2017高考数学一轮复习第九章直线和圆的方程9.2.1圆的方程对点训练理

合集下载

高考数学一轮复习第九章直线和圆的方程圆的方程课件

高考数学一轮复习第九章直线和圆的方程圆的方程课件

解析 设圆心的坐标为x,41x2,据题意得14x2+1=-x,解得 x=-2,此时圆心的坐标为(-2,1),圆 的半径为 2,故所求圆的方程是(x+2)2+(y-1)2=4.
9 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3.直线 y=x-1 上的点到圆 x2+y2+4x-2y+4=0 的最近距离为( )
解法二:从形的角度,AB 为圆的弦,由平面几何知识知,圆心 P 应在 AB 中垂线 x=4 上,则由
2x-y-3=0, x=4,
得圆心 P(4,5).
∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第九章 直线和圆的方程
1 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
第2讲 圆的方程及点、线、圆的位置关系
2 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
注意点 圆的标准方程与一般方程的关系 圆的标准方程展开整理即可得到圆的一般方程,而圆的一般方程通过配方亦可转化为圆的标准方程, 二者只是形式的不同,没有本质区别.
7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为 t 的一个圆.( × ) (2)方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆心为-a2,-a,半径为12 -3a2-4a+4的圆.( × ) (3)方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的充要条件是 A=C≠0,B=0,D2+E2-4AF>0.( √ ) (4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+F>0.( √ ) (5)已知点 A(x1,y1),B(x2,y2),则以 AB 为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √ )

2017高考数学一轮复习第九章直线和圆的方程9.2.1圆的方程课件理

2017高考数学一轮复习第九章直线和圆的方程9.2.1圆的方程课件理

撬法· 命题法 解题法
[考法综述] 求圆的方程是考查圆的方程中的一个基本点,一般涉及圆的性质,直线与圆的位置关 系等.主要依据圆的标准方程、一般方程、直线与圆的几何性质,运用代数方法和几何方法解决问题. 命题法 1 求圆的方程 典例 1 (1)若圆心在 x 轴上、半径为 5的圆 O′位于 y 轴左侧,且与直线 x+2y=0 相切,则圆 O′的 方程是( ) A.(x-5)2+y2=5 或(x+5)2+y2=5 B.(x+ 5)2+y2=5 C.(x-5)2+y2=5 D.(x+5)2+y2=5
1 2.圆心在曲线 y=4x2(x<0)上,并且与直线 y=-1 及 y 轴都相切的圆的方程是( A.(x+2)2+(y-2)2=2 B.(x-1)2+(y-2)2=4 C.(x-2)2+(y-1)2=4 D.(x+2)2+(y-1)2=4
)
1 1 解析 设圆心的坐标为x,4x2,据题意得4x2+1=-x,解得 x=-2,此时圆心的坐标为(-2,1),圆
2x-y-3=0, 得圆心 P(4,5). x = 4 ,
∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
【解题法】 用待定系数法求圆的方程的一般步骤 (1)选用圆的方程两种形式中的一种,若知圆上三个点的坐标,通常选用一般方程;若给出圆心的特殊 位置或圆心与两坐标轴间的关系,通常选用标准方程. (2)根据所给条件,列出关于 D,E,F 或 a,b,r 的方程组. (3)解方程组,求出 D,E,F 或 a,b,r 的值,并把它们代入所设的方程中,得到所求圆=b,则当直线 y-x=b 与圆相切时,b 取最值,由 = 3,得 b=-2± 6, 2 ∴y-x 的最大值为 6-2,最小值为-2- 6. (3)令 d= x2+y2表示原点与点(x,y)的距离, ∵原点与圆心(2,0)的距离为 2, ∴dmax=2+ 3,dmin=2- 3. ∴x2+y2 的最大值为(2+ 3)2=7+4 3,最小值为(2- 3)2=7-4 3.

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

全国版高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系课件理

考法1 求直线的方程
思维拓展
常见的直线系方程
(1)过定点P(x0,y0)的直线系方程:A(x-x0)+B(y-y0)=0(A2+B2≠0),还可以表示 为y-y0=k(x-x0)或x=x0. (2)平行于直线Ax+By+C=0的直线系方程:Ax+By+λ=0(λ≠C).
(3)垂直于直线Ax+By+C=0的直线系方程:Bx-Ay+λ=0.
a是直线的横截距. b是直线的纵截距.
不过原点且与两坐标轴均不 垂直的直线.
一般式 Ax+By+C=0(A2+B2≠0)
所有直线.
考点2 两直线的位置关系
1.两条直线的位置关系
斜截式
方程
相交 垂直
y=k1x+b1, y=k2x+b2.
k1≠k2. k1k2=-1.
平行
k1=k2且b1≠b2.
一般式
第九章 直线和圆的方程
第一讲 直线方程与两直线的 位置关系
考点帮·必备知识通关 考点1 直线的方程直 考点2 两直线的位置关系
考法帮·解题能力提升 考法1 求直线的方程 考法2 两直线的位置关系 考法3 两直线的交点与距离问题 考法4 对称问题
高分帮 ·“双一流”名校冲刺 明易错· 误区警示
易错 忽略斜率不存在致误
考法3 两直线的交点与距离问题
思维导引
考法3 两直线的交点与距离问题
解析 (1)易知点A到直线x-2y=0的距离不等于3,可设经过两已知直线交 点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0. (设出

高考数学一轮复习第九章直线和圆的方程直线及其方程课件

高考数学一轮复习第九章直线和圆的方程直线及其方程课件


k
不存在. ②计算公式:给定两点
P1(x1,y1),P2(x2,y2)(x1≠x2),经过
P1,P2
两点的直线的斜率公式为k=yx22--yx11
.
6 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理 2 直线方程的形式及适用条件
注意点 对直线的倾斜角和斜率的理解 每条直线都有唯一的倾斜角,但并不是每条直线都存在斜率;倾斜角和斜率都是反映直线相对于 x 轴 正方向的倾斜程度. 在设直线的斜率为 k 时,就是默认了直线的斜率存在.注意检验当斜率不存在时是否符合题意.
8 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理 2.如图中的直线 l1、l2、l3 的斜率分别为 k1、k2、k3,则( )
A.k1<k2<k3 B.k3<k1<k2 C.k3<k2<k1 D.k1<k3<k2
解析 直线 l1 的倾斜角 α1 是钝角,故 k1<0,直线 l2 与 l3 的倾斜角 α2 与 α3 均为锐角,且 α2>α3,所以 0<k3<k2,因此 k1<k3<k2,故选 D.
撬法·命题法 ·高考数学·理
[考法综述] 高考中对直线方程的考查,一种常见方式是求曲线的切线方程,也可能与其他知识(如
圆锥曲线、圆)综合考查,难度中低档.求直线方程的一种重要方法就是先设直线方程,再求直线方程中的
系数,这种方法叫做待定系数法.运用此方法,要注意各种形式的方程的适用条件,选择适当的直线方程
解析 设 P(x0,0),Q(0,y0),∵M(1,-2)为线段 PQ 中点,∴x0=2,y0=-4,∴直线 PQ 的方程为2x+ -y4=1.

高考数学一轮复习第九章直线和圆的方程9.2.3圆与圆的位置关系课件理

高考数学一轮复习第九章直线和圆的方程9.2.3圆与圆的位置关系课件理
[正解] (1)当直线的斜率不存在时,方程为 x=-1. 此时圆心 C(1,-2)到直线 x=-1 的距离 d=|-1-1|=2. 故该直线为圆的切线. (2)当直线的斜率存在时,设为 k, 则其方程为 y-1=k(x+1), 即 kx-y+k+1=0. 由已知圆心到直线的距离等于圆的半径, 即|k×1-k2+-2-+1k2+1|=2,
圆公共弦长.
(3)两圆位置关系与公切线条数
两圆位置关系
内含 内切 相交 外切 外离
公切线条数
01234
撬题·对点题 必刷题
已知圆 C:(x-1)2+(y+2)2=4,则过点 P(-1,1)的圆的切线方程为_x_=__-__1__或__5_x_+__1_2_y_-__7_=__0_. [错解]
[错因分析] 没有对 k 进行分类讨论,从而遗漏了 k 不存在的情况.
撬法·命题法 解题法
Hale Waihona Puke [考法综述] 根据两个圆的方程判断两圆的位置关系,利用圆的几何性质解决相关问题.
命题法 圆与圆的位置关系
典例 (1)圆(x+2)2+y2=4 与圆(x-2)2+(y-1)2=9 的位置关系为( )
A.内切
B.相交
C.外切
D.相离
(2)在平面直角坐标系 xOy 中,圆 C 的方程为 x2+y2-8x+15=0,4若直线 y=kx-2 上至少存在一点, 使得以该点为圆心,1 为半径的圆与圆 C 有公共点,则 k 的最大值是__3____.
代数
无实数解 一组实数解
两组实数解
特征
一组实数解 无实数解
公切线
4
3
2
条数
1
0
注意点 判别式与两圆的位置关系
在利用判别式 Δ 判断两圆的位置关系时,Δ>0 是两圆相交的充要条件,而 Δ=0 是两圆外切(内切)的必

高考数学一轮复习第九章直线和圆的方程9.2圆的方程课件(共10张PPT)

高考数学一轮复习第九章直线和圆的方程9.2圆的方程课件(共10张PPT)

解所析以x2径设+y圆2有的心最关坐大标时值为,是可M((2用a+,0 圆)()a2的<=07)标+,则4 准有,d方= 程=-形 =式 ,;则当a已=-2知. 条件涉及过几个点时,常用圆
所(1)以形x如2的+μy=2 一的形最般式大的值方最是程值(2问+形 题),2式可=7转+;当化4 为所,动直求线圆斜率过的两最值已问题知. 圆的交点时,可选用圆系方程.
=k,即y=ky x.当直线y x
((方23))程求 形为y如-=(xtx=的k+(x2x最-)与a2大)+2y圆值+2(=和y相2-b最.)2切小形值时式;的,斜最值率问k题取,可最转化大为值动点或到最定点小的距值离(的如平图①),此时 = ,| 解2 k得 0 |
3
方的最值问题.
k 利又用圆圆 心心到=到原±切点线的. 的距距离离为等 于=2圆. 的半径得圆心坐标→得结论
;
2 D2E24F
(2)当D2+E2-4F=0时,方程表示点④
;
D 2
,
E 2
(3)当D2+E2-4F<0时,方程不表示任何图形.
方法技巧
方法 1 处理与圆有关的最值问求题,圆应充的分考方虑程圆的的几解何性题质,策并根略据代数式的
几何意义,借助数形结合思想求解.
又①圆心 (x-求到a)原2圆+点(y的-的b)距2方=离r2为程 .,应=2.先根据题意分析选用哪种形式.当已知条件和圆心、半
解题导引 利用圆心到切线的距离等于圆的半径得圆心坐标→得结论
解析 设圆心坐标为M(a,0)(a<0),则有d= =-| a | = ,a则a=-22.故圆M的

高考数学一轮复习第九章直线和圆的方程9.2.2直线与圆的位置关系课件理

高考数学一轮复习第九章直线和圆的方程9.2.2直线与圆的位置关系课件理

位置关系
方法 几何法
代数法
相交 相切
d<r
Δ>0
d=r Δ=0
相离
d>r Δ<0
注意点 切线长的计算
涉及到切线长的计算时,一般放在由切线长、半径及该点与圆心的连线构成的直角三角形中求解.
1.思维辨析 (1)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ ) (2)“k=1”是“直线 x-y+k=0 与圆 x2+y2=1 相交”的必要不充分条件.( × ) (3)过圆 O:x2+y2=r2 外一点 P(x0,y0)作圆的两条切线,切点分别为 A,B,则 O,P,A,B 四点共圆 且直线 AB 的方程是 x0x+y0y=r2.( √ )
第九章 直线和圆的方程
第2讲 圆的方程及点、线、圆的位置关系
考点二 直线与圆的位置关系
撬点·基础点 重难点
直线与圆的位置关系
设圆 C:(x-a)2+(y-b)2=r2,直线 l:Ax+By+C=0,圆心 C(a,b)到直线 l 的距离为 d,由
x-a2+y-b2=r2, Ax+By+C=0
消去 y(或 x),得到关于 x(或 y)的一元二次方程,其判别式为 Δ.
2.对任意的实数 k,直线 y=kx+1 与圆 x2+y2=2 的位置关系一定是( )
A.相离
B.相切
C.相交但直线不过圆心 D.相交且直线过圆心
解析 ∵x2+y2=2 的圆心(0,0)到直线 y=kx+1 的距离 d=|0-10++k21|= 11+k2≤1, 又∵r= 2,∴0<d<r.显然圆心(0,0)不在直线 y=kx+1 上,故选 C.
撬法·命题法 解题法
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请 与圆 C2:x2+y2-2x-2y+1=0 的公共弦所在直线被圆 C3:(x-1)2+(y-1)2=245所 截得的弦长为_____2_3__.

2017高考数学一轮复习第九章直线和圆的方程9.2.2直线与圆的位置关系对点训练理

2017高考数学一轮复习第九章直线和圆的方程9.2.2直线与圆的位置关系对点训练理

2017高考数学一轮复习 第九章 直线和圆的方程 9.2.2 直线与圆的位置关系对点训练 理1.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 圆(x +3)2+(y -2)2=1的圆心为C (-3,2),半径r =1.如图,作出点A (-2,-3)关于y 轴的对称点B (2,-3).由题意可知,反射光线的反向延长线一定经过点B .设反射光线的斜率为k ,则反射光线所在直线的方程为y -(-3)=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切可得|k -3-2-2k -3|1+k2=1,即|5k +5|=1+k 2,整理得12k 2+25k +12=0,即(3k +4)(4k +3)=0,解得k =-43或k =-34.故选D.2.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案 D解析 当直线l 的斜率不存在时,这样的直线l 恰有2条,即x =5±r ,所以0<r <5;所以当直线l 的斜率存在时,这样的直线l 有2条即可.设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧x 1+x 2=2x 0y 1+y 2=2y 0.又⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),k AB =y 1-y 2x 1-x 2=4y 1+y 2=2y 0.设圆心为C (5,0),则k CM =y 0x 0-5.因为直线l 与圆相切,所以2y 0·y 0x 0-5=-1,解得x 0=3,于是y 20=r 2-4,r >2,又y 20<4x 0,即r 2-4<12,所以0<r <4,又0<r <5,r >2,所以2<r <4,选D.3.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .42C .6D .210答案 C解析 由题意得圆C 的标准方程为(x -2)2+(y -1)2=4,所以圆C 的圆心为(2,1),半径为2.因为直线l 为圆C 的对称轴,所以圆心在直线l 上,则2+a -1=0,解得a =-1,所以|AB |2=|AC |2-|BC |2=(-4-2)2+(-1-1)2-4=36,所以|AB |=6,故选C.4.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.4π5B.3π4 C .(6-25)πD.5π4 答案 A解析解法一:由题意得以AB为直径的圆C过原点O,圆心C为AB的中点,设D 为切点,要使圆C的面积最小,只需圆的半径最短,也只需OC+CD最小,其最小值为OE(过原点O作直线2x+y-4=0的垂线,垂足为E)的长度.由点到直线的距离公式得OE=45.∴圆C面积的最小值为π×⎝⎛⎭⎪⎪⎫252=45π.故选A.解法二:由题意可知圆C的圆心(设其为M)为线段AB的中点,且圆C过原点(0,0),∵圆C与直线2x+y-4=0相切,∴圆C的圆心M到原点(0,0)的距离等于M点到直线2x+y-4=0的距离.由抛物线的定义可知,圆C的圆心M的轨迹是以(0,0)为焦点,2x+y-4=0为准线的抛物线.如图所示.要使圆C 面积最小,则需找出圆C 半径的最小值.由抛物线和准线的关系可知抛物线的顶点到准线的距离最短,即为(0,0)到直线2x +y -4=0的距离的一半.因此,圆C 半径的最小值为r min =45×12=255.故圆C 面积的最小值为πr 2min =π×⎝ ⎛⎭⎪⎪⎫2552=4π5. 5.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.答案 (x -1)2+y 2=2解析 因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.6.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.答案 2解析 由题意,得圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的14,即|a |2=|b |2,|a |2=cos45°=22,所以a 2=b 2=1,故a 2+b 2=2.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.答案2555解析 圆(x -2)2+(y +1)2=4的圆心为C (2,-1),半径r =2,圆心C 到直线x +2y -3=0的距离为d =|2+2×-1-3|12+22=35,所求弦长l =2r 2-d 2=24-95=2555.8.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.答案 4±15解析 由△ABC 为等边三角形可得,C 到AB 的距离为3,即(1,a )到直线ax +y -2=0的距离d =|a +a -2|1+a2=3,即a 2-8a +1=0,可求得a =4±15.9.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1的标准方程为(x -3)2+y 2=4,圆心C 1(3,0).(2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝ ⎛⎭⎪⎫x -322+y 2=94.故线段AB 的中点M 的轨迹C 的方程是⎝⎛⎭⎪⎫x -322+y 2=94在圆C 1:(x -3)2+y 2=4内部的部分,即⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3.(3)联立⎩⎪⎨⎪⎧x =53,⎝ ⎛⎭⎪⎫x -322+y 2=94,解得⎩⎪⎨⎪⎧x =53,y =±253.不妨设其交点为P 1⎝ ⎛⎭⎪⎪⎫53,253,P 2⎝ ⎛⎭⎪⎪⎫53,-253,设直线L :y =k (x -4)所过定点为P (4,0), 则kPP 1=-257,kPP 2=257.当直线L 与圆C 相切时,⎪⎪⎪⎪⎪⎪32k -4k k 2+1=32,解得k =±34. 故当k ∈⎩⎨⎧⎭⎬⎫-34,34∪⎣⎢⎢⎡⎦⎥⎥⎤-257,257时,直线L 与曲线C 只有一个交点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高考数学一轮复习 第九章 直线和圆的方程 9.2.1 圆的方程
对点训练 理
1.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )
A .2 6
B .8
C .4 6
D .10
答案 C
解析 设过A ,B ,C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧ D +3E +F +10=04D +2E +F +20=0
D -7
E +
F +50=0,
解得D =-2,E =4,F =-20,所求圆的方程为x 2+y 2
-2x +4y -20=0,令x =0,得y 2+4y -20=0,设M (0,y 1),N (0,y 2),则y 1+y 2=-4,y 1y 2=-20,
所以|MN |=|y 1-y 2|=
y 1+y 22-4y 1y 2=4 6.故选C. 2.如图,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),
且|AB |=2.
(1)圆C 的标准方程为________________;
(2)过点A 任作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,下列三个结论:
①|NA ||NB |=|MA ||MB |;②|NB ||NA |-|MA ||MB |=2;③|NB ||NA |+|MA ||MB |
=2 2. 其中正确结论的序号是________.(写出所有正确结论的序号) 答案 (1)(x -1)2+(y -2)2=2 (2)①②③
解析 (1)依题意,设C (1,r )(r 为圆C 的半径),因为|AB |=2,所以r =12+12
=2,所以圆心C (1,2),故圆C 的标准方程为(x -1)2+(y -2)2=2. (2)由⎩⎨⎧ x =0x -12+y -22=2,解得⎩⎨⎧ x =0y =2-1
或⎩⎨⎧ x =0y =2+1,因为B
在A 的上方,所以A (0,2-1),B (0,2+1).不妨令直线MN 的方程为x =0(或y =2-
1),M (0,-1),N (0,1),所以|MA |=2,|MB |=2+2,|NA |=2-2,|NB |= 2.所以|NA ||NB |=2-22
=2-1,|MA ||MB |=22+2=2-1,所以|NA ||NB |=|MA ||MB |,所以|NB ||NA |-|MA ||MB |=22-2-(2-1)=2+1-(2-1)=2,
|NB ||NA |+|MA ||MB |=22-2+(2-1)=2+1+2-1=22,正确结论的序号是
①②③.
3.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.
答案[-1,1]
解析解法一:当x0=0时,M(0,1),由圆的几何性质得在圆上存在点N(-1,0)或N(1,0),使∠OMN=45°.当x0≠0时,过M作圆的两条切线,切点为A、B.
若在圆上存在N,使得∠OMN=45°,
应有∠OMB≥∠OMN=45°,
∴∠AMB≥90°,
∴-1≤x0<0或0<x0≤1.综上,-1≤x0≤1.
解法二:过O作OP⊥MN,P为垂足,OP=OM·sin45°≤1,∴OM≤1
sin45°
,∴OM2≤2,∴x20+1≤2,∴x20≤1,∴-1≤x0≤1.
4.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________.
答案x2+(y-1)2=1
解析因为(1,0)关于y=x的对称点为(0,1),所以圆C是以(0,1)为圆心,以1为半径的圆,其方程为x2+(y-1)2=1.
欢迎您的下载,资料仅供参考!。

相关文档
最新文档