碳纤维增强陶瓷基复合材料

合集下载

建筑材料的新型复合材料有哪些

建筑材料的新型复合材料有哪些

建筑材料的新型复合材料有哪些在现代建筑领域,新型复合材料的出现为建筑设计和施工带来了更多的可能性。

这些新型复合材料具有优异的性能,能够满足各种复杂的建筑需求。

接下来,让我们一起了解一下建筑材料中一些常见的新型复合材料。

纤维增强复合材料(FRP)是目前应用较为广泛的一种新型复合材料。

FRP 通常由纤维材料(如碳纤维、玻璃纤维等)和树脂基体组成。

碳纤维增强复合材料(CFRP)具有高强度、高刚度和轻质量的特点。

它在加固老旧建筑结构方面表现出色,能够有效地提高结构的承载能力和抗震性能。

玻璃纤维增强复合材料(GFRP)则具有较好的耐腐蚀性,常用于海洋工程和化工建筑等环境恶劣的场所。

FRP 材料还可以被制成板材、筋材和索材等形式,应用于桥梁、高层建筑和大跨度空间结构中。

聚合物基复合材料(PMC)也是一类重要的新型建筑材料。

PMC以高分子聚合物为基体,加入各种增强材料,如纤维、颗粒等。

其中,纳米复合材料是近年来的研究热点。

通过在聚合物基体中加入纳米级的填料(如纳米黏土、碳纳米管等),可以显著提高材料的力学性能、热性能和阻隔性能。

例如,纳米复合材料制成的建筑涂料具有更好的耐候性和自清洁功能,能够延长建筑物的外观保持时间。

金属基复合材料(MMC)在建筑领域也有一定的应用。

铝基复合材料具有较高的比强度和比刚度,同时还具有良好的导热性和导电性。

它可以用于制造建筑中的结构件和装饰件,如窗框、扶手等。

钛基复合材料则具有优异的耐高温和耐腐蚀性,适用于一些特殊环境下的建筑应用。

陶瓷基复合材料(CMC)具有高强度、高硬度、耐高温和耐磨损等优点。

在建筑领域,CMC 可以用于制造高温炉窑的内衬、耐磨地面材料等。

然而,CMC 的成本相对较高,限制了其在一些大规模建筑项目中的广泛应用。

智能复合材料是另一类具有创新性的新型建筑材料。

这类材料能够感知外界环境的变化,并做出相应的响应。

例如,形状记忆合金复合材料可以在一定条件下恢复到预先设定的形状,这在自适应结构和抗震结构中具有潜在的应用价值。

碳纤维增强碳化硅陶瓷基复合材料的研究进展

碳纤维增强碳化硅陶瓷基复合材料的研究进展

33一、引言随着现代科学和技术的发展,许多新的空间能源和技术领域,特别是航空、军事或尖端科学领域,如发动机、航空航天热保护系统、原子能,在新材料需求量最大的领域,特别是高温物质结构,其密度低,高强度高,耐久性高,耐高温,耐腐蚀性能。

例如,航空发动机主要依赖进口温度前的涡轮机,而进口温度前的涡轮机被认为在10度时,涡轮机的顶部涡轮机最高可达1 650℃。

在这种高温下,传统的超合金材料已不再符合要求,因此研究人员的研究重点转到了碳纤维增强碳化硅陶瓷基复合材料。

二、复合材料的研究进展1.复合材料的制备工艺(1)CVI工艺CVI是在CVD基础上进行研究的。

主要的准备过程是:第一,碳纤维预制件放在一个密闭的反应室里,采用高温环境下的蒸汽渗透法将反应气体过滤到预制件内或表面,以产生陶瓷基质的化学反应。

就CF/SIC化合物而言,CVI的准备工艺通常以诸如MTS、TMS、H 2和AR 等反应气体为基础,这些气体在高温抽取,以便在碳纤维预制件上储存陶瓷sic 基体。

这种工艺的优点是: 合成陶瓷基本材料通常是在低于基底熔点的温度下制备的,纤维与基底之间不会发生高温化学反应,材料中的残留电压很小,纤维本身的损害较小,因此,它可以确保复合材料结构的完整性;它能够以复杂的方式用一个很大的纤维体积部分加工CF/SIC复合材料。

主要缺点是: 随着渗透率的提高,纤维预制结构内的毛孔变小,渗透率变慢,导致生产周期较长,设备复杂,准备成本高;成品的多孔性和材料的低密度影响了复合材料的特性。

由于这一进程的缺点,其效用受到限制。

为了提高沉积效率、降低成本和缩短准备时间,研究人员目前开发了若干方法,包括热梯度法和在某种程度上改进CVI工艺的其他工艺。

(2)PIP工艺PIP是近年发展的一种制备工艺,工艺比较简单,而且制备环境要求低,因此发展比教迅速,并受到广泛的关注。

这一方法的基础是使用有机前体,这些前体在高温下得到分化,然后转化为无机陶瓷基体。

碳纤维增强陶瓷基复合材料的制备及性能研究

碳纤维增强陶瓷基复合材料的制备及性能研究

碳纤维增强陶瓷基复合材料的制备及性能研究碳纤维增强陶瓷基复合材料是一种具有优异性能的复合材料,具有高强度、高刚度、低密度、高温耐性、抗腐蚀等优点,被广泛应用于航空、航天、汽车、新能源等领域。

本文将对碳纤维增强陶瓷基复合材料的制备及其性能研究进行探讨。

1. 背景传统金属材料存在密度大、重量重、强度低等问题,难以满足现代工业的需求。

而复合材料的出现解决了这一问题,毫不夸张地说,“复合材料就是未来工业的材料”。

其中最为突出的就是碳纤维增强陶瓷基复合材料。

2. 制备方法制备碳纤维增强陶瓷基复合材料的方法有多种,其中最为常见的是热压法和热处理法。

热压法是将预先制备的碳纤维增强陶瓷基复合材料在高温高压下进行加热压制,使其形成连续的结构。

这种方法适用于制备块状和板状复合材料。

热处理法则是先将碳纤维增强材料进行数次高温氧化处理,使其表面形成含有氧的层,然后进行碳化处理和陶瓷化处理,最终得到陶瓷基复合材料。

这种方法适用于制备复杂形状的复合材料。

3. 性能研究碳纤维增强陶瓷基复合材料具有优异的性能,如高强度、高刚度、低密度、高温耐性、抗腐蚀等,其力学性能和热学性能是研究的重点。

力学性能研究主要包括拉伸强度、屈服强度、断裂韧性等指标的测试和评估。

热学性能研究主要包括热膨胀系数、导热系数、热稳定性等指标的测试和评估。

研究表明,碳纤维增强陶瓷基复合材料的力学性能远远优于传统金属材料,具有极高的强度和刚度;而其热学性能也表现出卓越的优势,具有很高的耐热性和热稳定性。

4. 应用前景碳纤维增强陶瓷基复合材料具有广泛的应用前景。

在航空和航天产业中,用以制造减重、高刚度、高强度的重要部件;在汽车产业中,用于制造轻量化结构件和发动机;在新能源领域,用于制造高温耐受的储能材料等。

总之,碳纤维增强陶瓷基复合材料具有优异的性能和广泛的应用前景,能够为现代工业的发展做出巨大的贡献。

碳纤维增强碳化硅陶瓷基复合材料

碳纤维增强碳化硅陶瓷基复合材料

碳纤维增强陶瓷基复合材料摘要:碳纤维增强碳化硅陶瓷基复合材料具有密度低、高强度、高韧性和耐高温等综合性能已得到世界各国高度重视,本文将对有关碳纤维增强碳化硅陶瓷的有关信息简单介绍。

关键词:陶瓷基复合材料,碳纤维增强。

1.引言碳化硅陶瓷因具有高强度、高硬度、抗腐蚀、耐高温和低密度而被广泛用于高温和某些苛刻的环境中,尤其在航空航天飞行器需要承受极高温度的特殊部位具有很大的潜力。

但是,陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面吸收表面能以外,几乎没有其它吸收能量的机制,这就严重限制了其作为结构材料的应用。

碳纤维具有比强度高、比模量大、高温力学性能和热性能良好等优点,在惰性气氛中2000℃时仍能保持强度基本不下降。

用碳纤维增强碳化硅复合材料,材料在断裂的过程中通过纤维拔出、纤维桥联、裂纹偏转等增韧机制来消耗能量,使材料表现为非脆性断裂。

Cf/SiC复合材料综合了碳纤维优异的高温性能和碳化硅基体高抗氧化性能,受到了世界各国的高度关注,并广泛应用在航空、航天、光学系统、交通工具等领域。

2. 碳纤维材料简介2.1碳纤维简介碳纤维是有机纤维或沥青基材料经谈话和石墨处理后形成的含碳量在85%以上的碳素纤维,是20世纪50年代为满足航空航天等尖端领域的需要而发展起来的一种特种纤维。

目前,碳纤维的生产原料分为三大体系:聚丙烯腈基碳纤维、沥青基碳纤维、黏胶基碳纤维。

其中聚丙烯腈基碳纤维由于原料资源丰富,含碳量高及碳化率高,成本低,正在被重视。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。

因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。

材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。

自愈合碳纤维增强陶瓷基复合材料研究进展

自愈合碳纤维增强陶瓷基复合材料研究进展
i a e i lt t oul p ot c c m po ie r ng m t ra ha c d r et o st fom r o t m p r t r t h ghe e pe a ur om e eau e o i r tm r t e, a t e nd hr e ki e f s aln el e e c m p nd d t e g r p ot c i e p r t r s ndsofs l— e i g c lsw r o ou e o g thi he r e ton t m e a u e .
未 来 自愈 合 复 合 材 料 的 发 展 方 向 主 要 是 新 型 全 温 区 自愈 合单 元 的 研 制 和 多 种 自愈 合 单 元 的 复 合 应 用 实 现 全 方 位 防 御 体
系来 进 一 步 提 高 使 用 温 度 。
关 键 词 : 纤 维 ;陶 瓷 基 复 合 材 料 ;自愈 合 ; 氧 化 碳 抗
维普资讯
自愈 合 碳 纤 维 增 强 陶 瓷 基 复 合 材 料 研 究 进 展
7 5
自愈 合 碳 纤 维 增 强 陶 瓷 基 复 合 材 料 研 究 进 展
Pr g e s i e fs a i g Ca b n Fi e i f r e o r s n S l e l r o b rRen o c d - n
Ce a i a r x Co p ie r m c M t i m ost
郑 晓慧 , 永 国 , 堵 肖加 余 , 君 遂 , 胡 吴剑 锋 , 玉 峰 芦 ( 国防科技 大 学 航天 与材 料工 程学 院 , 长沙 4 0 7 ) 1 0 3
Z ENG a — u ,DU n — u ,XI H Xio h i Yo g g o AO i— u Jay ,H U u — u , J ns i W U in fn 。LU —e g Co lg fAe o p c n ae il Ja —e g Yu fn ( l eo r s a e a d M t ras e

碳纤维增强SiBCN陶瓷基复合材料的制备及性能

碳纤维增强SiBCN陶瓷基复合材料的制备及性能

维增 强 S i B C N 陶瓷基 复合 材料 , 并 对其 力 学性 能进行 了初 步研 究。经 8次 浸 溃一 裂解 , 所 得 复合材 料 室温 弯 曲
强度 为 3 3 4 MP a , 8 0 0 " C / 氩 气条件 下 弯曲 强度 3 6 7 MP a 。该复合 材料 未经抗 氧化 防护 处理情 况下 , 8 0 0  ̄ C静 态 空 气 中氧化 3 h后 , 强度 保 留率 约为 6 0 %。 关键 词 聚硼硅 氮烷 , 前驱体 浸 渍裂 解技 术 , 陶瓷基 复合 材料
王 秀军 ' 张 宗波 曾 凡
李永明
徐 彩 虹
( 1 中 国科 学 院化 学 研 究 所 , 北 京 1 0 0 1 9 0 )
( 2 中国科 学院研究生院 , 北京 1 0 0 0 4 9 )

摘 以 自制 的 聚硼硅 氮烷 ( P — S i B C N) 为基体 聚合 物 利 用前驱 体浸 渍 裂解技 术 ( P I P ) 制 备 了二 维碳 纤
i n v e s t i g a t e d .Th e c o mp o s i t e o b t a i n e d f r o m 8 PI P— c y c l e s s h o we d i t s le f x u r e s t r e n g t h s o f 3 3 4 MPa a t r o o m t e mp e r a t ur e, a n d i n — s i t u le f x u r e s t r e ng t h o f 3 6 7 MPa a t 8 00 ̄ C i n i n e t r g a s a t mo s ph e r e .Th e c o mpo s i t e r e t a i ne d i t s 6 0%

碳纤维增强碳化硅陶瓷基复合材料

优点:①在聚合物中浸渍,能得到组成均匀的陶瓷基体,具有较高的陶瓷转化率;②预制件中没有基 体粉末,因而碳纤维不会受到机械损伤。裂解温度较低,无压烧成,因而可减轻纤维的损伤和纤维与 基体间的化学反应。
缺点:①致密周期较长,制品的孔隙率较高,对材料蠕变性能有一定影响;②基体密度在裂解前后相 差很大,致使基体的体积收缩很大(可达50~70%),因此需要多次循环才能达到致密化。
优点:基体软化温度较低,可使热压温度接近或 低于陶瓷软化温度。适用于制备单层或叠层构件, 致密度较高且缺陷少。
缺点:SiC陶瓷基体的烧结温度一般在1800℃以 上(添加加烧结助剂,常见的有TiB2、TiC、B、 BN等)。
4、液相硅浸渍法(LSI)
液相硅浸渍法是通过Si+C反应烧结生成,也称反应熔体浸渗法主要工艺流程如下: 纯固体硅于1700℃左右熔融成液态硅,通过C/C复合材料中大量分布的气孔,利用 毛细作用原理渗透到预制体内部并与C发生反应生成SiC陶瓷基体。 优点:工艺时间短,成本低。同时还可以制备大尺寸、复杂的薄壁结构组件。 缺点:制备Cf/SiC复合材料时,由于熔融Si与基体C发生反应的过程中,不可避免 地会与碳纤维发生反应,纤维被浸蚀导致复合材料性能下降。(只能制得一维或二维 的Cf/SiC复合材料,应用前景不大)
改善:均热法、热梯度法、等温强制流动等工艺
2、先驱体转化法(PIP)
先驱体转化法(PIP)是近年来发展迅速的一种制备Cf/SiC复合材料的制备工艺,由于成型工艺简单、 制备温度较低等特点而受到关注。该方法是利用有机先驱体在高温下裂解进而转化为无机陶瓷基体。 基本流程为:将含Si的有机聚合物先驱体(如聚碳硅烷、聚甲基硅烷等)溶液或熔融体浸渍到碳纤维预 制体中,干燥固化后在惰性气体保护下高温裂解,得到SiC陶瓷基体,并通过多次浸渍裂解处理后可获 得致密度较高的Cf/SiC复合材料。

碳陶刹车盘十大品牌简介

TRW的碳陶刹车盘采用了先进的生产 工艺和材料,具有高抗磨损性和优秀 的热稳定性,为驾驶员提供更安全、 更可靠的制动性能。
品牌三:大陆
大陆集团是全球领先的汽车零部件供应商之一,其碳陶刹车盘在市场上具有较高 的竞争力。
大陆的碳陶刹车盘采用了先进的材料和工艺,具有高抗磨损性和优秀的热稳定性 ,能够提供更稳定、更可靠的制动性能。
01
02
03
性能提升
成本降低
应用领域扩大
随着科技的不断进步,碳陶刹车盘的性能 也在不断提高,如提高耐磨性、降低磨损 等。
随着生产技术的不断改进和规模化生产的 实现,碳陶刹车盘的成本也在逐渐降低, 使得更多的消费者能够享受到其优良的性 能。
随着技术的不断发展,碳陶刹车盘的应用 领域也在不断扩大,如新能源汽车、轨道 交通等领域的应用。
日立的碳陶刹车盘采用了先进的材料和工艺,具有高抗磨 损性和优秀的热稳定性,能够提供更稳定、更可靠的制动 性能。
品牌六:艾瑞泽
艾瑞泽是一家中国知名的汽车零部件供应商之一,其碳陶刹车盘在市场上具有较高的竞争力。
艾瑞泽的碳陶刹车盘采用了独特的材料和工艺,具有高抗磨损性和优秀的热稳定性,能够提供更稳定 、更可靠的制动性能。
品牌C
产品性能较高,制动效果较好,噪音较小,消费者反馈积极。
市场份额对比
品牌A
市场份额较大,销售渠道广泛,品牌影响力较大 。
品牌B
市场份额较小,销售渠道有限,品牌影响力一般 。
品牌C
市场份额逐渐扩大,销售渠道日益丰富,品牌影 响力逐渐提升。
04
行业前景展望
碳陶刹车盘的技术创新方向
1 2 3
提高碳陶刹车盘的制动性能
02
十大品牌介绍
品牌一:博世

碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用

碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用1研究进展近年来,随着碳纤维增强碳化硅陶瓷复合材料(CCR)性能优越的发现,越来越受到科学家和工程师的关注。

并且CCR的陶瓷相结构具有极高的抗热、抗冲击、抗腐蚀和耐磨性能。

然而,由于其微观和宏观机械性能调控能力较弱,该复合材料在应用中仍受到一定的限制。

近期,CCR材料的性能优势受到了很多研究者的重视,各种新型结构,复杂的组合加工工艺及增强技术被提出。

例如,抗腐蚀性能可以通过制备复合表面层来改善;抗热、抗受力能力可以通过控制碳纤维的尺寸和排列方式来改善;耐磨性能可以通过引入碳材料的碳-氧化物多层复合来增强。

最近,一些拥有改良机械性能的新制备工艺也被研究并实施,包括激光熔覆、前景碳化熔覆、快速增材成型、焊接熔覆和高速冲击等。

2应用对于碳纤维增强碳化硅陶瓷复合材料,主要应用于航空航天、船舶航行及军事等方面,其优越的机械性能使其成为一种非常理想的重要应用材料。

如果说航空飞机,这种复合材料可以替代大部分传统金属。

由于复合材料的轻重比和热稳定性更佳,可以帮助飞机减轻重量。

此外,其优越的抗受力和抗腐蚀性能还可以防止复合材料受到高温或低温环境的影响。

此外,由于复合材料可以克服传统金属在热响应速度受到拘束的缺点,在军事上其应用也都非常广泛。

最新研究表明,该材料很容易改变其形状,使用CCR,军事装备及其它武器物品可以取得更好的效果。

3结论碳纤维增强碳化硅陶瓷复合材料的研究及应用正在逐渐受到重视,复合材料的热稳定性、高抗受力和抗腐蚀性等优势在航空航天、船舶航行及军事领域都得到了广泛的应用。

此外,新的制备工艺也取得了巨大的进步,可以有效地改善复合材料的机械性能。

因此,未来碳纤维增强碳化硅陶瓷复合材料将有望发展出更强大的功能更适应更多应用场景。

纤维增强陶瓷基复合材料的制备及其发展和应用

纤维增强陶瓷基复合材料的制备及其发展和应用摘要:作为结构材料,陶瓷具有耐高温能力强、抗氧化能力强、硬度大、耐化学腐蚀等优点,缺点是呈现脆性,不能承受剧烈的机械冲击和热冲击,因而严重影响了它的实际应用.为此,人们通过采用连续纤维增韧方法改进其特性,进而研发出连续纤维增强陶瓷基复合材料。

该种材料采用碳或陶瓷等纤维进行增强,使陶瓷基体在断裂过程中发生裂纹偏转,纤维断裂和纤维拔出等的同时,吸收能量,既增强了强度和韧性,又保持了良好的高温性能。

本文主要是综述了陶瓷基连续纤维增强复合材料的制备方法,并分析了各种工艺的优缺点。

在总结了现阶段连续纤维增强复合材料研究中存在的问题的基础上,提出了今后连续纤维增强复合材料的主要研究方向。

关键字:陶瓷基增强复合材料连续纤维制备方法目录1 引言 (2)1.1 前言 (2)1.2 陶瓷基复合材料的基本介绍和种类及其应用前景 (3)1.2.1陶瓷基复合材料的基本介绍 (3)1.2.2纤维增强陶瓷基复合材料的主要种类 (4)1.2.3 陶瓷基复合材料的应用前景 (5)1.3国内外的研究成果 (5)1.4 实验研究内容 (8)2 连续纤维增强陶瓷基复合材料的制备方法 (8)2.1料浆浸渍和热压烧结法 (8)2.2 直接氧化沉积法 (9)2.3溶胶-凝胶法 (10)2.4化学气相法 (10)2.5 先驱体转化法 (10)3结束语 (11)参考文献 (12)1 引言1.1 前言科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景。

陶瓷基复合材料(Ceramic matrix composite,CMC)是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷 (Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:碳纤维增强陶瓷基复合材料
抗氧化研究
学生:
学号:
院(系):材料科学与工程学院
专业:无机非金属材料工程
指导教师:
2013 年 05月22日
碳纤维增强陶瓷基复合材料抗氧化研究
(陝西科技大学 710021)
摘要:碳纤维增强陶瓷基复合材料( CFRCMCs) 具有良好的高温力学性能和热性能,是航空航天领域非常理想的热结构材料.但CFRCMCs 中的碳纤维极易发生氧化,因此CFRCMCs 的氧化防护问题一直是CFRCMCs 研究的热点。

文章对碳纤维改性、基体抗氧化技术、界面层抗氧化技术和表面涂层技术这四种CFRCMCs 的抗氧化技术及其原理进行了评述,分析了各类抗氧化技术的特点并对其发展趋势进行了展望.
关键词:碳纤维; 陶瓷基复合材料;抗氧化涂层,氧化保护
1 前言
碳纤维增强陶瓷基复合材料(CFRCMCs)由于具有高比强度、高比模量、耐腐蚀、耐高温、低密度等优良特性,特别是拥有良好的高温力学性能和热性能,在惰性环境中超过2 000e仍能保持强度、模量等力学性能不降低,拥有良好的断裂韧性和耐磨性能、低线膨胀系数、高热导率、高气化温度和良好的抗热震性能【1】,成为航空航天领域非常理想的热结构材料。

但是,在氧化气氛下,碳纤维增强陶瓷基复合材料中碳质材料在400℃左右发生氧化,使其优异性能难以在高温下长时间保持。

而碳纤维增强陶瓷基复合材料的许多应用环境都是具有氧化气氛的。

因此,它们在氧化气氛中的表现(包括氧化失重、机械性能的持久性等)及氧化气氛中的氧化保护一直是科研工作者非常关注的问题【2】。

碳纤维增强陶瓷基复合材料的抗氧化性研究主要集中在两个方面:(1)通过对基体材料的处理来增强材料的抗氧化性能,如殷小玮等通过在基体孔隙中渗入融熔Si和Cr反应生成Cr3Si来增强抗氧化性能;bruqu re等通过在碳纤维表层形成B化合物膜层来增强材料抗氧化性能;(2)通过整体抗氧化涂层增强材料的抗氧化性能。

在两种处理方式中,整体抗氧化涂层更为有效。

本文仅对整体抗氧化涂层的发展进行综述和展望。

【3】
2 抗氧化涂层的要求
抗氧化涂层的基本功能是将基体材料与外部的氧化性气氛隔离。

要有效地实现其隔离功能,抗氧化涂层体系必须满足一些基本要求:(1)涂层材料在所保护温度围稳定,涂层体系和基体材料有良好的粘接作用,涂层与基体及涂层与涂层之间
不剥落(分离);(2)涂层材料与基体间有相近的线膨胀系数(CTE);(3)涂层材料氧和碳的扩散系数低;(4)涂层材料与基体间有好的化学和物理相容性;(5)作为结构部件使用通常会受热流的冲蚀,在这种环境中使用涂层材料必须有良好的抗冲蚀性能等等【4】。

3 抗氧化涂层的材料组成
3.1 抗冲蚀层材料
抗冲蚀层的功能是阻挡氧气进入材料内部,抵抗气流冲蚀。

抗冲蚀层的材料最常用的是SiC和Si3N4。

SiC没有熔点,在2 100e由B相转变为A相,在(2 830?40)e分解;Si3N4熔点为1 900e。

两者都有极好的抗氧化功能和高温下极低的挥发性,同时SiC和Si3N4都有极高的硬度和抗冲蚀强度。

另外Al2O3、Y2O3、Ta2O5、Si2N2O、ZrO2和莫来石(3Al2O3#2SiO2)等氧化物陶瓷也可作外层涂层材料。

3.2 功能层材料
功能层的作用是形成玻璃态可流动物质封填涂层微裂纹,阻止氧的进入。

目前常用的功能层材料是能氧化形成玻璃态物质的化合物,B4C、TiB2、Si-B、Si-W、Si-Hf、Si-Zr等。

Courtois等通过CVD沉积TiB2于SiC外层下保护C/SiC,是在700e~1 100e有前途的封填材料。

硼化硅有一个独特的优点,被氧化后形成硅酸硼玻璃而没有其它产物,产物能通过硼化物的组成来确定,这意味着可以为特定的温度范围设计功能层材料[25]。

MoSi2也被用作功能层材料,氧化生成挥发性的MoO3和玻璃质的SiO2。

3.3 粘接层材料
粘接层的功能是粘接基体与涂层系统,减少涂层与基体间的线膨胀系数不匹配的影响,阻挡基体宇航材料工艺2003年第6期材料组成元素向外扩散。

粘接层材料最常用的是SiC和Si3N4,它们有与基体材料相近的线膨胀系数,为了降低线膨胀系数,可以在制备涂层时加入低线膨胀系数的材料,如BN和石英等【5】。

4、CFRCMCs的氧化防护
CFRCMCs的氧化保护是近年来复合材料研究的热点之一。

CFRCMCs的氧化防护研究主要从4个方面展开:(1)从碳纤维方面考虑,对碳纤维改性,提高纤维自身的抗氧化能力;(2)从基体方面考虑,采用抗氧化的基体材料或通过在基体中添加适当的添加剂制备裂纹可自愈合的基体;(3)从界面层考虑,为复合材料研制抗氧化界面层;(4)从材料表面着手,为CFRCMCs设计合适的抗氧化涂层。

【6】
4.1碳纤维改性
CFRCMCs在高温氧化气氛中的氧化损伤实质上是由碳纤维的氧化所引起,因此通过采取一定的措施,提高碳纤维自身的抗氧化能力,是提高CFRCMCs抗氧化性能的根本途径。

提高碳纤维的质量、采用石墨纤维、对碳纤维表面进行处理等都可以改善C/C复合材料的抗氧化性能。

对碳纤维进行高温热处理,可以提高纤维的石墨化程度,降低纤维中杂质的含量,减少杂质的氧化催化作用,从而提高纤维的抗氧化能力。

在碳纤维中引入B、H3PO4、P或硼酸等氧化抑制剂,可有效提高碳纤维的抗氧化性能【7】。

4.2基体抗氧化技术
目前研究的基体抗氧化技术主要有4类:(1)对基体进行热处理。

对于
C/C复合材料,与碳纤维的改性相类似,对碳基体进行热处理,以提高C/C复合材料的抗氧化性能。

(2)向基体中添加抑制剂。

通过一些方法向基体中添加磷酸、硼、硼化物及硅化物等抑制剂,封闭基体材料中的活性点,以达到提高复合材料抗氧化性能的目的。

(3)向基体中添加密封剂。

在基体中添加含硼或含硅材料,如B2O3、B、SiC和B4C等,这些材料在高温下氧化生成玻璃态物质,形成具有综合功能的保护膜,并将基体上的裂纹和孔隙弥合,阻止氧气向材料内部扩散,从而实现复合材料抗氧化的目的。

(4)制备多层功能陶瓷基体。

这种基体由多个陶瓷材料层和厚度特别薄的易熔材料层交替复合而成,它一方面可以允许裂纹发生多次偏转,使气体沿裂纹扩散的路径延长,避免氧化性气体直接到达碳纤维表面;另一方面,易熔材料层在高温下可以有效地封堵基体微裂纹,阻止氧气沿基体裂纹扩散,从而提高复合材料的抗氧化性能。

【8】4.3界面层抗氧化技术
用B-C、Si-B-C和Si-C作为界面层材料来提高复合材料的抗氧化能力,用莫来石界面层可明显提高Cf/Si-C-N复合材料的抗氧化性能。

通过界面层来提高CFRCMCs的抗氧化性能,理想的界面层材料应具备以下条件:①材料本身具有良好的抗氧化能力;②具有较大的热膨胀系数;③具有适当的厚度;④材料自身与碳纤维间具有良好的化学相容性,以免对纤维造成损伤。

利用界面层来提高复合材料的抗氧化性能可避免涂层技术所存在的一些问题,但如界面处理不当,则会使复合材料的力学性能出现严重下降。

【9】
4.4表面涂层技术
在CFRCMCs表面涂覆涂层可以使复合材料和氧化环境隔离,阻止复合材料发生氧化,从而大幅度升高复合材料在氧化环境中的使用温度。

目前根据涂层的形式来分主要有单层涂覆、双层涂覆及多层涂覆。

参考文献:
【1】碳纤维增强陶瓷基复合材料抗氧化技术研究_卢国锋
【2】碳纤维增强超高温陶瓷基复合材料的性能与微结构_孙银洁
【3—5】碳纤维增强陶瓷基复合材料抗氧化涂层研究进展_邹世钦张长瑞周新贵曹英斌
【6—8】连续碳纤维增强陶瓷基复合材料的氧化行为和氧化防护研究*卢国锋1,许艳2
【9】碳纤维增强陶瓷基复合材料界面的研究进展_何柏林。

相关文档
最新文档