肌肉活动的神经控制

合集下载

解剖学8-2

解剖学8-2

包括α和r运动神经元
大α运动神经元支配快肌纤维 小α运动神经元支配慢肌纤维 r运动神经元的胞体分散在α运动神经元之间, 其胞体较运动神经元为小。它的轴突离开脊髓 后支配骨骼肌肉的梭内肌纤维。
2.牵张反射
• 概念:当骨骼肌 受到牵拉时会产 生反射性收缩 • 特点:感受器和 效应器都是在同 一块肌肉中 • 类型:腱反射 肌紧张 • 意义:在于维持 身体姿势,增强 肌肉力量。
1.锥体系 2.锥体外系
锥体系与锥体外系功能特点
锥体系
锥体外系
1. 双侧支配 1. 对侧支配; 有单突触联系(占10~20%); 皆多单突触联系 激活α、rN元; 激活rN元; 对皮层无反馈环路。 对皮层有反馈环路 2. 加强肌紧张; 2. 调节肌紧张; 执行随意运动指令。 协调随意运动。
三、神经系统的运动整合作用
记忆的形式与过程
短时性记忆 持 感续 觉时 间 性: “信息流”的中断 (由第持 续 一时 级间 记: 数 忆秒
运 用
持 续 第时 二间 : 级数 记分 忆至 数 年
持 续 第时 三间 : 级永 记久 忆( ? )
遗 忘 遗 忘 遗 忘 可能不遗忘 (消退和息灭) (新信息的代替) (前活动性和 后活动性干扰)
高位中枢下传冲动
r运动N元兴奋 梭内肌收缩 肌梭的 敏感性↑兴奋性↑ α运动N元兴奋 梭外肌收缩
重力作用
持续轻微 牵拉伸肌
● 脑干某些中枢调节肌紧 骨骼肌处于持续地轻微的收缩状态 张是通过兴奋γ环实现的。
r-环的作用
(二)脑干对肌紧张和姿势反射的调节
• 1. 网状结构对肌紧张的调节
•网状结构:在脑干广大的区域中,神经细胞和神经 纤维交织在一起呈网状。 ①抑制区:抑制肌紧张 和肌运动的区域,称为 抑制区(范围较小); ②易化区:加强肌紧张 和肌运动的区域,称为 易化区(范围较大)。

身体肌肉控制的原理

身体肌肉控制的原理

身体肌肉控制的原理
身体肌肉活动的控制原理主要包括以下几个方面:
1. 上运动神经元传导
位于中枢神经系统的上运动神经元,根据意志指令向下游运动神经元传导信号。

2. 神经肌肉接点传递
下运动神经元将信号通过乙酰胆碱等神经递质传递给肌肉。

3. 肌电信号控制
神经信号改变肌肉膜电位,释放Ca2+,引发肌电信号。

4. 肌钙蛋白滑动
肌电信号激活肌钙蛋白的构象变化,引发肌原纤维的滑动。

5. ATP提供能量
ATP水解反应为肌肉收缩提供所需的能量。

6. 协同机制
不同肌肉的协同收缩,控制肢体准确运动。

7. 反馈调控
肌纤维的长度变化等反馈,调控下运动神经元输出。

8. 神经传导速度
调控神经冲动传导的速度,控制肌肉收缩力度。

综合这些机制,中枢神经系统可以精确控制身体每一块骨骼肌的收缩放松,从而进行复杂协调的身体运动。

人体的肌肉是如何通过神经控制的

人体的肌肉是如何通过神经控制的

人体的肌肉是如何通过神经控制的肌肉对于人体的运动和姿势起着至关重要的作用。

肌肉的收缩和放松是通过神经系统的控制来实现的。

在本文中,将探讨人体肌肉是如何通过神经控制的机制。

一、神经系统简介神经系统是人体的控制中枢,由大脑、脊髓和周围神经组成。

它负责接收和传递各种信息,并对身体的肌肉、腺体和其他组织器官发出指令。

二、肌肉与神经的连接肌肉与神经通过神经-肌肉接头(神经肌肉连接点)相连接。

神经系统通过神经元将指令传输到神经肌肉接头,从而控制肌肉的运动。

三、神经冲动的传导当神经系统发出指令时,神经冲动从大脑或脊髓的神经元沿着神经纤维传导到肌肉。

神经冲动是一种电信号,它在神经纤维中传递,直到到达神经肌肉接头。

四、神经肌肉接头神经肌肉接头是神经纤维与肌肉纤维之间的连接点。

它包括神经终端(神经纤维的末端)和肌肉纤维上的突触凹(神经肌肉接收位点)。

神经冲动到达神经肌肉接头后,释放出神经递质,将信号传递给肌肉纤维。

五、神经递质的作用神经递质是指神经冲动传递到神经肌肉接头时释放的化学物质。

常见的神经递质包括乙酰胆碱和儿茶酚胺。

神经递质与肌肉纤维上的突触凹结合后,导致肌肉纤维的收缩。

六、肌肉收缩的过程当神经冲动到达神经肌肉接头并释放出神经递质后,神经递质与突触凹结合,导致肌肉纤维收缩。

这是通过刺激肌肉纤维上的肌动蛋白和肌钙蛋白相互作用来实现的。

肌动蛋白的收缩将导致肌肉纤维的缩短,从而使整个肌肉收缩。

七、肌肉放松的过程当神经冲动停止时,神经递质的释放也停止。

这时,肌肉纤维上的突触凹与神经递质分离,使肌动蛋白和肌钙蛋白分离,从而使肌肉纤维恢复到原来的伸长状态。

八、肌肉的协调运动人体的肌肉通过神经系统的控制实现精确和协调的运动。

例如,当我们打开书本时,手臂和手指的肌肉需要相互协调以完成这个动作。

这是通过神经系统将指令传递到各个相关的肌肉群来实现的。

结论人体的肌肉是通过神经系统的精确调度和控制来实现运动和姿势的变化。

神经冲动通过神经纤维传递到肌肉,神经递质的释放导致肌肉纤维的收缩,而停止神经冲动则使肌肉纤维放松。

肌肉工作原理

肌肉工作原理

肌肉工作原理肌肉是人体内最重要的组织之一,其工作原理是通过肌肉收缩与放松来实现运动功能。

肌肉工作原理涉及到肌肉结构、神经系统和能量代谢等方面。

1.肌肉结构肌肉由肌纤维组成,每个肌纤维是由许多肌原纤维组成的。

肌原纤维是肌肉的基本单位,其内部包含许多肌小球。

肌小球中含有肌纤维蛋白,其中肌球蛋白与肌动蛋白是肌肉收缩的关键蛋白。

2.神经系统控制肌肉的收缩与放松是由神经系统控制的。

神经系统通过神经冲动传递到肌肉,刺激肌肉收缩。

神经冲动从大脑或脊髓发出,经过神经纤维传递到肌肉细胞。

神经冲动到达肌肉细胞后,释放乙酰胆碱,刺激肌肉细胞内的肌小球收缩。

3.肌肉收缩机制肌肉收缩是由肌小球内肌动蛋白与肌球蛋白的相互作用实现的。

当神经冲动到达肌肉细胞后,肌小球内的肌动蛋白与肌球蛋白结合,形成肌小球的收缩。

这个过程需要能量,能量来自肌肉细胞内的三磷酸腺苷(ATP)。

ATP通过分解释放能量,使肌小球收缩。

4.肌肉放松机制肌肉放松是由神经系统的抑制信号控制的。

当神经冲动停止时,肌小球内的肌动蛋白与肌球蛋白解离,肌小球恢复到放松状态。

此时,肌肉细胞内的钙离子被重新储存到肌小球内,肌小球恢复到原始形态。

5.肌肉能量代谢肌肉的工作需要能量供应,能量主要来自三磷酸腺苷(ATP)的分解。

肌肉细胞内的ATP储量有限,因此需要通过不同的途径重新合成ATP。

肌肉细胞能够通过磷酸肌酸系统和糖酵解系统来重新合成ATP。

磷酸肌酸系统能够快速合成ATP,而糖酵解系统则能够提供相对较长时间的能量供应。

总结:肌肉工作原理是通过肌肉收缩与放松来实现运动功能。

肌肉结构由肌纤维组成,其中肌小球中的肌动蛋白与肌球蛋白的相互作用实现肌肉收缩。

肌肉的收缩与放松是由神经系统控制的,神经冲动传递到肌肉细胞,刺激肌小球收缩。

肌肉工作需要能量供应,能量主要来自ATP的分解,肌肉细胞能够通过磷酸肌酸系统和糖酵解系统重新合成ATP。

这些基本原理共同构成了肌肉的工作原理。

肌肉活动的神经控制

肌肉活动的神经控制
。 网状结构对肌紧张的调节
加强。 网状结构对肌紧ቤተ መጻሕፍቲ ባይዱ的调节
网状结构对肌紧张的调节
姿势反射
静位反射
状态反射 翻正反射
静位运动反射
旋转运动反射 直线运动反射
升降反射 着地反射
二、脑干对肌紧张和姿势反射的调 节
网状结构对肌紧张的调节
姿势反射
三、小脑和基底神经节在运动控制 中的作用
• (一)小脑在运动控制中的作用 • 小脑可调节肌紧张、控制躯体平衡、协调
感觉运动和参与运动学习。 • (二)基底神经节在运动控制中的作用 • 与肌紧张的控制、随意活动的稳定和运动
程序有关。
四、大脑皮质在运动控制中的作用
肌肉活动的神经控 制
一、脊髓对躯体运动的调节
• 牵张反射:当骨骼肌受到外力牵拉时,
该肌就会产生反射性收缩,这种反射称为 牵张反射。包括两种: • 1.腱反射:快速牵拉肌腱而引起。如膝跳反 射。 • 2.肌紧张:缓慢持续牵拉肌肉而引起。 • 牵张反射的生理意义:在于维持躯体的基 本姿势。同时,也能反射性地增加肌肉力 量。
网状结构对肌紧张的调节 状态反射在完成一系列运动技能时起重要作用,如体操中的后手翻、后空翻、跳马等,举重运动员的发力、短跑运动员起跑等均与状 态反射有关。 状态反射在完成一系列运动技能时起重要作用,如体操中的后手翻、后空翻、跳马等,举重运动员的发力、短跑运动员起跑等均与状 态反射有关。 四、大脑皮质在运动控制中的作用 五、运动中神经元活动的功能整合 头部空间位置的改变以及头部与躯干的相对位置发生改变时,将反射性地引起躯干和四肢肌肉紧张性的改变,这种反射称为状态反射 。 网状结构对肌紧张的调节 牵张反射的生理意义:在于维持躯体的基本姿势。 (二)基底神经节在运动控制中的作用 在体育运动中,转体、转身等动作是在翻正反射的基础上完成的。 状态反射在完成一系列运动技能时起重要作用,如体操中的后手翻、后空翻、跳马等,举重运动员的发力、短跑运动员起跑等均与状 态反射有关。 牵张反射:当骨骼肌受到外力牵拉时,该肌就会产生反射性收缩,这种反射称为牵张反射。 在体育运动中,转体、转身等动作是在翻正反射的基础上完成的。 四、大脑皮质在运动控制中的作用 四、大脑皮质在运动控制中的作用 与肌紧张的控制、随意活动的稳定和运动程序有关。 (一)小脑在运动控制中的作用 肌紧张:缓慢持续牵拉肌肉而引起。 头部空间位置的改变以及头部与躯干的相对位置发生改变时,将反射性地引起躯干和四肢肌肉紧张性的改变,这种反射称为状态反射 。 三、小脑和基底神经节在运动控制中的作用

神经控制肌肉的原理

神经控制肌肉的原理

神经控制肌肉的原理咱今儿就来唠唠神经控制肌肉这档子事儿。

你想啊,咱这身体就像一个超级复杂的大机器,神经呢,那就是操控这个大机器的神奇“线”啦!神经控制肌肉,就好像是个特别厉害的指挥官在指挥士兵打仗一样。

大脑这个老大发出命令,神经这个传令官就赶紧把消息传出去,肌肉这个小兵就得乖乖听话行动起来。

比如说你走路吧,你心里想着“我要往前走”,大脑就接到这个想法啦,然后它就通过神经跟你的腿部肌肉说:“嘿,动起来,往前走!”这腿部肌肉可不敢不听话呀,就开始收缩、放松,带着你一步步往前走。

这多神奇呀!再打个比方,你伸手去拿东西。

你眼睛看到了那个东西,大脑就说:“去把它拿来!”神经一路小跑就把命令传给了手臂肌肉,肌肉就开始工作啦,让你的手准确地伸向那个东西。

要是神经出了啥问题,那可就乱套啦!就好比传令官迷了路,命令传不到肌肉那儿,那肌肉不就不知所措了嘛。

咱平时的各种动作,不管是跑步、跳跃,还是拿个杯子、写个字,可都离不开神经和肌肉的完美配合哟!这神经就像是那看不见的神奇力量,默默地在背后操纵着一切呢。

你说要是没有神经控制肌肉,那咱不就成了个木偶啦,呆呆地啥也干不了。

神经和肌肉的关系,那可真是紧密得很呐!它们就像最佳搭档一样,谁也离不开谁。

有时候咱不小心受伤了,伤着神经了,那肌肉就不听使唤了,这多耽误事儿呀!所以咱可得好好保护咱的神经和肌肉呀。

咱平时多运动,让肌肉强壮起来,神经也能更灵光不是?而且呀,保持良好的生活习惯,别老是熬夜啥的,不然神经也会抗议的哟!咱的身体就是这么神奇,这么复杂,神经控制肌肉这事儿虽然咱看不见摸不着,但时时刻刻都在发生着。

咱得好好珍惜咱的身体,让神经和肌肉一直好好合作下去,这样咱才能健康快乐地生活呀!这不就是很重要的事儿嘛!咱可不能小瞧了这神经和肌肉的作用哟!。

运动生理学3-肌肉活动的神经控制

运动生理学3-肌肉活动的神经控制

一、脊髓对躯体运动的调节 以脊髓为中枢形成的初级反射活动,称为脊
髓反射。 牵张反射 屈肌反射
1.牵张反射
• 概念:当骨骼肌 受到牵拉时会产 生反射性收缩。
• 特点:感受器和 效应器都是在同 一块肌肉中
• 类型: 腱反射
肌紧张 • 意义:在于维持
身体姿势,增强 肌肉力量。
①腱反射(位相性牵张反射,动态牵张反射) : 指快速牵拉 肌腱时发生的牵张反射。 如:膝跳反射、跟腱反射。
• 运用反牵张反射的原理可有效的放松肌肉,改善关节的柔韧性。
PNF练习法——一种放松肌肉和消除 疲劳的有效方法
• 运用肌梭和腱梭形成的牵张反射和反牵张反射的 原理,进行肌肉放松的方法。
• 方法: • 缓慢逆向运动使肌肉拉伸至最大幅度 — 保持
(6-10秒)— 稍放松 — 肌肉在抗阻下作静力 性收缩 — 保持(6-10秒)— 结束
• 讨论: 在需要保持身体平衡的运动中,如果头部位置 不正会有什么后果? 举重时,提铃瞬间头应该怎样?为什么? 短跑运动员起跑瞬间头为什么要低着?
• 体操的后手翻、空翻及跳马动作,若头部位置不正, 就会使两臂用力不均衡,身体偏向一侧,常常导致 动作失误或无法完成。
• 短跑运动员起跑时,为防止身体过早直立,往往采 用低头姿势,这些都是运用了状态反射的规律。
• 张力不但与兴奋的运动单位数目有关,而且也与运 动神经元传到肌纤维的冲动频率有关。参与活动的 运动单位数目与兴奋频率的结合,称为运动单位动 员(简称MUI)。运动单位动员也可称为运动单位募 集。
三、前庭器、前庭反应与前庭稳定性
• 前庭器 位于内耳,包括椭圆囊、球囊和三个半规管,是维
持姿势和平衡的位觉感受装置。 • 前庭反应
反射叫牵张反 射。

第十章 肌肉活动的神经控制

第十章 肌肉活动的神经控制

第十章肌肉活动的神经控制[ 试题部分 ]一、名词解释1、突触2、兴奋性突触后电位3、抑制性突触后电位4、突触后抑制5、传入侧枝性抑制6、回返性抑制7、突触前抑制8、牵张反射9、肌紧张 10、腱反射 11、姿势反射 12、脑干网状下行抑制系统13、脑干网状下行兴奋系统 14、翻正反射 15、状态反射16、旋转变速运动反射 17、直线变速运动反射 18、锥体系 19、锥体外系二、单项选择1、神经冲动由突触前膜向突触后膜传递主要是依靠。

()A.化学递质B.无机盐离子C.局部电流的作用D.胆碱酯酶2、突触传递的生理机制显示。

()A.突触前膜释放兴奋性递质,使突触后膜产生动作电位B.兴奋性递质使突触后膜对K+和CI-的通透性增大C.选择性增加或提高突触后膜对K+和CI-的通透性,可呈现抑制性突触效应;D.同一突触由于迅速而重复活动,其产生的突触后电位可表现空间总和;3、突触前膜释放抑制性递质,使突触后膜对增加。

()A.Na+﹑K+﹑CI_(尤其是Na+)通透性B.Na+﹑K+﹑Ca2+ (尤其是Ca2+)通透性C.K+﹑CI_(尤其是CI_)通透性D.Na+﹑CI_﹑Ca2+ (尤其是CI_)通透性4、抑制性突触后电位使突触后膜表现为。

()A.去极化B.超极化C.先去极化再复极化D.超射5、突触前抑制主要发生在。

()A.传出途径中B.感觉传入途径中C.中间神经元之间D.植物性传出途径中6、抑制性突触后电位使突触后膜表现为。

()A.去极化B.超极化C.先去极化再复极化D.超射7、抑制性突触后电位表现为。

()A.“全或无”式;B.电位的正向幅度随刺激强度增大而增大C.类似于负后电位D.突触后膜电位较静息时更负8、传入侧枝性抑制的生理学基础是。

()A.优势现象B.膝跳反射C.交互抑制D.腱反射9、突触后抑制的性质是。

()A.突触前膜释放兴奋性递质B.突触前膜释放抑制性递质C.突触后膜兴奋性下降D.突触后膜兴奋性提高10、抑制性突出后电位的发生机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章肌肉活动的神经控制教学目的与要求:1、了解感受器的生理特征。

2、了解视觉、听觉、本体感觉和位觉器官的感觉分析功能,特异性投射系统和非特异性投射系统的传导途径和大脑皮层感觉分析功能。

本章的教学重点:位觉、肌梭和腱器官的功能、特异性投射系统和非特异性投射系统。

难点:位觉、肌梭和腱器官的结构和功能。

第一节:感觉生理概述第二节:位觉第一节:感觉生理概述一、概念1、感觉客观事物在人脑中的主观反映。

分为:特殊感觉躯体感觉内脏感觉2、感受器分布在体表或各组织内部的一些专门感受机体内外环境改变的结构或装置。

种类:外感受器内感受器二、感受器的一般生理特性1、适宜刺激2、还能作用3、编码作用4、适应作用三、感觉信息的传导1、特异性投射系统概念:由感受器传人的神经冲动都有经过脊髓或脑干,上行传人丘脑更换神经元,并按排列顺序,投射大脑皮质特定区域,引起特异感觉,故称为特异投射系统。

特点:专一点对点激发大脑皮质发出神经冲动2、非特异性投射系统概念:特异投射系统的神经纤维经脑干时,发出侧支并与脑干网状结构的神经元发生突触联系,经过多次更换神经元之后,上行抵达丘脑内侧部在交换神经元,发出纤维弥散地投射到大脑皮质的广泛区域,称为非特异性投射系统。

特点:保持机体警觉,不能产生特定感觉。

四、大脑皮质的感觉分析功能大脑皮质功能定位:大脑皮质的不同区域在功能上具有不同的作用,称为大脑皮质功能定位。

1、体表感觉投射区:中央后回特点:左右交叉,头面部投射到左右双侧皮质倒置投射区域的大小与不同体表部位的感觉灵敏程度有关2、肌肉本体感觉中央前回3、视觉4、听觉、前庭觉5、内脏感觉第二节:位觉一、前庭器的感觉装置与适宜刺激1、位觉身体进行各种变速(包括正负加速)运动和重力不平衡时产生的感觉,称为位觉(或前庭觉)。

2、前庭器的感受装置功能:维持身体姿势和平衡结构:包括椭圆囊、球囊和三个半规管。

椭圆囊、球囊的壁上有囊斑,囊斑中有感受性毛细胞,其纤毛插入耳石膜内。

(耳石膜表面附着的许多小碳酸钙结晶称为耳石,毛细胞的纤毛上覆盖着许多胶状物质,形如帽状,称为终帽)半规管壶腹壁上的壶腹嵴也含有感受性毛细胞。

3、前庭的适宜刺激囊斑的适宜刺激:囊斑中毛细胞的适宜刺激是耳石的重力及直线正负加速度运动。

当头部位置改变,如头前倾、后仰或左、右两侧倾斜时,由于重力对耳石的作用方向改变,耳石膜与毛细胞之间的空间位置发生改变,使毛细胞兴奋,冲动经前庭神经传到前庭神经核,反射性地引起躯干与四肢有关肌肉的肌紧张变化。

同时,冲动传入大脑皮质前庭感觉区,产生头部空间位置改变的感觉。

当人体作直线变速运动的开始、停止或突然变速时,耳石膜因直线加速度或减速度的惯性而发生位置偏移,使毛细胞的纤毛弯曲,毛细胞兴奋,通过姿势反射来调整有关骨髓肌的张力,以维持身体平衡。

同时,也有冲动经丘脑传入大脑皮质感觉区,产生身体在空间的位置及变速的感觉。

4、壶腹嵴的适宜刺激壶腹嵴的适宜刺激是旋转加速度,当旋转运动开始、停止或突然变速时,由于内淋巴的惯性作用,使终帽弯曲,刺激毛细胞而兴奋,冲动经前庭神经传入中枢,产生运动感觉。

二、前庭反射和前庭稳定性(一)前庭反射是指前庭感受器受到刺激产生兴奋,当冲动进入有关的神经中枢后,除引起运动与一定位置改变的感觉以外,还引起骨骼肌紧张性的改变、眼震颤,及自主功能改变,这些改变统称前庭反应。

1、肌紧张进行直线变速运动或旋转变速运动时,刺激囊斑和壶腹嵴,反射地调节颈部和四肢肌紧张,以维持姿势的平衡。

这些由前庭迷路感受器所引起的肌紧张反射性变化,称为迷路紧张反射。

2、眼震颤当头部前倾300围绕身体的垂直轴向左侧开始旋转时,因内淋巴的惯性滞后移位,使左侧壶腹嵴的毛细胞受到刺激,而右侧则相反,此时出现两侧眼球先缓慢向右侧移动,这一过程称为慢动相;当眼球移动到右眼角而不能继续右移时,两眼球又突然快速返回眼裂正中,称此过程为快动相。

接着又出现新的慢动相和快动相。

这种多次的往返眼动现象称眼震颤。

当继续匀速旋转时,因内淋巴的惯性滞后作用消失,眼球居于正中而不发生震颤现象。

如果旋转停止,内淋巴由于惯性作用,而使壶腹嵴的毛细胞受到与开始相反的刺激,引起与旋转开始时方向相反的眼震颤.3 植物性功能反应当人的前庭器官受到过强或过久的刺激时,常常引起一系列植物性功能反应,例如:心率加快、血压下降、恶心、呕吐、眩晕、出冷汗、全身软弱等现象。

这种现象称为前庭器官的植物性功能反应。

(二) 前庭功能稳定性刺激前庭感受器而引起机体各种前庭反应的程度,称为前庭功能稳定性。

前庭功能稳定性差者,引起上述的一系列植物性功能反应明显,影响人体的工作能力。

参加各种体育活动可以提高前庭功能稳定性。

在体育运动中赛艇、划船、跳伞、跳水、滑雪、体操、武术、链球、投掷及各种球类运动项目,运动员的前庭功能稳定性相对较高。

因此经常从事这类运动项目的锻炼,有助提高前庭功能稳定性。

第三节本体感觉肌肉、肌腱和关节囊中有各种各样的感受器,称为本体感受器。

它们分别感受肌肉被牵张的程度以及肌肉收缩和关节伸展的程度,并将这些感觉信息,传入中枢神经系统(躯体运动中枢),以调节骨骼肌的运动。

机体运动时,来自于骨骼肌中肌梭和腱器的信号,是感知身体各部所处位置和运动的主要感受器。

一、肌梭肌梭呈梭形,两端细小而中间膨大,外包一层结缔组织膜。

肌梭位于肌纤维之间与肌纤维平行排列。

它是由一些特殊的肌纤维、神经末梢和胞囊组成。

肌梭内含6-12根肌纤维,称为梭内肌纤维。

囊外的肌纤维称为梭外肌纤维。

中枢有传出神经支配梭外肌纤维和梭内肌纤维,前者称为α传出纤维(直径12-20um ),后者称为γ传出纤维(直径2-6um )(插入图9-7)。

肌梭是一种感受长度变化或感受牵拉刺激的特殊的梭形感受装置。

肌肉被拉长时肌梭也随之而拉长,于是肌梭的感受部分受到刺激而发生兴奋,动作电位经感觉神经传入中枢,反射性地引起被牵拉肌肉的收缩。

当肌肉收缩时,肌纤维长度缩短,肌梭也随之缩短,于是消除了对肌梭的刺激而停止兴奋传入。

二、腱器官腱器官分布在肌腱胶原纤维之间,与梭外肌纤维呈串联,是一种张力感受器。

当梭外肌纤维发生等长收缩时,腱器官的传入冲动发放频率增加,肌梭的传入冲动不变;当梭外肌纤维发生等张收缩时,腱器官的传入冲动发放的频率不变,肌梭的传入冲动频率减少;当肌肉受到被动牵拉时,腱器官和肌梭的传入冲动发放频率增加。

腱器官的传入冲动可抑制同一肌肉的а运动神经元,而肌梭的传入冲动则对同一肌肉的а运动神经元起兴奋作用。

可认为,当肌肉牵拉时,首先引起肌梭感受器的兴奋,使а运动神经元兴奋而引起牵张反射,引起受牵张的肌肉收缩以对抗牵拉。

当牵拉力量继续加强时,可兴奋腱器官,冲动通过抑制性中间神经元,使牵张反射受到抑制,避免被牵拉的肌肉受到损伤。

第四节肌肉活动的神经控制目的与要求:1、了解神经元的功能及其功能的相互联系;2、掌握运动神经调节的基本机制、调节系统的功能,以及姿势反射与随意运动调节实行的神经机制。

教学重点、难点:运动的神经控制一、脊髓对躯体运动的调节(一)脊髓反射1、牵张反射(1)概念:在脊髓完整的情况下,一块骨骼肌如受到外力牵拉使其伸长时,引起受牵拉肌肉反射性缩短,该反射称为牵张反射。

(2)种类:腱反射,也称位相性牵张反射,指快速牵拉肌腱时发生的牵张反射。

如膝跳反射肌紧张,也称紧张性牵张反射,指缓慢持续牵拉肌肉时受牵拉肌肉的紧张性收缩。

维持躯体姿势最基本的反射活动,是姿势反射的基础。

(3)生理意义:维持站立姿势。

如果肌肉在收缩前适当受到牵拉也可以增强收缩的力量。

2、屈肌反射(1)概念:当动物皮肤受到伤害性刺激时,受刺激一侧的肢体出现屈肌收缩而伸肌迟缓,这一反射称为屈肌反射。

其强度与刺激强度有关。

(2)生理意义:具有一定的保护性意义,使肢体产生迅速背离伤害源的回缩活动。

(二)脊髓对运动的调节走动的中枢程序位于脊髓,是有固有的脊髓神经元产生的。

实验:高位横断的猫或狗,肢体仍能作交替的走动。

二、脑干对肌紧张和姿势反射的调节脑干包括中脑、脑桥和延髓。

在脑干中轴部位有许多形状和大小各异的神经元组成的脑区,其间穿行着各类走向不同的神经纤维,呈网状,故称脑干网状结构。

(一)对肌紧张的调节1、去大脑动物的观察去大脑僵直:在动物上下丘脑部位切断,动物全身伸肌的紧张性立即亢进,表现为四肢僵直,颈背部肌肉过度紧张,头部向背部弯曲,尾部也向背部翘起呈背弓反张,这一现象称为去大脑僵直。

(易化区活动加强)2、脑干网状结构的抑制区和易化区脑干网状结构的抑制区:在网状结构中抑制肌紧张和肌肉运动的区域。

在网状结构的腹内侧部分。

脑干网状结构的易化区:在网状结构中加强肌紧张和肌肉运动的区域。

在脑干中央区域。

(二)对姿势反射的调节1、姿势反射(1)概念:在躯体活动过程中,中枢不断地调整不同部位骨骼肌的张力,以完成各种动作,保持或变更躯体各部分的位置,这种反射活动总称为姿势反射。

(2)种类状态反射:头部空间位置的改变以及头部与躯干的相对位置发生改变时,将反射性地引起躯干和四肢肌肉紧张性的改变,这种反射称为状态反射。

翻正反射:当人和动物处于不正常体位时,通过一系列动作将体位恢复常态的反射活动称为翻正反射。

旋转运动反射:人体在进行主动或被动旋转运动时,为了恢复正常体位而产生的一种反射活动,称为旋转运动反射。

直线运动反射:人体在主动或被动地进行直线加速或减速活动时,产生肌肉张力重新调配以恢复常态,这种反射称为直线运动反射。

包括升降反射和着地反射。

三、小脑和基底神经节在运动控制中的作用(一)小脑在运动控制中的作用1、小脑是控制和调节运动的重要中枢。

主要功能:调节肌紧张、控制躯体平衡、协调感觉运动和参与运动学习。

2、追随校正作用。

由大脑皮质运动区的运动指令发至脊髓的同时也发至小脑,而躯体在执行运动时也及时地将各种信息,经脊髓小脑束传到小脑。

小脑将来自大脑皮质地运动指令与实际执行的结果比较,分析误差,然后通过小脑-大脑皮质联系传回至皮质以校正运动。

这种修正紧随着已发生的运动后,因而称为追随校正。

3、小脑与运动学习有关。

小脑能协同既定的程序使已学得的活动速度加快,并使这种运动不依赖外周感觉传入信息。

(二)基底神经节在运动控制中的作用基底神经节包括尾状核、壳核、苍白球、丘脑底核、黑质和红核。

尾状核、壳核、苍白球合称纹状体。

1、控制肌紧张使肌肉活动适度。

基底神经节病变,舞蹈病或震颤麻痹。

2、参与随意运动的稳定。

3、与运动程序有关。

四、大脑皮质在运动中的作用躯体不同部位在大脑皮质具有代表区。

1、锥体系在大脑皮质中央前回4区及邻近6区排列着大锥体细胞和锥体细胞,这些细胞的轴突组成称为下行的锥体系。

2、锥体外系锥体外系额的皮质起源比较广泛,几乎包括全部大脑皮质,但主要来源是额叶和顶叶的感觉运动区和运动辅助区。

相关文档
最新文档