、比例尺度的设计、结构及力学性能的设计、加工工艺的设计等众多环节,对造型、功能等的设计一直以来人们探讨得很多。然而,在实际设计中家具的结构及力学性能的设计却常常被设计师容易忽视,且较难掌握的部分。家具的结构及力学设计涵盖家具结构及接合形式、构件的构成形式、材料的性能、家具的受力及力学特性等许多方面。与板式家具相比,实木框架式家具因材料、结构体系、家具构成类型等多方面的因素,其结构力学的设计更复杂,要综合考虑的因素也更多。本文就从实木家具的材料特性、使用中的受力情况等方面对实木框架式家具的结构及力学性能设计的几个基本要素进行了探讨。 1.木材的力学特性 1.1 实木框架式家具常用材料 (1)木材 中国传统实木框架式家具常采用木质坚硬、纹理细腻优美、具有独特色泽的硬木为主要材料,如紫檀、花梨、鸡翅木、乌木等。由于这类材料的色泽皆呈现出不同程度的红色,因而人们又习惯于把以这些优质硬木为材料的家具称为红木家具。 但现代对红木的概念与传统有所不同,根据红木国家标准18107-2000的规定,确定了2科5属8类的33个树种为红木。其隶属于紫檀属、黄檀属、柿属、崖豆属及铁刀木属,归为紫檀木、花梨木、香枝木、黑酸枝木、红酸枝木、乌木、条纹乌木和鸡翅木8类。这些木材绝大多数是从东南亚、热带非洲和拉丁美洲进口,材质坚实致密,具有优良的加工性和装饰性。 除了这些材质优良的硬木外,中国传统家具也采用如榉木、楠木、桦木、黄杨等非硬木。按照王世襄先生对明式家具非硬性木材的分类可分为十一类即榉木、楠木、桦木、黄杨、南柏、樟木、柞木、松木、杉木、楸木、椴木。这些材料在.美.林.家具中被广泛应用。 在现代实木框架式家具中,常采用的木材有榆木、榉木、水曲柳、楸木、核桃木、橡木、桦木、杉木、松木等。对这些木材的物理力学性能的了解是家具结构及力学设计的基础之一。 (2)附属用材除了木材以外,实木框架式家具也会采用一些非木材的附属用材,用于结构的连接、加固、装饰等构件。 传统实木框架式家具的附属用材主要包括石材、棕、藤、绒绳等编织物、铜铁饰件、髹漆材料、粘合材料以及染料等。石材一般为白地带青色或灰青或褐黄花纹的大理石,以及白石、紫石、绿石、青石、黄石及花斑石等。棕、藤和绒绳大量用在凳、椅、床、榻的软屉上。铜和铁一般用于家具的合页、面页、包角等连接和加固构件,也用于装饰构件。还有螺钿、珐琅、玛瑙等镶嵌装饰材料。胶黏剂多采用黄鱼鳔,染料主要有苏木、槐花、杏黄、黑矾等。 现代实木框架式家具除木材外,常采用的还有塑料、金属、玻璃、石材、皮革布艺等,用于家具的连结构件、装饰构件等的制作。 1.2 木材主要力学性能 木材抵抗外部机械力作用的能力称为木材的力学性质。对于家具的结构来说,木材的弹性、硬度、韧性、强度等性能直接影响家具结构的稳定性和强度。 (1)木材的弹性及弹性常数 木材的弹性是指在卸除发生变形的荷载后,木材恢复其原有形状、尺寸或位置的能力。木材在弹性区域内应力与应变的比值关系由木材的弹性模量来表示。 木材的弹性模量(E)是指木材产生单位应变所需要的应力,即应力/应变。它表征的是材料抵抗变形能力的大小,木材的弹性模量值愈大,说明在外力作用下愈不易变形,材料的强度也愈大。木材的抗压、抗拉、抗弯的弹性模量近似相等,但因木材的各向异性,木材三 1 / 4

明挖地铁车站整体建模结构受力分析

明挖地铁车站整体建模结构受力分析 摘要:通过对目前明挖地铁车站设计中采用的计算模式———平面框架计算模型进行介绍,指出此种计算模式存在的不足,建议对此类重要工程应进行空间受力整体分析。结合工程实例,对明挖地铁车站结构受力机理进行详细分析,选取适合其实际受力的计算单元,利用大型通用有限元分析软件SAP2000 对地下车站受力进行三维空间整体建模分析; 指出基本组合及准永久组合对车站设计起控制作用,人防荷载和地震作用所参与的组合可作为检算工况; 根据计算结果,得出结构最不利受力区域为板柱、板墙节点区域,大洞口区域出现应力集中现象,分布较为复杂; 车站与风道接口处的结构布置需仔细核算,必要时应优化设备布置,保证结构安全。 关键词:地铁车站; 整体建模; 框架单元; 壳单元; 面刚度; 应力集中 1 概述 明挖地铁车站设计通常采用平面框架计算模型,原因主要在于地铁车站标准段长宽比基本为一定值,以单向板导荷方式为主,同时建模较为方便、快速,但这种方法人为地将构件间的协同受力分裂开来,未准确反应出结构实际受力状况,造成部分区域结构构件内力计算偏大,配筋加大,经济上不合理; 对于车站扩大端区域及板开大洞位置,又未能充分考虑大洞口对应力分布的影响,部分内力计算偏小,造成结构构件布置不合理,可靠度难以保证。因此准确分析地下车站受力机理,合理选取计算模型及计算单元对于保证地铁设计、建设的安全性及经济性具有重要意义。 2 受力机理及计算模型分析 地铁车站埋于地下,结构构件之间、结构与土体间共同作用,边界条件复杂、荷载种类繁多,是一个复杂的空间结构体系。其受力机理为: 水平荷载作用于侧墙,通过顶、中,底板平面内刚度达到的平衡; 顶、中板通过纵梁及侧墙将其所承受竖向荷载传递给柱及底板; 底板可视为置于文克尔地基上的弹性板,所有竖向荷载最终通过底板传递给地基。整个受力、传力过程对主体结构各个构件需满足变形协调,底板与地基需满足文克尔地基模型。 实际设计中,墙板内力计算通常采用平面框架计算模型[1],梁柱内力计算采用提取沿车站纵向框架按单向板导荷方式将荷载加载上去,以此求得内力。平面框架计算模型将车站结构设计中的空间问题简化为结构断面上的平面问题进行解决,这种简化需满足3个边界条件,即对于所代表计算区域范围的框架模型:墙板受荷变化幅度不得过大、板长宽比l/b 不能有突变且不能出现开大洞情况、地层分布变化不得太大。对于梁柱结构,采用单独提取框架计算的模式割裂了板在结构内力传递中的作用,忽略了板的平面外刚度;在导荷方式上,单向板导荷方式不能准确反映大洞口及扩大端区域实际受力模式。 综合分析,地铁作为重要的地下工程,其受力的复杂性决定了采用平面框架计算模型并不能满足对于结果要求的精确性。 3 空间模型的建立及计算理论 3. 1 工程概况 本模型的建立以成都地铁4 号线一期工程成温立交站为例来进行阐述。成温立交站为地下二层单柱双跨岛式明挖车站,车站建筑面积9 324. 3 m2,车站结构形式为箱形框架结构,所处地层以卵石土为主,车站顶板覆土厚度为3. 0 m。中心里程处底板埋深15. 5 m 左右。根据工筹安排,车站西端有2 台盾构吊出,东端为1 台盾构始发及吊出,在东端约30 m 范围内设置铺轨基地。车站主体围护结构采用Φ1 200 mm@ 2 400 mm旋挖桩+ 钢支撑体系,东端铺轨基地区域围护结构采用Φ1 200 mm@ 2 200 mm 旋挖桩+ 预应力锚索体系;车站端头与区间交界处采用Φ1 500 mm@1 800 mm 人工挖孔桩,桩间采用C20 钢筋网喷混凝土。利用空间建模,对此车站结构的受力状况进行分析。 3. 2 材料及截面尺寸拟定

相关文档
最新文档