2021届高考数学(理)考点复习:圆的方程(含解析)

合集下载

2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.2 圆的方程 Word版含答案

2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.2 圆的方程 Word版含答案

§8.2圆的方程A组基础题组1.(2021课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2B.8C.4D.102.(2021浙江嘉兴一中阶段测试)若P(2,-1)为圆M:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.2x+y-3=0B.x-y-3=0C.x+y-1=0D.2x-y-5=03.(2021浙江湖州德清高级中学月考)已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是( )A. B.1 C. D.4.(2021黑龙江大庆铁人中学月考,4,5分)已知圆C的方程为x2+y2+2x-2y+1=0,当圆心C到直线kx+y+4=0的距离最大时,k的值为( )A. B. C.- D.-5.(2021河北衡水中学一调,5)假如直线l将圆x2+y2-2x-4y=0平分且l不通过第四象限,则l的斜率的取值范围是( )A.[0,2]B.[0,1]C. D.6.(2022福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.67.(2021浙江六校联考文,10,6分)已知点M(2,1)及圆x2+y2=4,则过M点的圆的切线方程为,若直线ax-y+4=0与该圆相交于A、B两点,且|AB|=2,则a= .8.(2022山东,14,5分)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C 的标准方程为.9.(2021湖南,13,5分)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r= .10.(2021湖北,16,5分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准..方程为;(2)圆C在点B处的切线在x轴上的截距为.11.(2021黑龙江双鸭山一中期中,20)已知圆C的半径为2,圆心在x轴正半轴上,直线3x-4y+4=0与圆C相切.(1)求圆C的方程;(2)若过点(0,-3)的直线l与圆C交于不同的两点A(x1,y1),B(x2,y2),且x1x2+y1y2=3,求三角形AOB的面积. B组提升题组1.(2021宁波十校联考,4,5分)直线x+y-2=0截圆x2+y2=4所得劣弧所对的圆心角的大小为( )A. B. C. D.2.(2021山东烟台诊断)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2-2y=0的一条切线,A是切点,若线段PA长度的最小值为2,则k的值为( )A.3B.C.2D.23.(2022陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.4.(2021诸暨高中毕业班检测,12,6分)已知圆C:(x-1)2+y2=25与直线l:mx+y+m+2=0,若圆C关于直线l对称,则m= ;当m= 时,圆C被直线l截得的弦长最短.5.(2021浙江冲刺卷五,14)过点A(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于M,N两点,若|MN|=8,则l的方程为.6.(2021浙江模拟训练冲刺卷一,14)已知圆的方程为x2+y2+2mx+4y+2m2-3m=0,若过点A(1,-2)的圆的切线有两条,则实数m的取值范围是.7.(2022重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= .8.(2021宁波高考模拟文,12,6分)已知实数a,b,c满足a+b=2c,则直线l:ax-by+c=0恒过定点,该直线被圆x2+y2=9所截得的弦长的取值范围为.9.(2021山东济南模拟)已知P是直线3x+4y-10=0上的动点,PA,PB是圆x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.10.(2021湖北华中师大附中期中,14)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围是.11.(2021河南六市一联)如图所示,在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对相互垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等.试求全部满足条件的点P的坐标.12.(2021重庆一中期中,21)已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在PQ所在直线上,且满足·=0,=-.(1)当点P在y轴上移动时,求点M的轨迹C的方程;(2)给定圆N:x2+y2=2x,过圆心N作直线l,此直线与圆N和(1)中的轨迹C共有四个交点,自上而下顺次记为A,B,C,D,假如线段AB,BC,CD的长按此挨次构成一个等差数列,求直线l的方程.A组基础题组1.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b==-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|==5,于是圆P的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2,则|MN|=|(-2+2)-(-2-2)|=4.2.B 依题意知圆心M(1,0),MP⊥AB,而k MP==-1,所以k AB=1,由于直线AB过点P(2,-1),所以直线AB的方程为y-(-1)=x-2,即x-y-3=0.故选B.3.C 圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线3x+4y-2=0的距离,依据点到直线的距离公式得d==,故点N到点M的距离的最小值为d-1=.故选C.4.D 圆C的方程为(x+1)2+(y-1)2=1,圆心为C(-1,1).又直线kx+y+4=0恒过定点A(0,-4),所以当圆心C到直线kx+y+4=0的距离最大时,直线CA垂直于直线kx+y+4=0,而k CA=-5,则由-5×(-k)=-1,得k=-.5.A 圆的方程x2+y2-2x-4y=0可化为(x-1)2+(y-2)2=5,其圆心坐标为(1,2),经过圆心和原点的直线的斜率为2,由题意知直线l过圆心且不过第四象限,则斜率k的取值范围是0≤k≤2.6.D 设Q(cosθ,sinθ),圆心为M,由已知得M(0,6),则|MQ|= ===≤5当sinθ=-时取等号,故|PQ|max =5+=6.7.答案x=2或3x+4y-10=0;±解析若过M点的圆的切线斜率不存在,则切线方程为x=2,阅历证满足条件.若切线斜率存在,可设切线方程为y=k(x-2)+1,由圆心到切线的距离等于半径得=2,解得k=-,故切线方程为y=-(x-2)+1,即3x+4y-10=0.综上,过M点的圆的切线方程为x=2或3x+4y-10=0.由=得a=±.8.答案(x-2)2+(y-1)2=4解析由于圆心在直线x-2y=0上,且圆C与y轴相切,所以可设圆心坐标为(2a,a),则(2a)2=a2+()2,解得a=±1.又圆C与y轴的正半轴相切,所以a=1,故圆C的标准方程为(x-2)2+(y-1)2=4.9.答案 2解析过O作OC⊥AB于C,则OC==1,在Rt△AOC中,∠AOC=60°,则r=OA==2.10.答案(1)(x-1)2+(y-)2=2(2)--1解析(1)记AB的中点为D,在Rt△BDC中,易得圆C的半径r=BC=.因此圆心C的坐标为(1,),所以圆C的标准方程为(x-1)2+(y-)2=2.(2)由于点B的坐标为(0,+1),C的坐标为(1,),所以直线BC的斜率为-1,所以所求切线的斜率为1.由点斜式得切线方程为y=x++1,故切线在x轴上的截距为--1.11.解析(1)设圆心C的坐标为(a,0)(a>0),则圆C的方程为(x-a)2+y2=4.由于圆C与直线3x-4y+4=0相切,所以=2,解得a=2或a=-(舍),所以圆C的方程为(x-2)2+y2=4.(2)依题意知直线l的斜率存在,设直线l的方程为y=kx-3,由得(1+k2)x2-(4+6k)x+9=0,∵l与圆C相交于不同的两点A(x1,y1),B(x2,y2),∴Δ=[-(4+6k)]2-4(1+k2)×9>0,且x1+x2=,x1x2=,∴y1y2=(kx1-3)(kx2-3)=k2·x1x2-3k(x1+x2)+9=-+9,又∵x1x2+y1y2=3,∴+-+9=3,整理得k2+4k-5=0,解得k=1或k=-5(不满足Δ>0,舍去). ∴直线l的方程为y=x-3.∴圆心C到l的距离d==,易得|AB|=2=,又△AOB的边AB上的高h==,所以S△AOB=|AB|·h=××=.B组提升题组1.C 以直线x+y-2=0与圆x2+y2=4的两个交点及圆心为顶点的三角形为等腰三角形.圆x2+y2=4的圆心为原点,由点到直线的距离公式,得原点到直线x+y-2=0的距离为=,所以直线被圆截得的弦长为2=2,所以该三角形为等边三角形,所以劣弧所对的圆心角的大小为.故选C.2.D 圆C:x2+(y-1)2=1,圆心C(0,1),半径r=1,由题意得=,解得k=2或k=-2(舍去),故选D.3.答案x2+(y-1)2=1解析点(1,0)关于直线y=x对称的点(0,1)为圆心,又半径r=1,所以圆C的标准方程为x2+(y-1)2=1.4.答案-1;1解析当圆C关于l对称时,圆心(1,0)在直线mx+y+m+2=0上,得m=-1.直线l:m(x+1)+y+2=0恒过圆C内的点M(-1,-2),当圆心到直线l的距离最大,即MC⊥l时,圆C被直线l截得的弦长最短,k MC==1,由(-m)×1=-1,得m=1.5.答案x=-4或5x+12y+20=0解析当直线l的斜率不存在时,其方程为x=-4,可得交点坐标为(-4,6),(-4,-2),此时|MN|=8,符合题意. 当直线l的斜率存在时,设其方程为y=k(x+4),圆的标准方程为(x+1)2+(y-2)2=25,则圆心到直线l的距离d=,由|MN|=2=8,得25-=16,解得k=-,故l的方程为5x+12y+20=0.综上,直线l的方程为x=-4或5x+12y+20=0.6.答案解析将圆的方程配方得(x+m)2+(y+2)2=-m2+3m+4,则有-m2+3m+4>0;由题意知点A(1,-2)在圆外,则(1+m)2+(-2+2)2>-m2+3m+4,即2m2-m-3>0.由得故实数m的取值范围是<m<4.7.答案4±解析易知△ABC是边长为2的等边三角形,故圆心C(1,a)到直线AB的距离为,即=,解得a=4±.经检验均符合题意,故a=4±.8.答案;[,6]解析依题意,c=,故ax-by+c=0⇔ax-by+=0,即(2x+1)a-(2y-1)b=0,可知直线l过定点.圆心到直线的距离d=,故弦长为2≥2=,当且仅当a=b时等号成立.又弦长≤6,故弦长的取值范围为[,6].9.答案 2解析圆的标准方程为(x-1)2+(y+2)2=1,其圆心为C(1,-2),半径为1,且直线与圆相离,如图所示,四边形PACB的面积等于2S△PAC,而S△PAC=|PA|·|AC|=|PA|=,又|PC|min==3,∴(S△PAC)min==,故四边形PACB面积的最小值为2. 10.答案(3-2,3-2]∪[3+2,3+2)解析圆C的标准方程为(x-m)2+(y-2)2=32,则圆心C(m,2),半径r=4,S△ABC=r2sin∠ACB=16sin∠ACB,∴当∠ACB=90°时,S△ABC取得最大值16,此时△ABC为等腰直角三角形,∴AB=8,则C到AB的距离为4,∴4≤PC<4,即4≤<4,∴16≤(m-3)2+4<32,即12≤(m-3)2<28,∴解得3-2<m≤3-2或3+2≤m<3+2.故实数m的取值范围是(3-2,3-2]∪[3+2,3+2).11.解析(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x-4),圆C1的圆心到直线l的距离为d,由于直线l被圆C1截得的弦长为2,所以d==1.由点到直线的距离公式得d=,从而=1,化简得k(24k+7)=0,所以k=0或k=-,所以直线l的方程为y=0或7x+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(x-a),k≠0,则直线l2的方程为y-b=-(x-a).由于圆C1和C2的半径相等,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即=,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,由于k的取值有无穷多个,所以或解得或这样点P的坐标为或.经检验,上述坐标均满足题目条件.12.解析(1)设M(x,y),P(0,y'),Q(x',0)(x'>0),∵·=0,=-,∴(3,y')·(x,y-y')=0,(x,y-y')=-(x'-x,-y),∴3x+y'y-y'2=0,x'=x,y'=-y,将y'=-y代入3x+y'y-y'2=0,整理得y2=4x,又由x'>0得x>0,∴点M的轨迹C的方程为y2=4x(x>0).(2)圆N:(x-1)2+y2=1,直径为2,圆心为N(1,0),由题意设l的方程为x=my+1,将x=my+1代入y2=4x(x>0),得y2-4my-4=0,设A(x1,y1),D(x2,y2),则y1+y2=4m,y1y2=-4,则|AD|=·=4(m2+1),∵线段AB,BC,CD的长按此挨次构成一个等差数列,∴2|BC|=|AB|+|CD|=|AD|-|BC|,∴|AD|=3|BC|,又|AD|=4(m2+1),|BC|=圆N的直径=2,∴4(m2+1)=6,解得m=±,∴直线l的方程为x-y-=0或x+y-=0.。

专题20 解决直线与圆问题-2021年高考数学二轮复习核心考点微专题(苏教版)(解析版)

专题20 解决直线与圆问题-2021年高考数学二轮复习核心考点微专题(苏教版)(解析版)

1.直线l :y =kx +1与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值范围是________. 【答案】-1≤a ≤3【解析】圆方程为(x -a )2+y 2=2a +4,则a >-2,又直线l 过定点(0,1),故只需点(0,1)在圆内或圆上,即-1≤a ≤3,综上,实数a 的取值范围是-1≤a ≤3.2.若圆x 2+y 2=r 2(r >0)上有且只有两个点到直线x -y -2=0的距离为1,则实数r 的取值范围是________. 【答案】2-1<r <2+1.3.若对圆M :(x -1)2+(y -1)2=1上任意一点P (x ,y ),|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,则实数a 的取值范围是________. 【答案】a ≥6.【解析】设直线l 1:3x -4y +a =0,直线l 2:3x -4y -9=0,则|3x -4y +a |+|3x -4y -9|=5(dP -l 1+dP -l 2),因为|3x -4y +a |+|3x -4y -9|的取值与x 无关,所以,圆M 恰完全在直线l 1和直线l 2所夹带状区域内,所以,直线l 1:3x -4y +a =0在圆M 的上方,dM -l 1=|-1+a |5=a -15≥1,所以,a ≥6.4.已知圆O :x 2+y 2=r 2(r >0)及圆上的点A (0,-r ),过点A 的直线l 交圆于另一点B ,交x 轴于点C ,若OC =BC ,则直线l 的斜率为________.【解析】设直线l 的斜率为k ,则直线l :y =kx -r ,与x 2+y 2=r 2联立解得B (2kr k 2+1,(k 2-1)r k 2+1),而C (rk ,0),由OC =BC 得(r k )2=(2kr k 2+1-r k )2+[(k 2-1)r k 2+1]2即k =±3.学&科网【考向分析】直线与圆的位置关系是高考常考的知识内容.对它们的研究,既可以从几何的角度来探索它们的位置关系,又可以从方程角度来解决一些度量问题(如类似阿氏圆一类问题),体现用代数方法研究几何问题的思想.对这类问题的考查,一般会涉及弦长、距离的计算、圆的切线及与点(直线、圆)的位置关系判定问题等,解答此类问题,注重“圆的特征直角三角形”是关键.(一)直线与圆基本问题盘点 例1. 直线tx +y +3=0与圆x 2+y 2=4相交于A 、B 两点,若|OA →+OB →|>|AB →|,则实数t 的范围________.【答案】-142<t <-52或52<t <142.变式1若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________. 【答案】18【解析】由题意得直线l 1:y =x +a 和直线l 2:y =x +b 截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为22r =2,即|1-2+a |2=|1-2+b |2=2,所以a 2+b 2=(22+1)2+(-22+1)2=18. 变式2 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4.若等边△P AB 的一边AB 为圆C 一条弦,则PC 的最大值为________. 【答案】4【解析】由△P AB 为等腰三角形,故PC 与AB 垂直,设PC 与AB 交于点H ,记AH =BH =x ,PH =y ,PC =t ,则CH =3x ,满足⎩⎨⎧x 2+y 2=4(x ,y >0)t =3x +y求PC 的最小值.记直线l :y =-3x +t ,利用线性规划作图,可知当直线l 与圆弧x 2+y 2=4(x ,y >0)相切时,则t 取最大值,求得t max =4,即PC 的最大值为4.(二)圆与圆的位置关系应用例2. 设集合A ={(x ,y )|m2≤(x -2)2+y 2≤m 2,x ,y ∈R },B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________. 【答案】12≤m ≤2+ 2.变式1 在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________. 【答案】-13<c <13.【解析】圆半径为2,圆心(0,0)到直线12x -5y +c =0的距离小于1,即|c |13<1,解得:-13<c <13.变式2 已知圆C :(x -2)2+y 2=1,点P 在直线l :x +y +1=0上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标x 0的取值范围是________. 【答案】-1≤x 0≤2.【解析】数形结合法:设P (x 0,1-y 0),由题意可得|CP |≤3,即(x 0-2)2+(-1-x 0)2≤3,解之得-1≤x 0≤2. (三)阿波罗尼斯圆问题梳理例3. 已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围________. 【答案】[1,5].【解析】可判断出直线l 与圆M 相离,故点A 在圆外,由于圆M 上存在两点B ,C ,使得∠BAC =60°,则设直线AE ,AF 为过点 A 作圆M 的两条切线,切点分别为E ,F ,则∠EAF ≥∠MAN =60°,故∠MAC ≥30°且r =2,则CA ≤4,设A (a,6-a ),所以(a -1)2+(5-a )2≤4,解得a ∈[1,5].学科*网变式1 满足条件AB =2,AC =2BC 的△ABC 的面积的最大值是________. 【答案】2 2.变式2 已知点A (-2,0),B (4,0),圆C :(x +4)2+(y +b )2=16,点P 是圆C 上任意一点,若P APB为定值,则b =________. 【答案】0【解析】设P (x ,y ),P APB=k ,则(x +2)2+y 2(x -4)2+y2=k ,整理得(1-k 2)x 2+(1-k 2)y 2+(4+8k 2)x +4-16k 2=0,又P 是圆C 上的任意一点,故k ≠1,圆C 的一般方程为x 2+y 2+8x +2by +b 2=0,因此2b =0,故4+8k 21-k 2=8,4-16k 21-k 2=b 2,解得b =0.1.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 【答案】[-1,1].【解析】如图,过点M 作⊙O 的切线,切点为N ,连结ON .M 点的纵坐标为1,MN 与⊙O 相切于点N ,设∠OMN =θ,则θ≥45°,即sin θ≥22,即ON OM ≥22.而ON =1,所以OM ≤ 2.因为M 为(x 0,1),所以x 20+1≤2,解得-1≤x 0≤1,所以x 0的取值范围为[-1,1].2.已知圆C :(x -a )2+(y -a )2=a 2和直线l :3x +4y +3=0,若圆C 上有且仅有两个点到l 的距离等于1,则a 的取值范围________. 【答案】⎝⎛⎭⎫16,1∪⎝⎛⎭⎫-4,23.【解析】到直线l :3x +4y +3=0的点组成的轨迹为直线l 1:3x +4y -2=0或直线l 2:3x +4y +8=0,又圆C 圆心在直线y =x 上,且与两轴相切,由于圆C 上有且仅有两个点到l 的距离等于1,则直线l 1或l 2与圆C 相交,于是当a >0时,r =a ,则圆C 与l 1:3x +4y -2=0相交,则d =|7a -2|5<a ,得a ∈(16,1),当a <0时,r =-a ,则圆C 与l 1:3x +4y +8=0相交,则d =|7a +8|5<a ,则a ∈⎝⎛⎭⎫-4,23,综上a 的取值范围是⎝⎛⎭⎫16,1∪⎝⎛⎭⎫-4,23.学科#网3.△ABC 中,BC =22,AB →·AC →=1,则△ABC 面积的最大值为________.4.在平面直角坐标系xOy 中,已知点A ,B 分别为x 轴,y 轴上一点,且AB =2,若点P (2,5),则|AP →+BP →+OP →|的取值范围是________. 【答案】[7,11].【解析】++=3-(+),由于⊥,且AB =2,设+=,则点M 的轨迹为以O 为圆心半径r =2的圆,记3==(6,35),于是|++|=|-|=MQ ,即圆上一点M 到定点Q (6,35)的距离,其取值范围是[OQ -r ,OQ +r ],即[7,11].1.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 【答案】2555.【解析】圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-(355)2=2555.2.若直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,则实数m 的取值范围是________. 【答案】0≤m ≤10.【解析】因为(x +1)2+(y -2)2=1,所以由题意得:|-3+4×2-m |5≤1,化简得|m -5|≤5即0≤m ≤10.3.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________. 【答案】(x -1)2+y 2=2.【解析】由直线mx -y -2m -1=0得m (x -2)-(y +1)=0,故直线过点(2,-1).当切线与过(1,0),(2,-1)两点的直线垂直时,圆的半径最大,此时有r =1+1=2,故所求圆的标准方程为(x -1)2+y 2=2. 4.在平面直角坐标系xOy 中,A (2,0),O 是坐标原点,若在直线x +y +m =0上总存在点P ,使得P A =3PO ,则实数m 的取值范围是________. 【答案】1-6≤m ≤1+ 6.5. 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN 的长. 【答案】(1)(4-73,4+73)(2)2【解析】(1)由题设,可知直线l 的方程为y =kx +1.因为l 与C 交于两点,所以|2k -3+1|1+k 2<1.解得4-73<k <4+73.所以k 的取值范围为(4-73,4+73).(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. ·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程是y =x +1.故圆心C在l 上,所以MN 的长为2.6. 在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________. 【答案】a =-1【解析】圆心C (1,a ),半径r =4,因为△ABC 为直角三角形,所以圆心C 到直线AB 的距离d =2 2.7. 在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围. 【答案】⎣⎡⎦⎤0,125.8. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 【答案】0≤k ≤43.【解析】将圆C 的方程整理为标准方程得:(x -4)2+y 2=1,所以圆心(4,0),半径r =1,因为直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需圆C ′(x -4)2+y 2=4与y =kx -2有公共点,即|4k -2|k 2+1≤2,解得:0≤k ≤43.9. 已知直线kx -y +1=0与圆C :x 2+y 2=4相交于A ,B 两点,若点M 在圆C 上,且有OM →=OA →+OB →(O为坐标原点),则实数k =________. 【答案】0【解析】设AB 的中点为D ,有=+=2,因为||=2||=2,所以||=1,故|0-0+1|k 2+1=1解得k =0. 学#科网10. 在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,O 1:(x -4)2+y 2=4,动点P 在直线x +3y -b =0上,过P 分别作圆O ,O 1的切线,切点分别为A ,B ,若满足PB =2P A 的点P 有且只有两个,则实数b 的取值范围是________. 【答案】-203<b <4.11. 已知A (0,1),B (1,0),C (t,0),点D 是直线AC 上的动点,若AD ≤2BD 恒成立,则最小正整数t 的值为________. 【答案】4【解析】由A (0,1),C (t,0),得l :y =-1tx +1,D ⎝⎛⎭⎫x ,-1t x +1.又AD ≤2BD ,故x 2+x 2t 2≤2(x -1)2+⎝⎛⎭⎫1-x t 2,化简得⎝⎛⎭⎫3+3t 2x 2-⎝⎛⎭⎫8+8t x +8≥0对任意x 恒成立,则⎝⎛⎭⎫8+8t 2-4×8×⎝⎛⎭⎫3+3t 2≤0,化简得t 2-4t +1≥0,解得t ≥2+3或0<t ≤2-3,因此最小正整数t 的值为4.12.在等腰三角形ABC 中,AB =AC ,D 在线段AC 上,AD =kAC (k 为常数,且0<k <1),BD =l 为定长,则△ABC 的面积最大值为________.【解析】如图,以B 为原点,BD 为x 轴建立直角坐标系xBy . 设A (x ,y ),y >0.因AD =kAC =kAB ,故AD 2=k 2AB 2, 于是(x -l )2+y 2=k 2(x 2+y 2).所以,y 2=-(1-k 2)x 2+2lx -l 21-k 2=-(1-k 2)(x -l 1-k 2)2+k 2l 21-k 21-k 2≤k 2l 2(1-k 2)2,于是,y max =kl 1-k 2,(S △ABD )max =kl 22(1-k 2),所以,(S △ABC )max =1k (S △ABD )max =l 22(1-k 2).。

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。

以下是圆的方程专题练习,请考生查缺补漏。

一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。

2021年高考数学(江苏版)一轮配套课件:§14.2 圆的方程 .ppt

2021年高考数学(江苏版)一轮配套课件:§14.2 圆的方程 .ppt

0,
(2
y0 )2
r2,
| x0 y0 1| r,
2
解得
x
0
y0
1, 4,
r 2 2.
因此所求圆的方程为(x-1)2+(y+4)2=8.
方法 2 与圆有关的最值问题的求解方法
1.研究与圆有关的最值问题时,可借助圆的性质,利用数形结合求解. 2.常见的最值问题有以下几种类型:(1)形如μ= y 的b 最值问题,可转化
3.圆的一般方程
方程x2+y2+Dx+Ey+F=0可变形为
x
+D
2
2=
y
.
E 2
2
D2 E2 4F 4
(1)当D2+E2-4F>0时,方程表示以④
D 2
,
E
2为 圆心,⑤
为半径的圆;
D2 E2 4F
(2)当D22+E2-4F=0时,方程表示点⑥
;
(3)当D2+E2-4F<0时,方程不表示任何图形. (4)圆的标准方程的优点在于明确地指 出D2了,圆E2 心和半径,而一般方程突 出了方程形式的特点: (i)x2和y2系数相等且不为0.
3.在求圆的方程时,常用到的圆的几个性质 (1)圆心在过切点且与切线垂直的直线上; (2)圆心在任一弦的垂直平分线上; (3)两圆内切或外切时,切点与两圆圆心三点共线. 例1 根据下列条件,求圆的方程. (1)经过P(-2,4)、Q(3,-1)两点,并且在x轴上截得的弦长等于6; (2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2).
(ii)没有xy这样的二次项. (5)A=C≠0且B=0是方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的⑦必要不充分 条件. 4.P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系 (1)若(x0-a)2+(y0-b)2>r2,则点P在圆外; (2)若(x0-a)2+(y0-b)2=r2,则点P在圆上; (3)若(x0-a)2+(y0-b)2<r2,则点P在圆内. 拓展延伸 1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求 圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而 确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用 圆的性质.

2020-2021学年高考数学(理)考点:圆的方程

2020-2021学年高考数学(理)考点:圆的方程

2020-2021学年高考数学(理)考点:圆的方程圆的定义与方程概念方法微思考1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种.已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.1.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4 B .5C .6D .7【答案】A 【解析】如图示:,半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时,连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =,即圆心到原点的距离的最小值是4, 故选A .2.(2018•天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=.【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则042020F D F D E F =⎧⎪++=⎨⎪+++=⎩, 解得2D =-,0E F ==;∴所求圆的方程为2220x y x +-=.故答案为:22(1)1x y -+=(或2220)x y x +-=.3.(2017•上海)若P 、Q 是圆222440x y x y +-++=上的动点,则||PQ 的最大值为__________. 【答案】2【解析】圆222440x y x y +-++=,可化为22(1)(2)1x y -++=,P 、Q 是圆222440x y x y +-++=上的动点,||PQ ∴的最大值为2,故答案为2.1.(2020•江西模拟)圆C 的半径为5,圆心在x 轴的负半轴上,且被直线3440x y ++=截得的弦长为6,则圆C 的方程为( ) A .22230x y x +--= B .2216390x x y +++= C .2216390x x y -+-= D .2240x y x +-=【答案】B【解析】设圆心为(a ,0)(0)a <,由题意知圆心到直线3440x y ++=的距离为|34|45a d +==,解得8a =-, 则圆C 的方程为22(8)25x y ++=,即为2216390x x y +++=, 故选B .2.(2020•西城区模拟)若圆22420x y x y a +-++=与x 轴,y 轴均有公共点,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .[0,)+∞ D .[5,)+∞【答案】A【解析】圆2222420(2)(1)5x y x y a x y a +-++=⇒-++=-;圆心(2,1)-,r =圆与x ,y 轴都有公共点; ∴2515150a a a a ⎧-⎪⎪-⇒⎨⎪->⎪⎩; 故选A .3.(2020•全国Ⅱ卷模拟)已知圆C 过点(4,6),(2,2)--,(5,5),点M ,N 在圆C 上,则CMN ∆面积的最大值为( ) A .100 B .25 C .50 D .252【答案】D【解析】设圆C 的方程为220x y Dx Ey F ++++=, 将(4,6),(2,2)--,(5,5)代入可得,52460822050550D E F D E F D E F +++=⎧⎪--+=⎨⎪+++=⎩,解得2D =-,4E =-,20F =-,故圆C 的一般方程为2224200x y x y +---=, 即22(1)(2)25x y -+-=, 故CMN ∆的面积1125||||sin 55222S CM CN MCN =∠⨯⨯=, 故选D .4.(2020•长春三模)已知圆E 的圆心在y 轴上,且与圆22:20C x y x +-=的公共弦所在直线的方程为0x =,则圆E 的方程为( )A .22(2x y +-=B .22(2x y +=C .22(3x y +=D .22(3x y ++=【答案】C【解析】圆E 的圆心在y 轴上,∴设圆心E 的坐标为(0,)b ,设半径为r , 则圆E 的方程为:222()x y b r +-=,即222220x y by b r +-+-=, 又圆C 的方程为:2220x y x +-=,两圆方程相加得公共弦所在直线的方程为:2202b r x by --+=,又公共弦所在直线的方程为0x =,∴2202b b r ⎧=⎪⎨-=⎪⎩,解得b r ⎧=⎪⎨=⎪⎩∴圆E的方程为:22(3x y +=,故选C .5.(2020•怀柔区一模)已知圆C 与圆22(1)1x y -+=关于原点对称,则圆C 的方程为( ) A .221x y += B .22(1)1x y ++= C .22(1)1x y +-= D .22(1)1x y ++=【答案】D【解析】圆22(1)1x y -+=的圆心坐标为(1,0),半径为1. 点(1,0)关于原点的对称点为(1,0)-, 则所求圆的方程为22(1)1x y ++=. 故选D .6.(2020•郑州二模)圆22(2)(12)4x y ++-=关于直线80x y -+=对称的圆的方程为( ) A .22(3)(2)4x y +++= B .22(4)(6)4x y ++-= C .22(4)(6)4x y -+-= D .22(6)(4)4x y +++=【答案】C【解析】由圆22(2)(12)4x y ++-=可得圆心坐标(2,12)-,半径为2,由题意可得关于直线80x y -+=对称的圆的圆心与(2,12)-关于直线对称,半径为2, 设所求的圆心为(,)a b 则21280221212a b b a -+⎧-+=⎪⎪⎨-⎪=-⎪+⎩解得:4a =,6b =,故圆的方程为:22(4)(6)4x y -+-=, 故选C .7.(2020•西城区一模)设(2,1)A -,(4,1)B ,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++=【答案】A【解析】弦长AB =(3,0), 所以圆的方程22(3)2x y -+=, 故选A .8.(2020•拉萨二模)圆心为(2,1)且和x 轴相切的圆的方程是( ) A .22(2)(1)1x y -+-= B .22(2)(1)1x y +++= C .22(2)(1)5x y -+-= D .22(2)(1)5x y +++=【答案】A【解析】圆心为(2,1)且和x 轴相切的圆,它的半径为1, 故它的的方程是22(2)(1)1x y -+-=, 故选A .9.(2020•绵阳模拟)已知圆22:6890C x y x y +--+=,点M ,N 在圆C 上,平面上一动点P 满足||||PM PN =且PM PN ⊥,则||PC 的最大值为( )A .8B .C .4D .【答案】D【解析】根据题意,若平面上一动点P 满足||||PM PN =,又由||||CM CN =,则PC 为线段MN 的垂直平分线,设MN 的中点为G ,||NG n =,||CG m =,又由||||PM PN =且PM PN ⊥,则PMN ∆为等腰直角三角形,故||||PG NG n ==, 圆22:6890C x y x y +--+=,即22(3)(4)16x y -+-=, 则2216m n +=,则||()16(PC m n m =++当且仅当m n =时等号成立,故||PC 的最大值为 故选D .10.(2020•绵阳模拟)已知圆22:280C x y x +--=,直线l 经过点(2,2)M ,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A .220x y -+= B .260x y +-= C .220x y --= D .260x y +-=【答案】D【解析】如图所示:圆22:280C x y x +--=,化为标准方程为:22(1)9x y -+=,∴圆心(1,0)C ,当直线l 与CM 垂直时,直线l 分圆C 的两部分的面积之差的绝对值最大, 20221CM k -==-, ∴直线l 的斜率12k =-, ∴直线l 的方程为:12(2)2y x -=--,即260x y +-=,故选D .11.(2020•和平区校级二模)已知圆C 的圆心在直线230x y --=上,且过点(2,3)A -,(2,5)B --,则圆C 的标准方程为__________. 【答案】22(1)(2)10x y +++=【解析】根据题意,圆C 的圆心在直线230x y --=上,设圆心的坐标为(23,)t t +, 圆C 经过点(2,3)A -,(2,5)B --,则有2222(232)(3)(232)(5)t t t t +-++=++++, 解可得2t =-,则231t +=-,即圆心C 的坐标为(1,2)--, 圆的半径为r ,则2222||(12)(23)10r CA ==--+-+=, 故圆C 的标准方程为22(1)(2)10x y +++=; 故答案为:22(1)(2)10x y +++=.12.(2020•江苏模拟)在平面直角坐标系xOy 中,已知圆M 经过直线:0l x -+=与圆22:4C x y +=的两个交点.当圆M 的面积最小时,圆M 的标准方程为__________.【答案】223(()12x y ++-=【解析】根据题意,直线:0l x -+=与圆22:4C x y +=相交,设其交点为A 、B ,则有2204x x y ⎧-+⎪⎨+=⎪⎩,联立解可得:1x y ⎧=⎪⎨=⎪⎩02x y =⎧⎨=⎩,即A 、B 的坐标为(1)和(0,2);当AB 为圆M 的直径时,圆M 的面积最小,此时圆M的圆心(M ,3)2,半径1||12r AB ==; 则此时圆M的标准方程为:223(()12x y +-=;故答案为:223(()12x y ++-=. 13.(2020•河东区一模)已知圆O 过点(0,0)A 、(0,4)B 、(1,1)C ,点(3,4)D 到圆O 上的点最小距离为__________.【解析】设圆O 的方程为220x y dx ey f ++++=,圆O 过点(0,0)A 、(0,4)B 、(1,1)C , ∴0016040110f e f d e f =⎧⎪++++=⎨⎪++++=⎩,求得240d e f =⎧⎪=-⎨⎪=⎩,故圆的方程为22240x y x y ++-=,即22(1)(2)5x y ++-=,表示圆心为(1,2)-的圆.||DO =故点(3,4)D 到圆O上的点最小距离为.14.(2020•南通模拟)在平面直角坐标系xOy 中,已知过点(10,0)-的圆M 与圆22660x y x y +--=相切于原点,则圆M 的半径是__________. 【答案】【解析】圆22660x y x y +--=化为22(3)(3)18x y -+-=, 圆心坐标为(3,3),半径为 如图,所求的圆与圆22660x y x y +--=相切于原点,∴两圆圆心的连线在直线y x =上,可设所求圆的圆心为(,)a a 解得5a=-,∴所求圆M 的半径为故答案为:15.(2020•滨海新区模拟)以点(1,0)C 为圆心,且被y 轴截得的弦长为2的圆的方程为__________. 【答案】22(1)2x y -+= 【解析】如图,圆的半径为r . 又圆心为(1,0),∴所求圆的方程为22(1)2x y -+=.故答案为:22(1)2x y -+=.16.(2020•东城区一模)圆心在x 轴上,且与直线1:l y x =和2:2l y x =-都相切的圆的方程为__________. 【答案】221(1)2x y -+=【解析】设所求圆的方程为222()x a y r -+=, 因为圆与直线1:l y x =和2:2l y x =-r ==,解得1a =,r ,所以圆的方程为221(1)2x y -+=. 故答案为:221(1)2x y -+=. 17.(2020•河西区一模)已知圆C 的圆心在第一象限,且在直线2y x =上,圆C 与抛物线24y x =的准线和x 轴都相切,则圆C 的方程为__________. 【答案】22(1)(2)4x y -+-=【解析】圆C 的圆心在第一象限,且在直线2y x =上, 故可设圆心为(,2)C a a ,0a >,圆C 与抛物线24y x =的准线1x =-和x 轴都相切,故圆的半径|1||2|a a +=,解得1a =,或13a =-(舍去),故半径为2,则圆C 的方程为22(1)(2)4x y -+-=, 故答案为:22(1)(2)4x y -+-=.18.(2020•宿迁模拟)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2100x y +-=相切,当圆C 面积最小时,圆C 的标准方程为__________. 【答案】22(2)(1)5x y -+-=【解析】A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2100x y +-=相切,所以原点(0,0)在圆上,原点(0,0)到直线2100x y +-=的距离d ==(0,0)到直线的距离为直径时,该圆最小.即2dr =直线2100x y +-=与圆的切点坐标满足210012x y y x +-=⎧⎪⎨=⎪⎩,解得42x y =⎧⎨=⎩,所以圆心坐标为40222012a b +⎧==⎪⎪⎨+⎪==⎪⎩,故圆的方程为22(2)(1)5x y -+-=. 故答案为:22(2)(1)5x y -+-=.19.(2020•滨海新区模拟)已知圆心为C 的圆经过点(1,1)A --和(2,2)B -,且圆心C 在直线:10l x y --=上,则圆心为C 的圆的标准方程是__________.【答案】22(3)(2)25x y -+-=【解析】由(1,1)A --,(2,2)B -,得AB 的中点为3(2-,1)2,又12312AB k --==--+,AB ∴的垂直平分线方程为113()232y x -=+,即330x y -+=. 联立33010x y x y -+=⎧⎨--=⎩,解得32x y =⎧⎨=⎩.∴圆心坐标为(3,2)C ,半径为||5CA =.∴圆心为C 的圆的标准方程是22(3)(2)25x y -+-=.故答案为:22(3)(2)25x y -+-=.20.(2020•如皋市校级模拟)在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆22:230C x y x ++-=上的动点,则2AB BO +的最小值为__________.【解析】由(0,1)A ,圆22:230C x y x ++-=上可化为22(1)4x y ++=, 设点(,)B x y ,则2AB BO +=====这表示圆C 上的点B 到点A 的距离与到点(3,0)D 的距离的和, 所以点B 在线段AD 上时,2AB BO +取得最小值,如图所示,所以2AB BO +的最小值是AD21.(2020•江苏一模)在平面直角坐标系xOy 中,已知圆22:48120M x y x y +--+=,圆N 与圆M 外切于点(0,)m ,且过点(0,2)-,则圆N 的标准方程为__________. 【答案】22(2)8x y ++=【解析】已知圆22:48120M x y x y +--+=,整理得:22(2)(4)8x y -+-=, 令0y =,圆的方程转换为:28120y y -+=,解得2y =或6. 由于圆N 与圆M 相切于(0,)m 且过点(0,2)-. 所以2m =.即圆N 经过点(0,2)A ,(0,2)B -. 所以圆心在这两点连线的中垂线x 轴上,x 轴与MA 的交点为圆心N .所以:2MA y x =+. 令0y =,则2x =-. 即(2,0)N -,|R NA ==.所以圆N 的标准方程为:22(2)8x y ++=. 故答案为:22(2)8x y ++=.22.(2020•南通模拟)在平面直角坐标系xOy 中,已知圆C 圆心在直线:21l y x =-上,若圆C 上存在一点P ,使得直线1:20l ax y --=与直线2:20l x ay +-=交于点P ,则当实数a 变化时,圆心C 的横坐标x 的取值范围是__________. 【答案】[1-,7]5【解析】因为直线1:20l ax y --=与直线2:20l x ay +-=互相垂直,且分别过定点(0,2)A -,(2,0)B ,故点P 在以AB 为直径的圆上运动,直径AB ,圆心坐标为(1,1)-, 又因为点P 在圆C 上,故两圆有公共点,所以两圆的圆心距d 满足022d , 即220(1)(211)22x x -+-+,解得715x-, 故答案为[1-,7]5.23.(2020•南通模拟)已知半径为1的圆C 的圆心在射线2(1)y x x =-+上,若圆C 上有且仅有一点Q ,满足226QA QB +=,其中(1,1)A ,(3,3)B ,则圆C 的方程为__________. 【答案】22(2)1x y -+=【解析】设(,)Q x y ,则由22||||6QA QB +=得:2222[(1)(1)][(3)(3)]6x y x y -+-+-+-=, 整理得22(2)(2)1x y -+-=,所以点Q 在以(2,2)为圆心,半径为1的圆上;又点Q 在圆22()[(2)]1(1)x a y a a -+--+=上, 且两圆有唯一公共点,则两圆相切,如图所示; 当两圆外切时,22(2)[2(2)]4a a -+--+=,解得2a =或0a =,应取2a =;当两圆内切时,22(2)[2(2)]0a a -+--+=, 此时方程无实数解,a 的值不存在; 综上知,圆C 的圆心为(2,0), 圆C 的方程为22(2)1x y -+=. 故答案为:22(2)1x y -+=.24.(2020•许昌一模)若圆22420x y x y F +--+=的半径为3,则F =__________. 【答案】4-【解析】根据题意,圆22420x y x y F +--+=的半径为33=, 解可得:4F =-; 故答案为:4-.25.(2020•南开区校级模拟)过点(3,2)A -,(5,2)B --,且圆心在直线3240x y -+=上的圆的半径为__________.【解析】(3,2)A -,(5,2)B --,∴2225(3)AB k --==---,AB 的中点坐标为(4,0)-,AB ∴的垂直平分线方程为1(4)2y x =-+,即240x y ++=.联立2403240x y x y ++=⎧⎨-+=⎩,解得21x y =-⎧⎨=-⎩.∴所求圆的圆心坐标为(2,1)--,半径r26.(2020•洛阳二模)已知点A ,B 分别在x 轴,y 轴上,||3AB =,2BM MA =. (1)求点M 的轨迹C 的方程;(2)过点(0,1)N 作两条互相垂直的直线1l ,2l ,与曲线C 分别交于P ,Q (不同于点)N 两点,求证:直线PQ 过定点.【解析】(1)设点M 的坐标为(,)M x y ,(,0)A a ,(0,)B b .由2BM MA =得21(,)33M a b所以3,32a xb y == 因为229a b += 所以223()(3)92x y +=则2214xy += (2)由题可知,直线NP 的斜率存在,设直线1()NP l 的方程:1y kx =+ 联立22114y kx x y =+⎧⎪⎨+=⎪⎩得:22(14)80k x kx ++=,解得12280,14k x x k -==+ 则222814(,)1414k k P k k --++,由于1l ,2l 为过N 互相垂直的直线,同理得22284(,)44k k Q k k -++直线PQ 的斜率为22222224141414885414k k k k k k k k k k k----++==--++ 直线PQ 的方程为2222418()454k k ky x k k k ---=-++化简得:21355k y x k -=-因此直线PQ 恒过点3(0,)5-.27.(2019•西湖区校级模拟)如图,已知圆M 过点(10,4)P ,且与直线43200x y +-=相切于点(2,4)A (1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点,且||||BC OA =,求直线l 的方程;【解析】(1)过点(2,4)A 且与直线43200x y +-=垂直的直线方程为34100x y -+=①;AP 的垂直平分线方程为6x =;由①②联立得圆心(6,7)M ,半径||5r AM =; 圆M 的方程为22(6)(7)25x y -+-=. (2)因为直线//l OA ,所以直线l 的斜率为40220-=-. 设直线l 的方程为2y x m =+,即20x y m -+= 则圆心M 到直线l 的距离d =因为BC OA ==,而222()2BC MC d =+,所以2(5)2555m +=+,解得5m =或15m =-. 故直线l 的方程为250x y -+=或2150x y --=.28.(2019•西湖区校级模拟)已知圆22:(3)(4)4C x y -+-=, (Ⅰ)若直线1l 过定点(1,0)A ,且与圆C 相切,求1l 的方程;(Ⅱ)若圆D 的半径为3,圆心在直线2:20l x y +-=上,且与圆C 外切,求圆D 的方程.【解析】(Ⅰ)①若直线1l 的斜率不存在,即直线是1x =,符合题意. ②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=. 由题意知,圆心(3,4)到已知直线1l 的距离等于半径2,2=解之得34k =. 所求直线方程是1x =,3430x y --=.(Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4)C ,2r =,由两圆外切,可知5CD =∴5=,解得3a =,或2a =-, (3,1)D ∴-或(2,4)D -,∴所求圆的方程为22(3)(1)9x y -++=或22(2)(4)9x y ++-=.。

2021年新高考数学一轮复习题型归纳与达标检测:46 圆的方程(教师版)

2021年新高考数学一轮复习题型归纳与达标检测:46 圆的方程(教师版)

『高考复习·精推资源』『题型归纳·高效训练』第46讲圆的方程(讲)思维导图知识梳理1.圆的定义与方程2.点与圆的位置关系圆的标准方程为(x-a)2+(y-b)2=r2(r>0),圆心C的坐标为(a,b),半径为r,设M的坐标为(x0,y0).题型归纳题型1 求圆的方程【例1-1】(2020•和平区校级二模)已知圆C的圆心在直线x﹣2y﹣3=0上,且过点A(2,﹣3),B(﹣2,﹣5),则圆C的标准方程为 .【分析】根据题意,设圆心C的坐标为(2t+3,t),由圆经过点A、B,可得(2t+3﹣2)2+(t+3)2=(2t+3+2)2+(t+5)2,解可得t的值,即可得圆心C的坐标,又由r2=|CA|2,即可得圆的半径,由圆的标准方程的形式分析可得答案.【解答】解:根据题意,圆C的圆心在直线x﹣2y﹣3=0上,设圆心的坐标为(2t+3,t),圆C经过点A(2,﹣3),B(﹣2,﹣5),则有(2t+3﹣2)2+(t+3)2=(2t+3+2)2+(t+5)2,解可得t=﹣2,则2t+3=﹣1,即圆心C的坐标为(﹣1,﹣2),圆的半径为r,则r2=|CA|2=(﹣1﹣2)2+(﹣2+3)2=10,故圆C的标准方程为(x+1)2+(y+2)2=10;故答案为:(x+1)2+(y+2)2=10.【例1-2】(2020•东城区模拟)已知圆C与直线y=﹣x及x+y﹣4=0的相切,圆心在直线y=x上,则圆C的方程为( )A.(x﹣1)2 +(y﹣1)2 =2B.(x﹣1)2 +(y+1)2 =2C.(x+1)2 +(y﹣1)2 =4D.(x+1)2 +(y+1)2 =4【分析】根据圆心在直线y=x上,设出圆心坐标为(a,a),利用圆C与直线y=﹣x及x+y﹣4=0的相切,求得圆心坐标,再求圆的半径,可得圆的方程.【解答】解:圆心在y=x上,设圆心为(a,a),∵圆C与直线y=﹣x及x+y﹣4=0的相切,∴圆心到两直线y=﹣x及x+y﹣4=0的距离相等,即:⇒a=1,∴圆心坐标为(1,1),R==,圆C的标准方程为(x﹣1)2+(y﹣1)2=2.故选:A.【例1-3】(2019•武侯区校级模拟)已知圆C与y轴相切,圆心在x轴的正半轴上,并且截直线x﹣y+1=0所得的弦长为2,则圆C的标准方程是 .【分析】设圆心为(a,0),a>0,则由题意可得圆C的标准方程是(x﹣a)2+y2=a2,再根据半径、半弦长、弦心距构成直角三角形,求出a的值,可得圆C的标准方程.【解答】解:圆C与y轴相切,圆心在x轴的正半轴上,设圆心为(a,0),a>0,则圆C的标准方程是(x﹣a)2+y2=a2,∵它截直线x﹣y+1=0所得的弦长为2,故有a2=12+,求得a=3,则圆C的标准方程是(x﹣3)2+y2=9,故答案为:(x﹣3)2+y2=9.【跟踪训练1-1】(2020•辽宁三模)在直线l:y=x﹣1上有两个点A、B,且A、B的中点坐标为(4,3),线段AB的长度|AB|=8,则过A、B两点且与y轴相切的圆的方程为( )A.(x﹣4)2+(y﹣3)2=16或(x﹣11)2+(y+4)2=121B.(x﹣2)2+(y﹣3)2=4或(x﹣12)2+(y+5)2=144C.(x﹣4)2+(y﹣3)2=16或(x﹣12)2+(y+5)2=144D.(x﹣2)2+(y﹣3)2=4或(x﹣11)2+(y+4)2=121【分析】根据题意,分析可得要求圆的圆心在AB的垂直平分线上,由AB的中点坐标以及直线AB的方程可得AB的垂直平分线方程,据此可以设要求圆的圆心为(m,7﹣m),其半径r=|m|,求出圆心到直线l的距离,结合直线与圆的位置关系可得()2+d2=r2,即16+=m2,解可得m的值,将m的值代入圆的方程,即可得答案.【解答】解:根据题意,要求圆经过过A、B两点,则要求圆的圆心在AB的垂直平分线上,又由A、B在直线y=x﹣1上且A、B的中点坐标为(4,3),则AB的垂直平分线方程为y﹣3=﹣(x﹣4),即x+y=7,设要求圆的圆心为(m,7﹣m),要求圆与y轴相切,则其半径r=|m|,圆心到直线l:y=x﹣1的距离d=,又由线段AB的长度|AB|=8,则有()2+d2=r2,即16+=m2,解可得:m=4或12,则要求圆的标准方程为:(x﹣4)2+(y﹣3)2=16或(x﹣12)2+(y+5)2=144;故选:C.【跟踪训练1-2】(2020•怀柔区一模)已知圆C与圆(x﹣1)2+y2=1关于原点对称,则圆C的方程为( )A.x2+y2=1B.x2+(y+1)2=1C.x2+(y﹣1)2=1D.(x+1)2+y2=1【分析】由已知圆的方程求得圆心坐标与半径,再求出圆心关于原点的对称点,则答案可求.【解答】解:圆(x﹣1)2+y2=1的圆心坐标为(1,0),半径为1.点(1,0)关于原点的对称点为(﹣1,0),则所求圆的方程为(x+1)2+y2=1.故选:D.【跟踪训练1-3】(2020春•金湖县校级期中)已知圆心为点C(1,﹣1),并且在直线4x﹣3y﹣2=0上截得的弦长为2的圆的方程为( )A.(x+1)2+(y﹣1)2=2B.(x+1)2+(y﹣1)2=4C.(x﹣1)2+(y+1)2=2D.(x﹣1)2+(y+1)2=4【分析】利用点到直线的距离公式求出圆心到直线的距离,再由垂径定理求半径,则圆的方程可求.【解答】解:圆心C到直线4x﹣3y﹣2=0的距离d=,又圆截直线4x﹣3y﹣2=0所得的弦长为2,∴圆的半径r=.则所求圆的方程为(x﹣1)2+(y+1)2=4.故选:D.【名师指导】1.求圆的方程常见的三种类型(1)已知不共线的三点.(2)已知两点及圆心所在的直线.(3)已知直线与圆的位置关系.2.求圆的方程的两种方法几何法根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程待定系数法①根据题意,选择标准方程与一般方程;②根据条件列出关于a,b,r或D,E,F的方程组;③解出a,b,r或D,E,F ,代入标准方程或一般方程3.确定圆心位置的方法(1)圆心在过切点且与切线垂直的直线上.(2)圆心在圆的任意弦的垂直平分线上.(3)两圆相切时,切点与两圆圆心共线.题型2 与圆有关的最值问题【例2-1】已知实数x,y满足方程x2+y2﹣4x+1=0,求:(1)的最大值和最小值;(2)y﹣x的最小值;(3)x2+y2的最大值和最小值;(4)2x2+y2﹣4x﹣6的最大值.【分析】(1)整理方程可知,方程表示以点(2,0)为圆心,以为半径的圆,设=k,进而根据圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值;(2)设m=y﹣x,当点(x,y)在圆(x﹣2)2+y2=1上,则此直线与圆相切时,m取最值,根据圆心到直线的距离等于半径,求得m的值,即为所求.(3)根据x2+y2表示点P(x,y)与点O(0,0)间的距离的平方,求出|CO|,再把|CO|加减半径后平方,即得所求.(4)利用圆的参数方程,即可求出2x2+y2﹣4x﹣6的最大值.【解答】解:(1)方程x2+y2﹣4x+1=0表示以点(2,0)为圆心,以为半径的圆.设=k,即y=kx,由圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值,由=,解得k2=3.∴k max=,k min=﹣,则的最大值为,最小值为﹣;(2)设y﹣x=m,则x﹣y+m=0,圆心(2,0)到x﹣y+m=0的距离d==,∴m=﹣2±,∴y﹣x的最小值为﹣2﹣;(3)∵x2+y2表示点P(x,y)与点O(0,0)间的距离的平方.∵CO=2,∴x2+y2的最小值为(2﹣)2=7﹣4,最大值为(2+)2=7+4;(4)设x=2+,y=sinα,则2x2+y2﹣4x﹣6=2(2+)2+(sinα)2﹣4(2+)﹣6=3cos2α+4cosα﹣3=3(cosα+)2﹣7,∴cosα=1时,2x2+y2﹣4x﹣6的最大值为4.【例2-2】(2019•湖北校级一模)已知P(x,y)是圆x2+(y﹣3)2=1上的动点,定点A(2,0),B(﹣2,0),则的最大值为( )A.12B.0C.﹣12D.4【分析】由平面向量的数量积公式,可得的解析式;再由P(x,y)是圆x2+(y﹣3)2=1上的动点,可得x,y的取值范围;从而求得的最大值(或最小值).【解答】解:∵P(x,y)是圆x2+(y﹣3)2=1上的动点,且A(2,0),B(﹣2,0),∴=(2﹣x,0﹣y)•(﹣2﹣x,0﹣y)=(2﹣x)•(﹣2﹣x)+(﹣y)2=x2+y2﹣4,由x2+(y﹣3)2=1,得x2+y2=6y﹣8,且2≤y≤4,∴x2+y2﹣4=6y﹣12≤24﹣12=12,∴的最大值为:12故选:A.【跟踪训练2-1】(2019春•城关区校级期中)已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任一点,(1)求的最大、最小值;(2)求x﹣2y的最大、最小值.【分析】(1)设k=,利用直线和圆的位置关系即可得到结论;(2)设z=x﹣2y,利用直线和圆的位置关系即可得到结论.【解答】解:(1)设k=,则y﹣2=kx﹣k,即直线方程为kx﹣y+2﹣k=0,∵P(x,y)为圆C上任一点,∴则圆心(﹣2,0)到直线的距离d==≤1,即|2﹣3k|,平方得8k2﹣12k+3≤0,解得≤k≤,故的最大值为,最小值为;(2)设b=x﹣2y,j即x﹣2y﹣b=0,∵P(x,y)为圆C上任一点,∴则圆心(﹣2,0)到直线的距离d=,即|b+2|≤,则﹣2﹣≤b≤﹣2,即x﹣2y的最大值为﹣2,最小值为﹣2﹣.【跟踪训练2-2】(2019秋•安徽月考)已知P(x,y)是圆x2+(y﹣3)2=a2(a>0)上的动点,定点A(2,0),B(﹣2,0),△PAB的面积最大值为8,则a的值为( )A.1B.2C.3D.4【分析】先利用点到直线的距离公式求得圆心(0,3)到直线AB的距离为d,可得P到直线AB的距离最大值(d+1),从而求得△PAB面积的最大值,即可得出结论.【解答】解:要使△PAB的面积最大,只要点P到直线AB的距离最大.由于AB的方程为y=0,圆心(0,3)到直线AB的距离为d=3,故P到直线AB的距离最大值为3+a,再根据AB=4,可得△PAB面积的最大值为•AB•(3+a)=2(3+a)=8,∴a =1故选:A .【名师指导】借助几何性质求与圆有关的最值问题,根据代数式的几何意义,借助数形结合思想求解.1.形如μ=形式的最值问题,可转化为动直线斜率的最值问题.y -bx -a 2.形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.3.形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.题型3 与圆有关的轨迹问题【例3-1】(2020春•洛阳期末)已知动点M 到两定点A (1,1),B (2,2)的距离之比为.(1)求动点M 的轨迹C 的方程;(2)过曲线C 上任意一点P 作与直线l :2x +y ﹣6=0夹角为30°的直线,交l 于点Q ,求|PQ |的最大值和最小值.【分析】(1)设M (x ,y ),根据题意列方程即可求出动点M 的轨迹C 的方程;(2)先根据几何关系得到|PQ |=2d ,问题转变为求d 的最值,再结合直线l 与圆的位置关系容易求解.【解答】解:(1)设M (x ,y ),由题意知,化简得2(x ﹣1)2+2(y ﹣1)2=(x ﹣2)2+(y ﹣2)2,∴x 2+y 2=4,即动点M 的轨迹C 的方程为x 2+y 2=4.(2)记圆C 上任意一点P 到直线l 的距离为d ,因为直线PQ 与直线l 夹角为30°,所以|PQ|=2d,因为圆心C(0,0)到直线l的距离为,且圆C的半径为2,,即直线l与圆相离,∴,∴.【跟踪训练3-1】(2020春•昆明期末)在平面直角坐标系xOy中,已知点B(2,0),C(﹣2,0),设直线AB,AC的斜率分别为k1,k2,且k1k2=﹣,记点A的轨迹为E.(1)求E的方程;(2)若直线l:y=x+1与E交于P,Q两点,求|PQ|.【分析】(1)设A的坐标为(x,y),由k1k2=﹣,即可求出曲线E的方程.(2)联立直线与E的方程,利用根与系数关系以及弦长公式可得|PQ|.【解答】解:(1)设A(x,y),则k1k2==﹣,整理,得x2+2y2=4(x≠±2),即E的方程为x2+2y2=4(x≠±2);(2)联立,整理得3x2+4x﹣2=0,设P(x1,y1),Q(x2,y2),则x1+x2=﹣,x1x2=﹣,则|PQ|==•=.【名师指导】求与圆有关轨迹问题的3种方法(1)直接法:当题目条件中含有与该点有关的等式时,可设出该点的坐标,用坐标表示等式,直接求解轨迹方程.(2)定义法:当题目条件符合圆的定义时,可直接利用定义确定其圆心和半径,写出圆的方程.(3)代入法:当题目条件中已知某动点的轨迹方程,而要求的点与该动点有关时,常找出要求的点与已知点的关系,代入已知点满足的关系式求轨迹方程.。

专题19直线与圆的方程(学生版)-2021年高考数学二轮复习专题核心考点突破

专题19直线与圆的方程(学生版)-2021年高考数学二轮复习专题核心考点突破

专题19直线与圆的方程【考点命题趋势分析】直线与圆的方程是解析几何的基础知识,它不仅涉及几何知识,也涉及广泛的代数知识,综合性较强、能力要求较高.纵观近几年高考,我们发现直线与圆的方程这部分内容在全国卷中的考查有以下几个特点:一是每年必考,但未必在全国卷I、全国卷Ⅱ、全国卷Ⅲ中都考.如2017年全国卷I、卷Ⅱ的文科、理科都未涉及“直线与圆的方程”的内容,但全国卷Ⅲ考查了这部分内容,而且是解答题,属于压轴题之一,足见它的分量.二是在每一份试卷中至多有一道有关直线与圆的方程的题目(2016年全国卷理科是个例外,有一小一大两道题).三是选择题、填空题和解答题三种题型都有可能出现,客观题突出了“小而巧”的特点,主要考查直线与圆的位置关系、点到直线的距离、弦长等问题;主观题考查较为全面,除考查直线与圆的位置关系、点到直线的距离、弦长等问题外,还考查运算求解、等价转化、数形结合、分类讨论等重要的思想方法.四是就文科、理科而言,直线与圆的方程这节内容在文科试卷中出现的频率大于理科,但难度略小于理科.综合以上分析,我们在复习备考中要给予高度重视.高考题大多是比较经典的,因此,在复习备考过程中,它无疑是我们选题的一个风向标,认真研究高考题、品味高考题,可以让我们窥视其中的一些奥妙,使我们的复习备考更具针对性和有效性.典型例题与解题方法1方程问题求直线方程与圆的方程是解析几何中的基础知识与基本技能.求直线的方程,一般采用待定系数法,将直线方程设成点斜式或斜截式.而求圆的方程,一般来说有两种方法:(1)几何法.通过研究圆的几何性质求出圆的基本量:圆心坐标和半径.(2)代数法.先设出圆的方程,然后用待定系数法求解.例1已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(I)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,-2),求直线l与圆M的方程.2弦长问题但凡涉及直线与圆的位置关系时,都会遇到弦长问题,但高考中单纯的以求弦长为目标的问题较少.小题中大多是已知弦长求参数的值(范围)这一类的逆向思维问题,大题中往往是将弦长作为条件的综合问题,因此,弦长问题举足轻重.解决直线被圆截得的弦长问题的核心:在由弦心距(即圆心到直线的距离)、弦长的一半及半径所构成的直角三角形中运用勾股定理进行计算.例2已知直线l:mx+y+3m-√3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2√3,则|CD|=.3最值与范围问题最值问题是范围问题的特例,因此,研究的方法、手段基本相同.在处理直线与圆的方程的最值与范围问题时,主要有以下两种途径:一是利用圆的几何性质直接判断,如过圆内一个定点的弦长的最值与范围问题,就可以结合图形利用弦长与弦心距之间的关系进行判断;二是构建目标函数的解析式,然后利用函数或基本不等式研究最值与范围.另外,在特定的情境中,利用“三角形两边之差小于第三边”来研究最值与范围问题可以取到意想不到的效果.例3已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.例4设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.4定值与定点问题直线与圆的定值与定点问题虽不是高考的热点,但一旦出现则必然是试卷的压轴题,如2017年高考数学全国卷Ⅲ文科第20题,就考查了直线与圆的定值问题,试题综合性较强,难度较大例5在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(I)能否出现AC⊥BC的情况?说明理由;(Ⅱ)证明过A,B,C三点的圆在y轴上截得的弦长为定值.例6在平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x∈R)的图像与两个坐标轴有三个交点,经过这三点的圆记为C.问圆C是否经过定点(其坐标与b无关)?请证明你的结论.5复习建议本章的复习首先要注重基础,对基础知识、基本题型要掌握好.求直线的方程基本用待定系数法,复习时应注意直线的方程各种形式的适用条件;研究两条直线的位置关系,应特别注意直线斜率的存在与不存在两种情况;圆的方程、直线与圆的位置关系、圆的切线问题、弦长问题都是高考考查的热点,求圆的方程、圆心坐标和圆的半径的常用方法是待定系数法及配方法,要熟练掌握,还应特别注意充分运用直线与圆的几何性质以简化运算.特别需要指出的是,绝大多数和直线与圆的方程有关的高考题,都会涉及弦长问题,因此,在高考复习备考中,强化弦长问题的训练显得尤为重要.最新模拟题强化训练1.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x 上,线段AB 为圆C 的直径,则PA PB ⋅的最小值为()A .2B .52C .3D .722.点(4,2)P -与圆224x y +=上任一点连线的中点的轨迹方程是( )A .22(2)(1)1x y -++=B .22(2)(1)4x y -++=C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-=3.已知圆()22:22C x y -+=,直线:2l y kx =-,若直线l 上存在点P ,过点P 引圆的两条切线12,l l ,使得12l l ⊥,则实数k 的取值范围是( )A .()0,223,⎡++∞⎣B .[2,2]C .(),0-∞D .[0∞+,) 4.已知圆22:1C x y +=,点P 为直线240x y +-=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .3,04⎛⎫ ⎪ ⎪⎝⎭D .30,4⎛⎫ ⎪ ⎪⎝⎭5.已知过点P(2,2) 的直线与圆22(1)5x y -+=相切, 且与直线10ax y -+=垂直, 则a =( )A .12-B .1C .2D .126.在圆22420x y x y +-+=内,过点(1,0)M 的最短弦的弦长为A B .C D .7.已知直线l :10()x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则||AB =( )A .2B .C .6D .8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为( )A .22230x y x +--=B .2240x y x ++=C .22230x y x ++-=D .2240x y x +-=9.已知点P 是直线l :3x 4y 70+-=上的动点,过点P 引圆C :222(x 1)y r (r 0)++=>的两条切线PM ,PN ,M ,N 为切点,当MPN ∠的最大值为π3时,则r 的值为( ) A .4 B .3 C .2 D .110.若点(1,1)P 为圆2260x y x +-=的弦AB 的中点,则弦AB 所在直线的方程为 ( ) A .230x y +-=B .230x y +-=C .210x y --=D .210x y -+=11.已知P 为椭圆22143x y +=上一个动点,过点P 作圆()2211x y -+=的两条切线,切点分别是A ,B ,则PA PB ⋅的取值范围为( )A .3,2⎡⎫+∞⎪⎢⎣⎭ B .356,29⎡⎤⎢⎥⎣⎦ C .563,9⎡⎤⎢⎥⎣⎦ D .)3,⎡+∞⎣ 12.已知椭圆C :()222210,0x y a b a b+=>>的右焦点为F ,过点F 作圆222x y b +=的切线,若两条切线互相垂直,则椭圆C 的离心率为( )A .12BC .3 D13.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2或3B .2C 或2D .3或2 14.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为 ( )A .B .5C .2D .1015.已知圆1C :22(5)1x y ++=,2C :22(5)225x y -+=,动圆C 满足与1C 外切且2C 与内切,若M 为1C 上的动点,且10CM C M ⋅=,则CM 的最小值为( )A .B .C .4D .16.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆截直线20x ay ++=所得弦长的最小值等于( )A .B .CD .17.圆224210++--=x y x y 上存在两点关于直线()2200,0ax by a b -+=>>对称,则14a b+的最小值为A .8B .9C .16D .18 18.在区间[﹣2,2]上随机取一个数b ,若使直线y =x+b 与圆x 2+y 2=a 有交点的概率为12,则a =( ) A .14 B .12 C .1D .2 19.一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或53 B .35或32 C .23-或23 D .43-或34- 20.若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关, 则实数a 的取值范围是( )A .4a ≤B .46a -≤≤C .4a ≤或6a ≥D .6a ≥21.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________:22.已知直线l :30mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若||AB =,则||CD =__________.23.设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A :B 两点,若AB =C 的面积为________ 24.在平面直角坐标系xOy 中,A(-12,0),B(0,6),点P 在圆O :x 2+y 2=50上,若PA ·PB ≤20,则点P 的横坐标的取值范围是_________25.已知A ,B 为圆22:5O x y +=上的两个动点,4AB =,M 为线段AB 的中点,点P 为直线:60l x y +-=上一动点,则PM PB ⋅的最小值为____.26.在平面四边形ABCD 中,连接对角线BD ,已知9CD =,16BD =,90BDC ∠=︒,4sin 5A =,则对角线AC 的最大值为__________.27.已知直线l 经过点P(:4::3),且被圆(x:1)2:(y:2)2:25截得的弦长为8,则直线l 的方程是________: 28.已知抛物线C :22(0)y px p =>的焦点为F ,准线l 与x 轴的交点为A ,P 是抛物线C 上的点,且PF x ⊥轴.若以AF 为直径的圆截直线AP 所得的弦长为2,则实数p 的值为__________. 29.在平面直角坐标系xOy 中,已知直线:3450l x y -+=与圆22:100C x y x +-=交于,A B 两点,P 为x 轴上一动点,则ABP ∆周长的最小值为______:30.已知点()1,2P -及圆()()22344x y -+-=,一光线从点P 出发,经x 轴上一点Q 反射后与圆相切于点T ,则PQ QT +的值为______________.。

专题五解析几何直线与圆教学课件2021届新高考数学二轮复习

专题五解析几何直线与圆教学课件2021届新高考数学二轮复习

故|MA|·|MB|≤225(当且仅当|MA|=|MB|=5 2 2时取“=”).
答案
(1)A
25 (2) 2
探究提高 1.求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参 数的值后,要注意代入检验,排除两条直线重合的可能性. 2.求直线方程时应根据条件选择合适的方程形式利用待定系数法求解,同时要考虑 直线斜率不存在的情况是否符合题意.
【例 2】 (1)(2020·石家庄模拟)古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中
提出“在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且
不等于 1 的常数,则该点轨迹是一个圆”.现在,某电信公司要在甲、乙、丙三地搭
建三座 5G 信号塔来构建一个特定的三角形信号覆盖区域,以实现 5G 商用,已知甲、
解析 (1)由题意知m(1+m)-2×1=0,解得m=1或-2,当m=-2时,两直线重 合,舍去;当m=1时,满足两直线平行,所以m=1.
(2)由题意可知,直线 l1:kx-y+4=0 经过定点 A(0,4),直线 l2:x+ky-3=0 经过 定点 B(3,0),注意到直线 l1:kx-y+4=0 和直线 l2:x+ky-3=0 始终垂直,点 M 又是两条直线的交点,则有 MA⊥MB,所以|MA|2+|MB|2=|AB|2=25.
热点三 直线(圆)与圆的位置关系
角度 1 圆的切线问题
【例 3】 (1)(2020·全国Ⅲ卷)若直线 l 与曲线 y= x和圆 x2+y2=15都相切,则 l 的方程
为( ) A.y=2x+1
B.y=2x+12
C.y=12x+1
D.y=12x+12
(2)(多选题)在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届高考数学(理)考点复习圆的方程圆的定义与方程定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程标准 式(x -a )2+(y -b )2=r 2(r >0)圆心为(a ,b ) 半径为r一 般 式x 2+y 2+Dx +Ey +F =0充要条件:D 2+E 2-4F >0 圆心坐标:⎝⎛⎭⎫-D 2,-E2 半径r =12D 2+E 2-4F概念方法微思考1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种.已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.1.(2020•北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4 B .5C .6D .7【答案】A 【解析】如图示:,半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时,连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =,即圆心到原点的距离的最小值是4, 故选A .2.(2018•天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=.【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则042020F D F D E F =⎧⎪++=⎨⎪+++=⎩, 解得2D =-,0E F ==;∴所求圆的方程为2220x y x +-=.故答案为:22(1)1x y -+=(或2220)x y x +-=.3.(2017•上海)若P 、Q 是圆222440x y x y +-++=上的动点,则||PQ 的最大值为__________. 【答案】2【解析】圆222440x y x y +-++=,可化为22(1)(2)1x y -++=,P 、Q 是圆222440x y x y +-++=上的动点,||PQ ∴的最大值为2,故答案为2.1.(2020•江西模拟)圆C 的半径为5,圆心在x 轴的负半轴上,且被直线3440x y ++=截得的弦长为6,则圆C 的方程为( ) A .22230x y x +--= B .2216390x x y +++= C .2216390x x y -+-= D .2240x y x +-=【答案】B【解析】设圆心为(a ,0)(0)a <,由题意知圆心到直线3440x y ++=的距离为22|34|5345a d +==-,解得8a =-, 则圆C 的方程为22(8)25x y ++=,即为2216390x x y +++=, 故选B .2.(2020•西城区模拟)若圆22420x y x y a +-++=与x 轴,y 轴均有公共点,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0]C .[0,)+∞D .[5,)+∞【答案】A【解析】圆2222420(2)(1)5x y x y a x y a +-++=⇒-++=-; 圆心(2,1)-,5r a =-圆与x ,y 轴都有公共点; ∴2515150a a a a ⎧-⎪⎪-⇒⎨⎪->⎪⎩; 故选A .3.(2020•全国Ⅱ卷模拟)已知圆C 过点(4,6),(2,2)--,(5,5),点M ,N 在圆C 上,则CMN ∆面积的最大值为( ) A .100 B .25 C .50 D .252【答案】D【解析】设圆C 的方程为220x y Dx Ey F ++++=, 将(4,6),(2,2)--,(5,5)代入可得,52460822050550D E F D E F D E F +++=⎧⎪--+=⎨⎪+++=⎩,解得2D =-,4E =-,20F =-,故圆C 的一般方程为2224200x y x y +---=, 即22(1)(2)25x y -+-=, 故CMN ∆的面积1125||||sin 55222S CM CN MCN =∠⨯⨯=, 故选D .4.(2020•长春三模)已知圆E 的圆心在y 轴上,且与圆22:20C x y x +-=的公共弦所在直线的方程为30x y =,则圆E 的方程为( ) A .22(3)2x y +-= B .22(3)2x y +=C .22(3)3x y +=D .22(3)3x y ++=【答案】C【解析】圆E 的圆心在y 轴上,∴设圆心E 的坐标为(0,)b ,设半径为r , 则圆E 的方程为:222()x y b r +-=,即222220x y by b r +-+-=, 又圆C 的方程为:2220x y x +-=,两圆方程相加得公共弦所在直线的方程为:2202b r x by --+=,又公共弦所在直线的方程为30x y =, ∴22302b b r ⎧=⎪⎨-=⎪⎩,解得33b r ⎧=⎪⎨=⎪⎩∴圆E 的方程为:22(3)3x y +=,故选C .5.(2020•怀柔区一模)已知圆C 与圆22(1)1x y -+=关于原点对称,则圆C 的方程为( ) A .221x y += B .22(1)1x y ++= C .22(1)1x y +-= D .22(1)1x y ++=【答案】D【解析】圆22(1)1x y -+=的圆心坐标为(1,0),半径为1. 点(1,0)关于原点的对称点为(1,0)-, 则所求圆的方程为22(1)1x y ++=. 故选D .6.(2020•郑州二模)圆22(2)(12)4x y ++-=关于直线80x y -+=对称的圆的方程为( ) A .22(3)(2)4x y +++= B .22(4)(6)4x y ++-= C .22(4)(6)4x y -+-= D .22(6)(4)4x y +++=【答案】C【解析】由圆22(2)(12)4x y ++-=可得圆心坐标(2,12)-,半径为2,由题意可得关于直线80x y -+=对称的圆的圆心与(2,12)-关于直线对称,半径为2, 设所求的圆心为(,)a b 则21280221212a b b a -+⎧-+=⎪⎪⎨-⎪=-⎪+⎩解得:4a =,6b =,故圆的方程为:22(4)(6)4x y -+-=, 故选C .7.(2020•西城区一模)设(2,1)A -,(4,1)B ,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++=【答案】A【解析】弦长22(42)(11)22AB =-++2(3,0), 所以圆的方程22(3)2x y -+=, 故选A .8.(2020•拉萨二模)圆心为(2,1)且和x 轴相切的圆的方程是( ) A .22(2)(1)1x y -+-= B .22(2)(1)1x y +++= C .22(2)(1)5x y -+-= D .22(2)(1)5x y +++=【答案】A【解析】圆心为(2,1)且和x 轴相切的圆,它的半径为1, 故它的的方程是22(2)(1)1x y -+-=, 故选A .9.(2020•绵阳模拟)已知圆22:6890C x y x y +--+=,点M ,N 在圆C 上,平面上一动点P 满足||||PM PN =且PM PN ⊥,则||PC 的最大值为( )A .8B .82C .4D .42【答案】D【解析】根据题意,若平面上一动点P 满足||||PM PN =,又由||||CM CN =,则PC 为线段MN 的垂直平分线,设MN 的中点为G ,||NG n =,||CG m =,又由||||PM PN =且PM PN ⊥,则PMN ∆为等腰直角三角形,故||||PG NG n ==, 圆22:6890C x y x y +--+=,即22(3)(4)16x y -+-=, 则2216m n +=,则222||()()216216(42PC m n m n m n mn mn m =++++++当且仅当m n =时等号成立, 故||PC 的最大值为42 故选D .10.(2020•绵阳模拟)已知圆22:280C x y x +--=,直线l 经过点(2,2)M ,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A .220x y -+= B .260x y +-= C .220x y --= D .260x y +-=【答案】D【解析】如图所示:圆22:280C x y x +--=,化为标准方程为:22(1)9x y -+=,∴圆心(1,0)C ,当直线l 与CM 垂直时,直线l 分圆C 的两部分的面积之差的绝对值最大, 20221CM k -==-, ∴直线l 的斜率12k =-, ∴直线l 的方程为:12(2)2y x -=--,即260x y +-=,故选D .11.(2020•和平区校级二模)已知圆C 的圆心在直线230x y --=上,且过点(2,3)A -,(2,5)B --,则圆C 的标准方程为__________. 【答案】22(1)(2)10x y +++=【解析】根据题意,圆C 的圆心在直线230x y --=上,设圆心的坐标为(23,)t t +, 圆C 经过点(2,3)A -,(2,5)B --,则有2222(232)(3)(232)(5)t t t t +-++=++++, 解可得2t =-,则231t +=-,即圆心C 的坐标为(1,2)--, 圆的半径为r ,则2222||(12)(23)10r CA ==--+-+=, 故圆C 的标准方程为22(1)(2)10x y +++=; 故答案为:22(1)(2)10x y +++=.12.(2020•江苏模拟)在平面直角坐标系xOy 中,已知圆M 经过直线:330l x -+=与圆22:4C x y +=的两个交点.当圆M 的面积最小时,圆M 的标准方程为__________. 【答案】2233(()12x y ++-= 【解析】根据题意,直线:3230l x -+=与圆22:4C x y +=相交,设其交点为A 、B , 则有2232304x x y ⎧-+⎪⎨+=⎪⎩,联立解可得:31x y ⎧=-⎪⎨=⎪⎩02x y =⎧⎨=⎩, 即A 、B 的坐标为(3-1)和(0,2);当AB 为圆M 的直径时,圆M 的面积最小,此时圆M 的圆心3(M 3)2,半径1||12r AB ==; 则此时圆M 的标准方程为:2233()()12x y +-=; 故答案为:2233()()12x y ++-=. 13.(2020•河东区一模)已知圆O 过点(0,0)A 、(0,4)B 、(1,1)C ,点(3,4)D 到圆O 上的点最小距离为__________. 5【解析】设圆O 的方程为220x y dx ey f ++++=,圆O 过点(0,0)A 、(0,4)B 、(1,1)C , ∴0016040110f e f d e f =⎧⎪++++=⎨⎪++++=⎩,求得240d e f =⎧⎪=-⎨⎪=⎩,故圆的方程为22240x y x y ++-=,即22(1)(2)5x y ++-=,表示圆心为(1,2)-5的圆.22||(31)(42)25DO =++-故点(3,4)D 到圆O 上的点最小距离为2555 5.14.(2020•南通模拟)在平面直角坐标系xOy 中,已知过点(10,0)-的圆M 与圆22660x y x y +--=相切于原点,则圆M 的半径是__________. 【答案】52【解析】圆22660x y x y +--=化为22(3)(3)18x y -+-=, 圆心坐标为(3,3),半径为32 如图,所求的圆与圆22660x y x y +--=相切于原点,∴两圆圆心的连线在直线y x =上, 可设所求圆的圆心为(,)a a 2222(10)a a a a +++ 解得5a =-,∴所求圆M 的半径为52故答案为:52.15.(2020•滨海新区模拟)以点(1,0)C 为圆心,且被y 轴截得的弦长为2的圆的方程为__________. 【答案】22(1)2x y -+= 【解析】如图,圆的半径为22112r =+=. 又圆心为(1,0),∴所求圆的方程为22(1)2x y -+=.故答案为:22(1)2x y -+=.16.(2020•东城区一模)圆心在x 轴上,且与直线1:l y x =和2:2l y x =-都相切的圆的方程为__________. 【答案】221(1)2x y -+=【解析】设所求圆的方程为222()x a y r -+=, 因为圆与直线1:l y x =和2:2l y x =-1111r ==++,解得1a =,2r ,所以圆的方程为221(1)2x y -+=. 故答案为:221(1)2x y -+=. 17.(2020•河西区一模)已知圆C 的圆心在第一象限,且在直线2y x =上,圆C 与抛物线24y x =的准线和x 轴都相切,则圆C 的方程为__________. 【答案】22(1)(2)4x y -+-=【解析】圆C 的圆心在第一象限,且在直线2y x =上, 故可设圆心为(,2)C a a ,0a >,圆C 与抛物线24y x =的准线1x =-和x 轴都相切,故圆的半径|1||2|a a +=,解得1a =,或13a =-(舍去),故半径为2,则圆C 的方程为22(1)(2)4x y -+-=, 故答案为:22(1)(2)4x y -+-=.18.(2020•宿迁模拟)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2100x y +-=相切,当圆C 面积最小时,圆C 的标准方程为__________. 【答案】22(2)(1)5x y -+-=【解析】A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2100x y +-=相切,所以原点(0,0)在圆上,原点(0,0)到直线2100x y +-=的距离22512d ==+(0,0)到直线的距离为直径时,该圆最小. 即52dr =直线2100x y +-=与圆的切点坐标满足210012x y y x +-=⎧⎪⎨=⎪⎩,解得42x y =⎧⎨=⎩,所以圆心坐标为40222012a b +⎧==⎪⎪⎨+⎪==⎪⎩,故圆的方程为22(2)(1)5x y -+-=. 故答案为:22(2)(1)5x y -+-=.19.(2020•滨海新区模拟)已知圆心为C 的圆经过点(1,1)A --和(2,2)B -,且圆心C 在直线:10l x y --=上,则圆心为C 的圆的标准方程是__________.【答案】22(3)(2)25x y -+-=【解析】由(1,1)A --,(2,2)B -,得AB 的中点为3(2-,1)2,又12312AB k --==--+,AB ∴的垂直平分线方程为113()232y x -=+,即330x y -+=. 联立33010x y x y -+=⎧⎨--=⎩,解得32x y =⎧⎨=⎩.∴圆心坐标为(3,2)C ,半径为||5CA =.∴圆心为C 的圆的标准方程是22(3)(2)25x y -+-=.故答案为:22(3)(2)25x y -+-=.20.(2020•如皋市校级模拟)在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆22:230C x y x ++-=上的动点,则2AB BO +的最小值为__________. 10【解析】由(0,1)A ,圆22:230C x y x ++-=上可化为22(1)4x y ++=, 设点(,)B x y ,则22222(1)2AB BO x y x y ++-+2222(1)44x y x y =+-+22(1)4(32)x y x =+-- 22(1)128x y x =+--2222(1)(1)88x y x y x =+-+++-2222(1)(3)x y x y =+--+这表示圆C 上的点B 到点A 的距离与到点(3,0)D 的距离的和, 所以点B 在线段AD 上时,2AB BO +取得最小值,如图所示,所以2AB BO +的最小值是221310AD + 1021.(2020•江苏一模)在平面直角坐标系xOy 中,已知圆22:48120M x y x y +--+=,圆N 与圆M 外切于点(0,)m ,且过点(0,2)-,则圆N 的标准方程为__________. 【答案】22(2)8x y ++=【解析】已知圆22:48120M x y x y +--+=,整理得:22(2)(4)8x y -+-=, 令0y =,圆的方程转换为:28120y y -+=,解得2y =或6. 由于圆N 与圆M 相切于(0,)m 且过点(0,2)-. 所以2m =.即圆N 经过点(0,2)A ,(0,2)B -. 所以圆心在这两点连线的中垂线x 轴上,x 轴与MA 的交点为圆心N .所以:2MA y x =+. 令0y =,则2x =-. 即(2,0)N -, |22R NA ==.所以圆N 的标准方程为:22(2)8x y ++=. 故答案为:22(2)8x y ++=.22.(2020•南通模拟)在平面直角坐标系xOy 中,已知圆C 2圆心在直线:21l y x =-上,若圆C 上存在一点P ,使得直线1:20l ax y --=与直线2:20l x ay +-=交于点P ,则当实数a 变化时,圆心C 的横坐标x 的取值范围是__________. 【答案】[1-,7]5【解析】因为直线1:20l ax y --=与直线2:20l x ay +-=互相垂直,且分别过定点(0,2)A -,(2,0)B ,故点P 在以AB 为直径的圆上运动,直径4422AB =+=,即半径为2,圆心坐标为(1,1)-, 又因为点P 在圆C 上,故两圆有公共点,所以两圆的圆心距d 满足022d , 即220(1)(211)22x x -+-+,解得715x-, 故答案为[1-,7]5.23.(2020•南通模拟)已知半径为1的圆C 的圆心在射线2(1)y x x =-+上,若圆C 上有且仅有一点Q ,满足226QA QB +=,其中(1,1)A ,(3,3)B ,则圆C 的方程为__________. 【答案】22(2)1x y -+=【解析】设(,)Q x y ,则由22||||6QA QB +=得:2222[(1)(1)][(3)(3)]6x y x y -+-+-+-=, 整理得22(2)(2)1x y -+-=,所以点Q 在以(2,2)为圆心,半径为1的圆上;又点Q 在圆22()[(2)]1(1)x a y a a -+--+=上, 且两圆有唯一公共点,则两圆相切,如图所示; 当两圆外切时,22(2)[2(2)]4a a -+--+=,解得2a =或0a =,应取2a =;当两圆内切时,22(2)[2(2)]0a a -+--+=, 此时方程无实数解,a 的值不存在; 综上知,圆C 的圆心为(2,0), 圆C 的方程为22(2)1x y -+=. 故答案为:22(2)1x y -+=.24.(2020•许昌一模)若圆22420x y x y F +--+=的半径为3,则F =__________. 【答案】4-【解析】根据题意,圆22420x y x y F +--+=的半径为3221(4)(2)432F -+--=, 解可得:4F =-; 故答案为:4-.25.(2020•南开区校级模拟)过点(3,2)A -,(5,2)B --,且圆心在直线3240x y -+=上的圆的半径为__________. 10【解析】(3,2)A -,(5,2)B --,∴2225(3)AB k --==---,AB 的中点坐标为(4,0)-,AB ∴的垂直平分线方程为1(4)2y x =-+,即240x y ++=.联立2403240x y x y ++=⎧⎨-+=⎩,解得21x y =-⎧⎨=-⎩.∴所求圆的圆心坐标为(2,1)--,半径22(32)(21)10r -+++1026.(2020•洛阳二模)已知点A ,B 分别在x 轴,y 轴上,||3AB =,2BM MA =. (1)求点M 的轨迹C 的方程;(2)过点(0,1)N 作两条互相垂直的直线1l ,2l ,与曲线C 分别交于P ,Q (不同于点)N 两点,求证:直线PQ 过定点.【解析】(1)设点M 的坐标为(,)M x y ,(,0)A a ,(0,)B b .由2BM MA=得21 (,)33 M a b所以3,32a xb y ==因为229a b+=所以223()(3)92x y+=则2214xy+=(2)由题可知,直线NP的斜率存在,设直线1()NP l的方程:1y kx=+联立22114y kxxy=+⎧⎪⎨+=⎪⎩得:22(14)80k x kx++=,解得12280,14kx xk-==+则222814(,)1414k kPk k--++,由于1l,2l为过N互相垂直的直线,同理得22284(,)44k kQk k-++直线PQ的斜率为22222224141414885414k kkk kkk k kk k----++==--++直线PQ的方程为2222418()454k k ky xk k k---=-++化简得:21355ky xk-=-因此直线PQ恒过点3(0,)5-.27.(2019•西湖区校级模拟)如图,已知圆M过点(10,4)P,且与直线43200x y+-=相切于点(2,4)A (1)求圆M的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且||||BC OA=,求直线l的方程;【解析】(1)过点(2,4)A且与直线43200x y+-=垂直的直线方程为34100x y-+=①;AP的垂直平分线方程为6x=;由①②联立得圆心(6,7)M ,半径22||(62)(74)5r AM ==-+-=; 圆M 的方程为22(6)(7)25x y -+-=. (2)因为直线//l OA ,所以直线l 的斜率为40220-=-. 设直线l 的方程为2y x m =+,即20x y m -+= 则圆心M 到直线l 的距离55d ==.因为222425BC OA ==+=,而222()2BC MC d =+,所以2(5)2555m +=+,解得5m =或15m =-. 故直线l 的方程为250x y -+=或2150x y --=.28.(2019•西湖区校级模拟)已知圆22:(3)(4)4C x y -+-=, (Ⅰ)若直线1l 过定点(1,0)A ,且与圆C 相切,求1l 的方程;(Ⅱ)若圆D 的半径为3,圆心在直线2:20l x y +-=上,且与圆C 外切,求圆D 的方程.【解析】(Ⅰ)①若直线1l 的斜率不存在,即直线是1x =,符合题意. ②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=. 由题意知,圆心(3,4)到已知直线1l 的距离等于半径2, 221k =+解之得34k =. 所求直线方程是1x =,3430x y --=.(Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4)C ,2r =,由两圆外切,可知5CD =∴22(3)(24)5a a -+--=,解得3a =,或2a =-, (3,1)D ∴-或(2,4)D -,∴所求圆的方程为22(3)(1)9x y -++=或22(2)(4)9x y ++-=.。

相关文档
最新文档